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Abstract

Human movements show several prominent features; movement duration is nearly independent of movement size (the
isochrony principle), instantaneous speed depends on movement curvature (captured by the 2/3 power law), and complex
movements are composed of simpler elements (movement compositionality). No existing theory can successfully account
for all of these features, and the nature of the underlying motion primitives is still unknown. Also unknown is how the brain
selects movement duration. Here we present a new theory of movement timing based on geometrical invariance. We
propose that movement duration and compositionality arise from cooperation among Euclidian, equi-affine and full affine
geometries. Each geometry posses a canonical measure of distance along curves, an invariant arc-length parameter. We
suggest that for continuous movements, the actual movement duration reflects a particular tensorial mixture of these
canonical parameters. Near geometrical singularities, specific combinations are selected to compensate for time expansion
or compression in individual parameters. The theory was mathematically formulated using Cartan’s moving frame method.
Its predictions were tested on three data sets: drawings of elliptical curves, locomotion and drawing trajectories of complex
figural forms (cloverleaves, lemniscates and limaçons, with varying ratios between the sizes of the large versus the small
loops). Our theory accounted well for the kinematic and temporal features of these movements, in most cases better than
the constrained Minimum Jerk model, even when taking into account the number of estimated free parameters. During
both drawing and locomotion equi-affine geometry was the most dominant geometry, with affine geometry second most
important during drawing; Euclidian geometry was second most important during locomotion. We further discuss the
implications of this theory: the origin of the dominance of equi-affine geometry, the possibility that the brain uses different
mixtures of these geometries to encode movement duration and speed, and the ontogeny of such representations.
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Introduction

Affine geometry and motion
As a first approximation, perceived physical space is assumed to

be Euclidian. Yet, psychophysical studies of visual perception,

drawing movements and locomotion indicate important depar-

tures from Euclidian geometry [1–4]. In these cases, space and

movements seem to be perceived in terms of affine geometrical

properties [2,5–8]. Affine geometry is the geometry which retains

from Euclidian geometry only the existence of points, lines and

planes with their geometrical properties of incidence (i.e., the

existence of only one straight line between two points) and

parallelism (i.e. the existence of a unique line parallel to a given

line that passes through a given point, Thales’ theorem, etc.). The

study of affine geometry can also be based on displacement of

points by vectors, (see section A in Text S1). There is no preferred

absolute distance in affine geometry.

Most important in affine geometry is the set of affine

transformations, which are transformations of space or of a plane

transforming straight lines into straight lines and parallel lines into

parallel lines. Concretely, affine transformations are obtained by

composing together translations and linear mappings which

include rotations, stretching and dilatations. A property of a

geometrical shape is said to be affine invariant when it is preserved

under all possible affine transformations. For instance, being a

closed curve is an affine invariant property but enclosing an area

equal to p is not. Being an ellipse is an affine property, but being a

circle is not, since any given circle and any elongated ellipse can be

transformed one into the other using at least one affine

transformation.

Since we are interested in motion timing, it is important to

understand the concept of invariant duration with respect to a

given set of transformations. For instance, a timing rule for a given

set of curve segments is affine invariant if the duration spent

moving along any arc of any one curve is equal to that spent

moving along the image of this segment obtained by using any

affine transformation. Thus, if timing were a totally affine

invariant for all possible planar movements, all elliptical

trajectories, for example, would have had the same total duration,

generating a complete isochrony. We will show how such an

invariance follows from a particular dependence of motor timing

on the curvature of trajectories.
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The influence of path curvature on movement velocity is well

known [9–11]. Originally, Viviani and Terzuolo [1] claimed that

movement velocity V is roughly proportional to the radius of

curvature R of a curved movement, i.e. V~gR, and that

movement segmentation is determined by the presence of

inflection points. Modifying this earlier suggestion and based on

empirical observations, Lacquaniti et al. [12] formulated the two-

thirds power law, stating that the instantaneous angular velocity A
is proportional to the instantaneous curvature raised to the power

2/3rd. Equivalently, since A~V=R, an alternative formulation of

this law is: V~cR1=3, where V is the ordinary tangential velocity

and R is the radius of curvature. The coefficient c was termed the

velocity gain factor and was shown to be piecewise constant.

Examining the dependence of c on the perimeter P during

periodic drawings of different figural forms (circles, ellipses, figure

eights, double ellipses etc.), Viviani and McCollum [13] obtained a

relationship consisting of multiplying two power laws, such that

V~CPaRb where P is the Euclidean perimeter of the figural form

and a and b are empirically determined exponents. These

observations, where the value of the velocity gain factor c depends

on the perimeter of the curve being drawn, were thought to

account for the isochrony principle. This principle captures the

empirical observation that the durations of movements involved in

the generation of motion paths with similar geometrical forms but

with different lengths are nearly equal [4,9,13–15].

The 2/3 power law was extended to human locomotion [16,17]

with a somewhat different set of exponents and was also linked to

the perception of visual motion [18,19]. Pollick and Sapiro [5] and

Handzel and Flash [6,20] have further suggested that the 2/3

power law is equivalent to movements being performed at a

‘‘constant equi-affine speed’’, defined as the time derivative of s1,

the equi-affine arc-length. Using the Euclidian radius of curvature

and arc-length, R and s, respectively, the equi-affine arc-length s1

is defined as:

ds1

ds
~R{1=3: ð1Þ

According to this definition, the equi-affine length s1 corresponds

to the integral of the infinitesimal regular Euclidian arc-length ds
weighted by the Euclidian curvature raised to the power of 1/3.

Thus, among equally long segments, those with greater curvature

have longer equi-affine length. Based on this approach, Flash and

Handzel [8] further developed a framework using group theory to

describe and analyze human movements. However, a significant

empirical observation which was not accounted for by the equi-

affine description, nor by any other model, is the observed

tendency towards global isochrony of human movement, men-

tioned above. Moreover, neither the equi-affine description, nor

any other model has made any explicit suggestion as to how the

values of the velocity gain factor are selected for in any movement

segment.

As part of our new approach, we treat movement generation as

being based on full affine geometry, without making specific

choices of units of length or area. This allows us to compare the

influences of affine, equi-affine, and Euclidian geometries on the

temporal properties of the movements. We suggest that in each of

these geometries time is proportional to a specific ‘‘measure of

distance along the curve’’ in that particular geometry. In addition,

we deduce the variation of the velocity gain factor from the need

for full-affine invariance. This results in a local form of isochrony.

For instance, for movements along ellipses, a full affine invariance

predicts the same 2/3 principle as equi-affine invariance. But, in

addition, it predicts that through appropriate adaptation of the

‘‘velocity gain factor’’ movement duration will be the same for all

ellipses in the plane.

