Examen d'architecture des ordinateurs

1ère année Informatique, 11/12/2009

Partie 1

1. Simplifications algébriques (2 pts)

Simplifier l'expression suivante, en utilisant les théorèmes de l'algèbre de Boole :

$$S = (\overline{A.\overline{B} + \overline{A}.B}).A + (A.\overline{B} + \overline{A}.B).C$$

2. Circuit séquentiel (4 pts)

Dessiner le graphe de MOORE d'un circuit séquentiel synchrone qui détecte la séquence 1,1 ; concevoir ce circuit à l'aide d'un registre à décalage de 2 bits.

Transformer le graphe de MOORE en graphe de MEALY, puis concevoir le circuit correspondant.

En s'inspirant du résultat obtenu, produire un circuit de MEALY qui détecte la séquence 1,0,1.

3. Modification d'un compteur (3 pts)

Modifier un compteur de Johnson à 3 états pour qu'il ne compte que sur 5 états, en passant de 011 à 000. Quel est le défaut de ce compteur modifié par rapport au compteur initial ?

4. Circuit combinatoire : synthèse modulaire (3 pts)

Construire un encodeur de priorité à 8 entrées, d'interface : prioencoder 8 (e[7..0] : s[2..0], act), avec 2 encodeurs de priorité à 4 entrées, d'interface : prioencoder 4 (e[3..0], s[1..0], act) et d'un peu de logique combinatoire.

On rappelle qu'un encodeur de priorité fournit en sortie le numéro le plus élevé parmi les entrées actives ; par ailleurs act=1 si et seulement si au moins une des entrées est active. Fournir un schéma ou des équations MDL.