However, total isochrony may sometimes lead to paradoxical

behavior, and we therefore hypothesize that the brain takes

advantage of the existence of several possible geometries rather

than using a single geometry. Hence, we suggest that movement

timing is continuously prescribed and realized according to an

equilibrium between affine and Euclidian geometries with Equi-

affine transformations, which are the area-preserving affine

transformations, playing an essential, if not dominant, role

[5,6,8]. Combining geometries is a totally new approach; it has

not been previously considered in mathematics nor in biology, let

alone in motor control or vision research. Here, using this new

approach to the timing of motion, we derive new guidelines for

motion segmentation and for the identification of motion

primitives, while treating both hand trajectories and locomotion

within the same framework.

The idea that geometric invariance is of great importance in

prescribing the principles underlying perception and action is quite

old [21–23]. Since that time many psychophysical studies have

discussed the importance of invariance theory for perception [24–

27]. Summarizing informally (see [26]), an invariant entity came

to mean ‘‘anything which is left unaltered by selected transforma-

tions’’ [28]. However, the concept of invariance has benefited

from mathematical formulation as initiated by Galois [29] (see

[23,30–32]), and it is this concept of invariance that serves as a

conceptual basis for our theory. Galois has stated that in solving

any given equation, it is more important to understand the

structure of the ambiguity among all the possible solutions of this

equation, rather than trying to directly derive them. Moreover,

this roundabout approach frequently offers better means for

computing such solutions. Different levels of analysis of the given

equation are characterized by the sets of transformations of the

solutions which are equivalent at those particular levels of analysis.

Author Summary

No existing theory successfully accounts for several
amazing properties of biological movements: dependence
of movement speed on path curvature, isochrony (move-
ment duration is nearly independent of its size) and the
construction of more complex movements from simpler
building blocks. Here we present a new theory of
movement generation, based on movement invariance
with respect to geometrical transformations. Several types
of transformations are considered. Euclidian transforma-
tions preserve lengths and angles; affine transformations,
which are less restricted, preserve parallelisms between
lines, while equi-affine transformations preserve both
parallelism and area. Each geometry is associated with a
different measure of distance along curves. Movement
timing is continuously prescribed by the brain by
combining different ‘‘geometrical times’’ each assumed
to be proportional to the measure of distance of the
corresponding geometry. Movements are constructed by
using a series of instantaneous (Cartan) coordinate frames.
The predictions of the theory compared well with
experimental observations of human drawing and walking.
Equi-affine geometry was found to play a dominant role in
both tasks and is complemented by affine geometry
during drawing and by Euclidian geometry during
locomotion. The proposed theory has far reaching
implications with respect to brain representations of
motion for both action production and perception.

The Geometry of Motor Timing
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It is natural to propose that, in the same way, the brain uses

several levels of representation and processing in planning any

particular motion. At each level the computation is organized by

respecting certain symmetries. Approaching the level of motor

execution fewer and fewer possibilities are allowed, thus reducing

the initial larger group of symmetry of all possible movements into

smaller groups. This hierarchy of decisions in motion planning and

execution is reflected in the representation of space through the

performed movement.

In the following mathematical section, which discusses full

affine, equi-affine and Euclidian geometries, we use Cartan’s

moving frame method [33–35], whose main theme is the relation

between a specific curve and the action of a group of

transformations of frames defined along that curve. For instance,

given a specific group of transformations we look for a

parameterization of the curve which is invariant under such

transformations. When curve segments are similar under trans-

formations belonging to that group, the parameterization of these

segments will also be similar. In particular, we show how Cartan’s

moving frame method is well suited for our problem of trajectory

planning and segmentation.

Mathematical preliminaries
From the work of Galois [29], Cayley, Jordan, Lie, [36,37],

Poincare [22] and Klein (cf. [38,39]), we see that a particular

geometry is captured by a particular group of transformations G of

the points of a space or of a plane E, such that every point or every

direction in E can be transformed by an element of G to every

other point or direction. Euclidian geometry corresponds to G
being the group of rigid displacements consisting of translations

and rotations but we can also choose G to be the group of all

possible affine transformations, generated by translations, rotations,

reflections, but also by dilatations, stretching and shearing. Or we can

choose the special subgroup of the full-affine group, namely the

area-preserving equi-affine group, which includes all the above

transformations except for dilatations. The last two groups

correspond to the full affine and to the equi-affine geometries,

respectively. These three geometries - Euclidean, full affine and

equi-affine - are the most important geometries for the two-

dimensional (2D) plane E, in our present investigation.

A priori the largest possible group of invariance to be considered

is that containing all continuous smooth transformations of

geometrical objects in the plane. This group, however, does not

provide sufficient constraints, since all possible trajectories are

equivalent under such transformations and are expected to have

the same duration. Another possibility is using the group of

projective transformations (consisting of compositions of several

pairs of perspective projections and describing changes in the

perceived positions of observed objects when the point of view of

the observer changes). However, some projective transformations

paradoxically send points at a finite distance to infinity. The affine

group G0 is formed by projective transformations for which this

does not happen. Thus, it describes the largest possible reasonable

invariance. At the other extreme is the group of isometries, i.e. the

Euclidian group G2 of length-preserving rigid transformations.

The sub-group G1 of equi-affine transformations lies between G0

and G2.

Curves can be analyzed differently in different geometries (see

Monge [39], Lie and Cartan [33]). Cartan’s method generalizes

the moving frame method originally developed by Darboux [39]. Note

that, for the 2D case, any frame is formed by a point and by two

attached basis vectors (see section A in Text S1).

The essence of Cartan’s moving frame method is that it creates

a correspondence between the different orders of description of

trajectories and the possible coordinate frames on the plane. This

method specifies which geometrical transformations of frames

allow identification of the trajectories that are indistinguishable at

a given order (see section A in Text S1).

At each point in time, locations within the plane are represented

by coordinates in a moving frame. The motion along any curve is

described by the equations representing the new infinitesimal

coordinate frame (the new location and the new basis vectors)

within the instantaneous current frame. When the moving frame is

the canonical moving frame, the only remaining varying

coefficient is the instantaneous curvature. This is an invariant quantity

of the geometrical curve in the geometry defined by the group of

transformation G. Thus, when using the moving frame description

all along the curve, the representation of the infinitesimal next

frame uses only invariant quantities and, in this sense, is the

simplest possible one.

The choice of parametrization of the curve necessary for

deriving the canonical form of the moving frame gives a unique

parameter, which is also the only parameter invariant under any

transformation belonging to the group G of the chosen geometry.

In full affine geometry, this unique parameter is called the full affine

arc-length and it is denoted by s (see section A.2 in Text S1). With

the same kind of analysis in Euclidian geometry, we obtain a

canonical parametrization by using the ordinary Euclidian

distance (arc-length) s instead of s, while in equi-affine geometry

we obtain canonical parametrization by using the equi-affine arc

length s1.

To connect this description with known kinematic notions,

choosing time to be proportional to the Euclidian arc length s gives

rise to an ordinary uniform Euclidian motion, i.e., to a motion

with a constant tangential Euclidian velocity V . Setting time to be

proportional to s1 gives rise to a motion with a constant equi-

affine speed. This is a motion whose tangential velocity V obeys

V~cR1=3, where R is the Euclidian radius of curvature and c
which is a constant, is the so called velocity gain factor defined by

Lacquaniti et al. (1983).

Given a point M on a curve, there exists a unique equi-affine

frame, centered at M with coordinates (x,y), whereby the curve

near the point M takes the following simple form, called the

reduced equation of the curve:

y~
1

2
x2{

1

8
k1x4z::: ð2Þ

Cf. [33]. This frame is the equi-affine canonical frame. The coefficient

k1, which depends on the point M appearing in this equations, is

the so called equi-affine curvature.

The equi-affine moving frame equations are the only infinitesimal

equations for which the motion is expressed as follows:

dM

ds1
~I1,

dI1

ds1
~I2,

dI2

ds1
~k1I1; ð3Þ

where I1,I2 denote the basis unit vectors of the equi-affine

canonical moving frame (see section A.2 in Text S1).

The mathematical expression for the equi-affine curvature when

expressed as a function of Euclidian radius of curvature R is:

k1~R{1=3½1
3

d2R

ds2
{

1

R
½1z

1

9
(

dR

ds
)2��, ð4Þ

where
dR

ds
,
d2R

ds2
are, respectively, the first and second order

The Geometry of Motor Timing
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derivatives of R with respect to the Euclidian arc-length s. Equi-

affine curvature is the quantity defined on a planar curve which

remains invariant (unchanged) under equi-affine transformations.

The curves of constant equi-affine curvature k1 are all plane

conics. Those with k1v0 are ellipses, those with k1~0 are

parabolas, and those with k1w0 are hyperbolas.

Focusing now on the canonical full affine moving frame, the

derivative of the full affine arc-length s with respect to the

Euclidian arc-length s is expressed by:

ds

ds
~R{1=3jk1j1=2: ð5Þ

When time is set proportional to the full affine arc-length s, the

velocity gain factor varies according to the equation:

c~
ds

ds1
~C0jk1j1=2

.

The canonical full-affine moving frame is simply obtained by scaling

the vectors in (3): it is formed by M and by J1~cI1, J2~c2I2 (see

section A.2 in Text S1).

Another kind of curvature appears for the full affine frame. This

full-affine curvature remains unchanged under all full affine

transformations. It determines the relative variation of the velocity

gain factor c with the full affine arc-length s:

K~
1

c

dc

ds
: ð6Þ

Two kinds of special points generically arise along a path

immersed within the affine plane: ordinary inflection points (at

which the Euclidean curvature equals zero) and ordinary parabolic

points (at which the equi-affine curvature equals zero). Near

ordinary inflection points, when the distance s measured from the

inflection point, tends to zero, s diverges like log(s) and s1 shrinks

like s4=3 (see section A.3 in Text S1). Thus, as neither s nor s1 are

defined at ordinary inflection points, neither affine nor equi-affine

parameterizations can be used at or near such points. Similarly,

near a parabolic point, s degenerates like s3=2, and only s1 or s

can be used.

However, as shown in section A in Text S1, by attributing a

weight of 1/4 to the full affine arc-length and a weight of 3/4 to

the equi-affine arc-length we get a parameter t such that

dt~(ds)1=4(ds1)3=4, which offers a unique, convenient strategy

for moving through an inflection point while keeping equi-affine

invariance of time.

Summarizing the main results: at each point along a

parameterized curve, locations within the plane are represented

by coordinates in a moving frame. The motion along the curve is

then expressed by equations representing the new location and the

new basis vectors within the present frame. Given a group G of

plane transformations, there is a canonical moving frame along

any curve. For this canonical moving frame, with its intrinsic arc-

length parameter, the movement equations have the simplest

possible form. The only changing coefficient is the instantaneous

curvature, which is the only geometrical invariant of the curve in the

geometry defined by G. This results in the unique parametrization

of the curves which is invariant under G. This parametrization is

the only one for which the motion of the frames is of minimal

complexity, in the sense that changing variables from the current

to the next frame is represented by an invariant quantity.

Results

From geometry to time
We propose here that the brain selects movement timing and

duration according to a principle of geometrical invariance. A few

principles are necessary to derive timing and kinematics of motion

from geometry. As mentioned above, all the geometries considered

here define canonical coordinates along curves: s, s1 and s are the

invariant arc-length parameters of the affine, equi-affine and

Euclidian geometries, respectively. Using these parameters and

assuming some specific relation between time and the correspond-

ing parameter, the principle of the invariance of time becomes

concrete.

By definition, we will call monotonic any movement or any

part of a movement during which duration is proportional to one

of these invariant parameters. That is, in the case of planar

movements, the affine invariance selects time t such that

Dt = C0Ds. For movements with equi-affine invariance

Dt~C1Ds1, and for movements with Euclidian invariance

Dt~C2Ds. The constants C0,C1,C2 fix the scales of the

corresponding durations but may also depend on the context,

the subject and his/her intention to move quickly or slowly, etc.

Let us remark that monotony necessarily neglects the fact that

the motions start and end at rest with zero velocities, accelerations,

and higher order derivatives of position (i.e., that we also make

discrete movements). Because of the presence of such boundary

conditions, the model must be generalized by considering the

canonical parameters s, s1 or s in the corresponding geometries

(Euclidian, equi-affine or full affine, respectively) to be polynomials

of some order of t. The first or second derivatives of these

polynomials are zero at the movement end-points. This gives

perfectly invariant timing for discrete trajectories which start and

end at rest. Thus, any rule such that s~f (t) is affine invariant in

the sense that if one applies an affine transformation to a given

curve, then the time t for the transformed curve follows the same

rule. Similarly, a function s1~f (t) gives timing which is equi-

affine invariant, and a function s~f (t) timing which is Euclidian

invariant. This defines a clear general notion of ‘‘geometrical

time’’ for all the three geometries, in which monotony is only the

simplest possible case. However, in our initial presentation, all our

tests of the validity of the new theory will be limited to periodic

movements.

In many cases, only one geometrical parameter is insufficient for

deriving movement kinematics and it is both necessary and useful

to use a combination of several geometrical parameters.

Even for periodic motions the presence of singularities implies

that monotony cannot be obeyed. For instance, the full affine

parameter expands at an ordinary inflection point. Thus, if s is

the chosen time parametrization, it would take an infinite

amount of time to reach an inflection point. In contrast, at an

ordinary inflection point s1 shrinks, requiring an infinite speed

of movement when passing though such a point. The latter

phenomenon also holds for parabolic points for the parameter

s, which shrinks near such points. A priori it would have been

natural to expect that Euclidian geometry dominates near

inflection points, because the curvature is zero at these points.

However, our preliminary observations have indicated that this

is not the case. To the contrary, it seems that at inflection

points, Euclidian velocity is eliminated and a stereotypical

mixture of affine and equi-affine velocities are used. This was

the first case where we saw the advantage of having a mixture

of several geometries. This conforms with mathematical analysis:

as recalled above in the section sec:math_pre, we showed (in

section A in Text S1) that a unique combination of affine and

The Geometry of Motor Timing
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equi-affine parameters offers a convenient strategy to passing

through inflection points.

Combining several geometrical timing parameters offers greater

flexibility and adaptivity to the motion planning strategy.

Consequently, our general hypothesis is that movement
duration results from the combined use of several
geometries.

That is, during some portion of any given movement the

velocity will be more affine, while during another portion it will be

more equi-affine or more Euclidian. This is formulated by

expressing dt as a multiplication of some power functions of the

canonical geometrical differential parameters ds,ds1,ds. For

simplicity we assume that there are intervals of time during which

these combinations are stationary. Between these special intervals

the time parameter is chosen by smooth interpolation.

The consequence of this hypothesis is the existence of a

succession of segments belonging more or less to different fixed

combinations of geometries. It is natural to expect that the

existence of singular points such as inflection and parabolic points

implies the presence of extended segments in their vicinity, during

which a mixture of geometries are employed. Note that the global

shape of a figural form often forces the presence of such

singularities, thus we predict that the global shape of a trajectory

will influence its local kinematics. When moving from one

movement segment to the next, the transition between such

segments should be smooth. Hence, all of the above additional

guidelines can be summarized as giving rise to a tendency for
expanding singularities, motion segmentation and
smoothness.

Quantitative timing laws
To quantify the combination of geometries in selecting

movement timing and total duration, we need to understand the

different and modifiable weights attributed by the motor system to

the various possible purely geometrical rules. For this purpose we

propose an equation having an exponential form.

Let V0,V1,V2 denote the expected Euclidian velocity under

constant affine, equi-affine and Euclidian velocities, respectively,

where time is proportional to the respective geometric parameters

s,s1,s. If dt is proportional to ds, the Euclidian velocity is

proportional to jk1j{1=2
R1=3 and we mark it by V0. If dt is

proportional to ds1, the Euclidian velocity is proportional to R1=3

and we mark it by V1 and if dt is proportional to ds, the Euclidian

velocity is a constant, C2, and we mark it by V2. Hence the

Euclidian velocities corresponding to these three different choices

of time are:

V0~C0R1=3jk1j{1=2 ð7aÞ

V1~C1R1=3 ð7bÞ

V2~C2: ð7cÞ

We examined the recorded tangential Euclidian velocity V by

assuming that the actually realized Euclidian velocity is prescribed

according to the following product equation:

V~V
b0

0 V
b1

1 V
b2

2 , ð8Þ

where b0,b1 and b2~1{b0{b1 are weight functions defined

along the trajectory with values lying within the range [0,1].

The above equation (10) can be rephrased using the following

tensorial equation for movement duration:

dt~(ds=C0)b0 (ds1=C1)b1 (ds=C2)b2 : ð9Þ

A multiplicative form of the mixtures of velocities is more natural

than an additive form because the parameters s,s1,s belong to

different dimensions. In particular the treatment of the constants

C0,C1,C2 is technically easier when using a multiplicative form.

Another reason became apparent during our mathematical

analysis: as mentioned in the mathematical preliminaries section,

it is possible to bypass inflection points by combining the

logarithmic functions of the affine and equi-affine velocities using

the weights of 1/4 and 3/4, respectively (see section A.3 in Text

S1). Finally, the subjectively perceived velocity is related to the

physical one by a nonlinear law, well approximated by a power

law [40,41], so the logarithmic function is able to associate the

different velocities with their subjective perception.

Observe that, although affine transformations introduce addi-

tional complexities to the computations, the actual hypothesis to

be tested is contained in equations (0), (10) above, which are easy

to understand. Note that all b functions used here were

determined based on the experimental data, except at inflection

points where we have chosen them to be b0~1=4,b1~3=4,b2~0
and at parabolic points where we selected b0~0. (See sections

Experimental tests and Methods for the precise process.) Hence, at

the present stage the theory is descriptive rather than predictive.

We have also tested less stringent consequences of using

mixtures of invariance. In particular, we tested the possibility that

during specific segments one geometry becomes more dominant

than the others. A vivid manifestation of the existence of a pure

geometric velocity can be obtained by comparing the times T ’,T 00

spent on two arcs L’,L00 such that there is a planar affine

transformation x with x(L’)~L00:
Suppose that the time spent on a segment of a curve is affine

invariant, even if affine velocity is not constant we have

T ’
T 00

~1: ð10Þ

Suppose now that the law for duration is purely equi-affine. If

A’,A00 denote the total areas under respective arcs of curves and

the corresponding secants (i.e., the total areas between the

respective arcs of the curves (L’,L00) and the corresponding

straight segments joining the extremities of those arcs in the plane),

then

T ’
T 00

~½A’
A00
�1=3; ð11Þ

Hence duration varies according to area.

When Euclidian geometry is the dominant kinematic law, if we

denote the lengths of the arcs traveled by L’,L00, then

T ’
T 00

~
L’
L00
: ð12Þ

Now suppose that a curve C is a union of curved segments (not

necessarily connected), C0,C1,C2, each being dominated by one of
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the three geometries, where each geometry is marked by one of

three indexes (i.e. 0 for affine, 1 for equi-affine and 2 for

Euclidian), and suppose that movement velocity varies continu-

ously along C. It can easily be shown from the continuity of the

speeds at the boundaries between adjacent segments (see section

E.1 in Text S1) that the ratios of times spent on different segments,

T1=T0,T2=T0, are invariant under any similarity transformation.

In other words, they are invariant under the scaling of Euclidian

length with a scale factor r. A consequence of this assumption is

the following (see section E.1 in Text S1): Suppose C is cut into

two parts C’,C00, then there are three non-negative constants

B0,B1,B2, depending only on C’ which are invariant under

similarity transformations of C’, such that B0zB1zB2~1, and

T ’
T 00

~B0zB1r2=3zB2r, ð13Þ

where T ’,T 00 mark the times spent on C’,C00, respectively, and

r~L’=L00 is the ratio of similarity between C’ and C00.

Experimental tests
The data used to test our hypotheses were derived from

recorded hand movements and locomotion generated along a priori

prescribed curves. We aimed to test the compatibility of the

temporal properties of the movements with respect to two main

principles: 1) geometrical invariance determines movement

duration, 2) The mixing of different geometries can account for

movement segmentation.

Three different tests were conducted. The first, using elliptical

hand trajectories, tested whether an alternation between Euclidian

and affine geometries better explains the experimentally observed

relation between Euclidian curvature and velocity than describing

the whole elliptical movement as obeying a single power law with

constant exponent. This test also examined the limitations of the

validity of the isochrony principle by investigating the relation

between total duration and perimeter and the relation between the

enclosed area and gain factor. The second test used trajectories

generated by human subjects while tracking geometrically

prescribed complex figural forms - cloverleaves, lemniscates and

limaçons - during both drawing and locomotion. This experiment

tested whether the proposed tensorial formulae (8), (9) can

successfully account for the experimentally observed movement

durations. We also examined whether it is possible to distinguish

between movement duration during drawing and locomotion

based on the different degrees of influence of the different

geometries, i.e. whether both tasks are based on similar principles

of invariance but arise from different mixtures of geometrical

invariance. The third test, applied to the same data as the second

test, examined the validity of equation (13) with respect to the

ratios between the durations of the movements along the large

versus the small loops of the lemniscates and limaçons. It also

aimed at confirming the differences between drawing and

locomotion identified by the second test with respect to the

influence of the different geometries on the durations of movement

along large versus small segments.

First test: Elliptical trajectories. Elliptical trajectories with

different eccentricities, perimeters and performed under various

speed conditions were recorded from three subjects (see section

Methods and section B.1 in Text S1). For ellipses, affine and equi-

affine parameterizations are proportional to each other; the scaling

factor assures that full affine geometry predicts a strict global

isochrony, while equi-affine geometry does not.

Full isochrony predicts the following linear relation between the

velocity gain factor c and the area of the ellipse

A : log c~
1

3
log Azl (see section B.2 in Text S1). Here and

elsewhere log refers to a logarithm on the basis e. A linear

regression conducted separately for each subject and speed

condition confirmed a positive correlation between log c and

log A but with a slope constantly smaller than 1/3 for two subjects

(S1,S2) and almost equal to 1/3 for subject S3 who was always

faster than the other two subjects (see Table 1 and Figure S1).

Subject S3’s movements also tended to show full isochrony (see

below).

If k denotes the Euclidian curvature, the prediction based on

equi-affine geometry is a linear relation log V~b log kzm, with

b~{
1

3
. Such a relationship has been repeatedly described in the

literature with the slope b close to 21/3rd [12]. However, when

analyzing the experimental pairs log V versus log k, case by case,

we did not find such a strictly linear relationship but, instead, a

piecewise linear relationship comprising two segments: a horizon-

tal segment for trajectory segments with small curvatures and

another segment with a slope of {
1

3
for segments with larger

Euclidian curvatures (see Figure 1). Thus it appears that there are

critical curvatures kc and critical speeds Vc, such that the

Euclidian velocity is nearly constant for kƒkc and V§Vc. This

is demonstrated by comparing the ratios of the sum of square

errors (SSE) for the linear regression between log k and log V with

a description consisting of two segments with slopes 0 and 21/3.

We also calculated the probability that the piecewise linear model

explains the data better than a single power law (see the legend of

Table 2). These results are conclusive (see Table 2): the segmented

representation captures the log V versus log k behavior better

than a single power law.

Our results thus confirm the existence of heterogeneous

geometry and quantify a trajectory segmentation scheme compat-

ible with the presence of separate equi-affine (or affine) and

Euclidian segments during the generation of elliptical trajectories.

To further investigate the influence of different geometrical

representations on the movements, we used a linear regression

analysis of logT versus logP to examine the relationship between

total movement time T and the total perimeter P of the elliptical

trajectories, (see Figure 2 and Table 3). For subjects S1 and S2, the

slope was significantly greater than zero but smaller than 0.55 (for

S1, the slope ranged between 0.44 and 0.55 depending on

Table 1. Statistical analysis of elliptic drawings (1).

Speed Subject m l R2

Slow S1 0.12 21.56 0.46

S2 0.17 21.30 0.91

S3 0.28 0.29 0.93

Natural S1 0.14 20.78 0.45

S2 0.23 20.35 0.87

S3 0.33 1.01 0.96

Fast S1 0.18 0.17 0.59

S2 0.21 0.35 0.80

S3 0.28 1.32 0.95

Log gain factor versus log area.
Linear regression: log c~m log Azl, for each of the three speed conditions
(Slow, Natural, Fast) and the three subjects (S1,S2,S3). Presented are the best m
and l, and the values of the coefficient of determination
(R2~SSregression=SStotal ) for the different ellipses. Figure S1 shows the data and
the regression lines corresponding to table.
doi:10.1371/journal.pcbi.1000426.t001
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movement speed, and for S2 the slope range was 0.29–0.37).

These slopes thus showed an imperfect tendency toward

isochrony. For subject S3 the slope was also positive but close to

zero (0.041–0.13), very nearly showing full isochrony. The R2

score in this case is problematic because it reports the extent to

which the prediction is better than the mean of the data. When the

slope is close to zero, the prediction is very close to the mean and

the R2 score is low.

Figure 2 gives results from sets of repetitions of one

experimental condition; total movement duration shows a

tendency towards a larger variability than perimeter. However,

closer examination of the data showed no correlation between the

order of movement repetition and movement speed. The main

conclusion we can draw from these data is the existence of a

tendency towards isochrony which seems unaffected by speed.

This tendency is strongly modulated by the specific strategy of

each subject.

In sections B.2 and B.3 in Text S1, the relations between c,T ,P
and eccentricity for elliptic trajectories are examined from the

affine point of view and compared with the theoretical derivations

in the studies by [15,42] and with the experimental data from

Viviani and Schneider [43]. In section C in Text S1 we also

describe Viviani’s [42] observation that the empirical law for the

mean value of the velocity gain factor c scales with the radius of

the frame within which subjects produce continuous scribbling

movements. We discuss the compatibility of these observations

with affine geometry.

Second test: Complex figural forms, velocity predic-

tions. We next examined a series of drawings of lemniscates,

limaçons and cloverleaves (from [4]) and of locomotion trajectories

along similar curves (from [17]). Thus we could compare the

production of planar movements during two different motor tasks,

drawing and locomotion. The drawings of cloverleaves were

performed at three different speeds (marked by C1,C2,C3 in the

order of ascending speed), while in the locomotion experiment no

instruction concerning movement speed was given. Subjects

followed three lemniscate templates and three limaçon templates

in the two experiments. The templates differed in the ratios between

the perimeters of the two loops comprising these forms (see Figure

S2), but the total length of the different forms was constant. (The

lemniscates and limaçons were marked respectively as A1,A2,A3

and L1,L2,L3 according to the ascending ratio of the sizes of the

large versus the small loops). We then computed the Euclidian and

equi-affine curvatures and derived the Euclidian velocity profiles

corresponding to constant Euclidian, equi-affine and affine

velocities, calling them respectively V2,V1,V0 (see equations 7).

We also constructed the velocity profile hypothesized by the

geometrical mixture model (see below).

Several data sets were used in the computation of the

different models and in the statistical tests. For drawing, all the

Figure 1. An example of elliptic segmentation: Comparing the piecewise linear law (PLL) of log v versus log k, versus the regular
Power Law, where v is the velocity and k is the Euclidian curvature. Empirical values (blue) of the pairs (log k,log v) are compared to the
piecewise regression lines of the PLL: v~Vc for kƒkc (red line), and log v~bc log kzlc for k§kc (green line), versus the regression line of the regular
Power Law ( black). For all k, log v~bPL log kzlPL . For this trajectory Vc~0:06,kc~9:80,bc~{0:34,lc~{2,bPL~{0:17, and lPL~{2:58.
doi:10.1371/journal.pcbi.1000426.g001
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data points were used. The velocity profiles of locomotion

displayed oscillations due to the stepping movements. To

eliminate these and to derive the subject’s transport velocity

during locomotion, we disregarded the velocity components due

to the presence of steps. Thus, for locomotion we consider two

data sets. One data set, the ‘‘stepwise sampled data set’’ (SSDS),

consisted of the experimental data corresponding to time instants

at which the body position (with respect to a point M between

the shoulders, see Figure S3) attained a local minimal height,

corresponding to the end of a step. The second data set

included all the position data for the M-point and was called the

‘‘complete sampled data set’’ (CSDS). The SSDS contained

between 117 and 183 points, while the CSDS contained

between 3310 and 6000 points per trial.

Then, based on the model for the mixture of geometries,

hypothesized tangential velocity profiles were constructed using

Table 2. Statistical analysis of elliptic drawings (2): Log Velocity versus log Euclidian curvature, piecewise linear law (PLL)
compared to the regular power law.

Eccentricity Subject Piecewise- Linear vc Piecewise- Linear kc Power- Law aPL Power- Law bPL
SSEpiecewise{linear

SSEpower{low
Probability

Small S1 0.11 6.04 22.23 20.23 0.65 0.87

S2 0.15 5.24 22.12 20.28 0.72 0.82

S3 0.32 6.19 21.31 20.26 0.69 0.85

Medium S1 0.19 16.09 21.70 20.14 0.95 0.58

S2 0.19 13.10 21.74 20.17 0.85 0.72

S3 0.49 9.28 20.50 20.28 0.89 0.68

Circle S1 0.15 24.61 21.98 20.07 0.95 0.56

S2 0.17 27.12 21.99 20.05 0.96 0.54

S3 0.39 17.51 20.68 20.23 0.97 0.53

The PLL is: v~vc if kƒkc , log v~{1=3 log kzlc if k§kc ; the regular Power Law is Vk, log v~bPL log kzaPL.
For each of the three eccentricities and three subjects the table presents the best Tc and Pc for the PLL and the best bPL and aPL for the regular power law, plus the
ratios of the sums of square errors (SSE) for the two linear regressions for the different ellipses. Also presented are the probabilities that the PLL model is better than
the power law model, computed according to the equation: p~ratio

{0:5N
=(1zratio

{0:5N
) where ratio~mean(SSE(PL)=SSE(PLL)) and N is the number of trials.

doi:10.1371/journal.pcbi.1000426.t002

Figure 2. Experimental data of elliptic drawings and regressions. Log movement time (T) is plotted versus log perimeter (P). The regression
lines between log T and Log P are shown for each subject S1 , S2 and S3 and each average speed condition (slow, natural and fast, red, green and
black, respectively). Ellipses with different eccentricities are marked by different symbols (circle, cross and plus for narrow, medium eccentricity and
circles, respectively). The regression parameters were calculated for all eccentricities together. The parameters of the regression lines are presented in
Table 3.
doi:10.1371/journal.pcbi.1000426.g002
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the following procedure (for further details see section Methods

and section D.4 in Text S1):

1) By comparing the known experimental velocity and the three

computed monotonic velocities (V2,V1,V0, in logarithmic scale),

we found segments of time during which a linear (barycenter)

combination of the logarithms of the computed monotonic

velocities approximated the logarithm of the experimental velocity

with a very high degree of accuracy (up to or above 97%). The

slopes (in 3D) of the lines corresponded to the exponents b0,b1 and

b2 (whose total sum equals 1). Hence, the weights of the different

geometries during those segments could be considered constant.

Altogether, seven techniques were used to find segments during

which one or all three b functions were constant. The first

technique, i.e., that described above, enabled us to find the

segments during which constant bs could successfully approximate

the data. Three other techniques assumed that one of the bs is zero

and searched for trajectory segments during which the other two

bs were constant. Based on these segments and using a cubic spline

interpolation for the functions bs, a predicted velocity was

computed for the entire movement. The last three techniques

started from the above interpolated velocities and searched for

segments during which the b exponent, initially assumed to be

zero, was constant. To all these segments we a priori added

constraints in the vicinity of parabolic points (where we imposed

b0~0) and at inflection points (where we imposed

b1~0:75,b0~0:25 and b2~0). We refer to all the above segments

as special segments. We emphasize that these segments were used in

our derivation of the different b functions and do not necessarily

correspond to motion units or segments.

2) For each scenario, we computed a smooth cubic spline

interpolation of the b functions between all the special segments,

yielding a theoretical velocity for the entire trial.

3) The values for the three remaining constants C0,C1,C2 were

chosen to be those giving the best match of the predicted

trajectories to the experimental data.

4) We chose the best result among those constructed using the

above seven scenarios. We call this velocity the Geometrically

Combined Velocity (or comb velocity). For locomotion all the above

computations were conducted using only the SSDS samples.

Note that we used the above algorithm, since at present, except

for parabolic and inflection points, the model does not predict

which geometrical combination should be realized for any given

curve. However, we have tested the non-triviality of the model

predictions using three different statistical measures: 1) Assessing

the significance (or the statistical non-triviality) of the existence of

special segments using an F-test (details are given below and in

section Methods ); 2) Considering the number of fitted parameters

and comparing a penalized score calculated for our models versus

the corresponding score calculated for the constrained minimum-

jerk model [44]. For this comparison we used the standard Akaike

criterion AIC [45]. It was necessary to use such a criterion instead

of simply using the R2 values, since our model uses many more

parameters than the minimum-jerk model - around 23 vs. a single

parameter corresponding to the total movement duration. 3) We

calculated the coefficient of determination, R2, for our model to

evaluate how well the model accounts for the data. Recall that our

aim here, to examine whether movement timing and velocity are

best explained by a combination of geometries, cannot be rejected

based on the analysis of the experimental data.

First we refer to the non-triviality of the special segments found

by the data analysis. The SSDS data were considered for the

locomotion task. For all trials we computed the squared distance

U1 between the model and the experimental velocity, restricted to

the union of all m special segments and the total variance U2 of the

experimental velocity. The difference U2{U1 represents the

variance of the experimental data during parts of the trajectory

outside the special segments plus the residual variance on the

special segments (See section Methods).

Considering the respective numbers of statistical degrees of

freedom, we applied a Fisher test to the ratio Y~U1=(U2{U1).
We also verified, as follows, that the variance of the experimental

velocity with respect to the prescribed geometrical curves cannot

itself explain the presence of special segments. We repeated the

above computation replacing the variance of the experimental

velocity with the squared distance of this velocity from the best

trigonometric (i.e. Fourier) approximation of degree four. That is,

we used four harmonics (hence with 9 real arbitrary coefficients for

the (x,y) set of coordinates). See section Methods for more details

of this procedure and Table 4 for the results. For both types of

computation, the results confirmed that most of the special

segments could not be explained by the intrinsic variance of the

trajectories. For the drawing data, 61 of 78 trials (78%) satisfied

the test involving trigonometric approximation. For the locomo-

tion data, 65 of 91 trials (71%) satisfied this test.

We also calculated the Akaike Information scores AIC for the

four models (combination, minimum-jerk, constant equi-affine and

constant affine velocities) for the drawing and locomotion data (cf.

section Methods). Because data sets composed of 5 samples were

necessary in each elementary computation of velocity, the number

n of statistically independent degrees of freedom equalled the total

number of points divided by 5. The calculations were performed

on both the drawing data and the CSDS of locomotion. We then

computed the probability that our combination model was better

than the minimum-jerk model (according to the equation

P~q=(1zq), where q~exp({0:5DAIC), (for more details

regarding this equation see [45]). Remember that higher AIC
scores correspond to a worse result, thus a higher probability

indicates a good model.

For locomotion, we examined the success of the four models by

computing two sets of AIC scores for the velocity profiles predicted

by these models. One set of scores was derived by applying the

Table 3. Statistical analysis of elliptic drawings (3): Log time
versus log perimeter.

Subject speed m l R2

S1 Slow 0.49 2.48 0.62

Natural 0.55 1.85 0.76

Fast 0.44 0.96 0.80

S2 Slow 0.37 2.38 0.78

Natural 0.29 1.56 0.71

Fast 0.32 0.80 0.70

S3 Slow 0.11 1.02 0.14

Natural 0.041 0.44 0.049

Fast 0.13 0.02 0.5

The equation for the linear regression is: log T~m log Pzl. The best m and l
are presented for each of the three subjects and three speeds, as well as the
goodness of fit of the data points to the linear regression expressed by:
(R2~1{SSerror=SStotal ). Note that the R2 values assess how much the
approximation of the data provided by the linear regression is better than the
mean value of the data. For subject S3 the R2 scores are low because the slopes
(m) are close to zero. Hence, the linear approximations are not better than the
mean values of the data points. For further details see Figure 2.
doi:10.1371/journal.pcbi.1000426.t003
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models to the SSDS data points (‘‘SSDS-scores’’), while the second

set of scores was derived using the CSDS (‘‘CSDS-scores’’). The

main difference between the AIC scores calculated for the two

data sets is that for CSDS, the experimental velocity profiles

contained velocity components due to stepping that are not

accounted for by the combination of geometries nor by the

minimum-jerk models. The CSDS data set contained more

samples than the SSDS data set. For SSDS, the number n of

statistically independent degrees of freedom ranged between 117

and 183, while for the CSDS this number, n, ranged between

662( = 3310/5) and 1200( = 6000/5).

For the drawing data, the AIC scores for the four different

models are shown in Figure 3A. The probability scores that the

combined velocity model is better than the minimum jerk model

are shown in Figure 3B. For drawing cloverleaves at slow and

normal speeds, the combination velocity model had lower AIC

scores than the other three models. As shown in Figure 3 it is

conclusively better than the minimum-jerk model and its

probability of being the correct model was larger than 0.85.

When the cloverleaves were drawn at high speeds, the AIC score

for the minimum-jerk model was a little lower than for the

combined velocity model, the probability for the combined

velocity model being the correct model was around 0.5.

The AIC scores for drawing limaçons favored the comb velocity

model over all other models, resulting in a probability larger than

0.7 that our model is always better than the minimum-jerk model.

The AIC score for the minimum-jerk model for drawing

asymmetrical lemniscates was less than the AIC score for the

comb velocity model, resulting in a probability of 0.4–0.5 that the

comb velocity model is the correct one for A1 and very small for

A2,A3.

For the locomotion data (both the SSDS and the CSDS), the

AIC scores for the four different models are shown in Figure 4A.

The probability scores for both the SSDS and the CSDS that the

combined velocity model is better than the minimum jerk model

are shown in Figure 4B. For locomotion along the cloverleaf form,

the AIC score for the SSDS (SSDS-scores) favored the equi-affine

model, and the minimum-jerk model seemed to be better than the

combined velocity model. In contrast, using the CSDS data set

(CSDS-scores), the AIC score favored the combined velocity

model and the equi-affine model alone was worse than the

combined velocity model but better than the minimum-jerk

model. For locomotion along limaçons, the AIC score was lower

for the combined velocity model than for the equi-affine and affine

models. The differences in the AIC scores between the minimum-

jerk model and the comb velocity model depended on the size of

the small loop (for both SSDS- and CSDS-scores). The AIC scores

indicated that the combined velocity model was better than the

minimum-jerk model for L1,L2 but not for L3. For locomotion

along lemniscates, the SSDS-scores indicated that our model was

more probable than the minimum-jerk model for A3, but less

probable for A1,A2. Using the CSDS-scores the combined

velocity model was always better but its advantage was clear only

for A3.

Taken together, the probability that the combined velocity

model is better than the minimum-jerk model for drawing was

greater than 0.9 for C1,C2,L3, greater than 0.6 for L1,L2 and

greater than 0.5 for C3. For locomotion, the CSDS-score showed

that the probability that the combined velocity model was better

than the minimum-jerk model was greater than 0.9 for

C,L1,L2,A3, greater than 0.6 for L3,A2 and greater than 0.5 for

A1.

In conclusion, for most of the drawing as well as locomotion

trajectories, the minimum-jerk and the combined velocity models

obtained the best AIC scores. There was a difference, though

small, in the AIC scores for the combined velocity versus the

minimum-jerk models. This difference favored the combined

velocity model especially for the locomotion data.

We computed the coefficients of determination, R2, for all the

models considered here. The R2 scores indicate how well the

variance of the experimental velocity is explained by the

theoretical predictions. Below, we use the R2 score for the SSDS

locomotion data set which ignores the oscillations in position due

to stepping.

Figures 5 and 6 show comparisons of theoretically predicted

versus experimentally recorded velocity profiles for drawing and

locomotion. Figures 5A–C and 6A–C show examples of a slowly

drawn and a walked cloverleaf, respectively. Examples of drawing

and walking along the limaçon form are shown in Figure 5D–F

and Figure 6D–F, respectively, while Figure 5G–I and Figure 6G–

I show one repetition of the lemniscate form, for drawing and

locomotion, respectively. Figures 5A, 5D, 5G, 6A, 6D and 6G

display the movement paths and Euclidian curvatures. Segments

of the curves marked in red represent parts of the curve with high

Euclidian curvatures, while segments in blue represent parts with

low Euclidian curvatures (see scales in the top parts of all these

figures). Figures 5B, 5E, 5H, 6B, 6E and 6H also show the

experimental velocity profiles of the recorded movements (red

lines) and the corresponding combined velocity profiles (blue lines)

for the three different figural forms. Further information and

examples of the experimentally recorded paths and velocity

Table 4. Results of the tests for statistical significance of the
presence of intervals.

Exp Shape
Test 1: %
Significance

Test 2: %
Significance

Drawing C1 100% 77.78%

C2 100% 100%

C3 100% 66.67%

L1 100% 83.33%

L2 100% 66.67%

L3 100% 55.56%

A1 100% 100%

A2 100% 100%

A3 100% 100%

Locomotion C 100% 75.86%

L1 100% 62.07%

L2 100% 60%

L3 100% 63.33%

A1 100% 83.33%

A2 96.67% 96.67%

A3 100% 92.59%

Column Test 1:% significance shows the percentage of trials for which the
existence of special segments was found to be statistically significant. This was
determined by comparing the success in matching the empirical velocities
either with the model for the combination of velocities or their approximation
using the mean velocity values. The analysis was performed in the log velocity
space.
Column Test 2:% significance shows the percentage of trials for which the
existence of special segments was found to be statistically significant. Here the
success in matching the empirical velocities achieved by the model of the
combination of geometries was compared with that using the trigonometric
approximation. The analysis was performed in the log velocity space.
doi:10.1371/journal.pcbi.1000426.t004
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profiles and their comparison to the velocities predicted by the

combined velocity model are presented in Text S1 section D and

in Figures S4 and S5 for the drawing and locomotion data,

respectively.

The R2 scores derived by comparing the experimentally

recorded and theoretically predicted velocity profiles are displayed

in the top left of these figures. The R2 values were calculated for

the entire set of movement trials, not only for the one run

presented in the figures. Table 5 and Figure 7 give the mean and

standard deviation values of the R2 scores of the velocities for each

figural form. The R2 scores for all the different theoretical models

are lower for locomotion than for drawing. This can be explained

by the higher levels of noise in the locomotion data. However,

based on both the R2 and the AIC scores, the model that

combined the three geometries gave a better approximation for

locomotion than all other models.

Table 6 and Figure 8 show the mean and standard deviation

values of the bs for each figural form.

The average values of the b weight functions was correlated

with the degree to which constant equi-affine and constant affine

velocities alone explain the data.

To investigate movement segmentation we examined the

influence of the various geometries on the different parts of the

three figural forms. To this end, we inspected the values of the b
functions along movement repetitions of these curves (for

examples, see Figures 5C, 5F, 5I, 6C, 6F and 6I). The red area

represents the values of b0, the green area represents the values of

b1, and the blue area represents the values of the b2. The sum of

the b functions is always one. (Note that if, for example, b0 = 0.2,

b1 = 0.5, and b2 = 0.3, the red area will appear between the

abscissa and the line parallel to it passing through the value of 0.2,

the green area will appear between that line and another line

parallel to the abscissa through the value of 0.7, while the blue

area will appear above the latter line). Figures S6 and S7 show

further examples of the velocity profiles of the recorded

movements together with values of the b functions for drawing

and locomotion trajectories, respectively. Figure S8 presents the

color coding for the b function values shown in Figures S6 and S7.

As can be seen from the drawing example of the limaçon,

Euclidian geometry has no influence on the theoretically predicted

velocity (there are no blue parts), while in the locomotion example

there is no affine influence (no red part). In the lemniscate

example, movement trajectories are not segmented at singularity

points, as previously suggested in the literature [42]. Instead, the

singularity points are embedded within the trajectory as demanded

by the principle of the extension of singularities. These examples

are typical only for the features we have mentioned. There is still

considerable variance among the trials that needs further study.

Examining the different velocity profiles, V0, V1 and V2 and

comparing them to the experimental velocities, we see that most of

the time more than one geometry is needed to construct the

experimental velocity. In the examples shown in Figures S4B and

S4E for the experimentally recorded hand shown in Figure S4A,

the experimental velocity (red line) mostly lies between the affine

Figure 3. Drawing data: AIC scores for the 4 models and for the different figural forms. (A) Akaike’s Information Criterion (AIC) scores
averaged across subjects and repetitions for the 4 models for all drawn shapes. Also shown are the standard deviations (SDs)of the AIC scores. The
lower the AIC score is, the better is the model. Red bars show the scores of the model of the combination of geometries (vT ); green bars, scores of
the constrained minimum jerk model (vJ ); yellow bars, the constant equi-affine speed model (vEA); cyan bars, scores of the constant affine velocity
model (vA). (B) Brown bars show the average probabilities (averaged across subjects and repetitions) that the combined model is better than the
minimum-jerk model for the different shapes. Standard deviations are also shown. The probabilities were calculated according to the equation
p~e{0:5DAIC=(1ze{0:5DAIC), where DAIC is the differences in scores between the two models. In both figure panels, the cloverleaves are marked by
C1,C2,C3 in the order of ascending speed. The limaçon and the lemniscate are marked by L1,L2,L3 and by A1,A2,A3 , respectively, according to the
ascending ratios of perimeters of the large to the small loops.
doi:10.1371/journal.pcbi.1000426.g003
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and equi-affine velocities (the solid blue and black lines,

respectively). The lemniscate are more complicated because of

the presence of inflection and parabolic points. Still, in Figure S4H

the experimental velocity follows the equi-affine velocity until it

reaches an inflection point, where the net velocity is obtained by

combining the affine and equi-affine velocities, thus allowing them

to cancel each other out. A similar phenomena was found for the

locomotion trajectories (see Figure S5).

We shall now inspect drawing and locomotion of each of these

figural forms more closely. Here we mainly use R2 to compare

different curves and conditions, rather than comparing the

different models. We also display data for bs (see Figure 8). This

figure shows that the affine contribution to the drawing

movements is not negligible and that the limaçons’ trajectories

are more affine than those of the cloverleaves. These, in turn, are

more affine than lemniscates. For walking, the influence (weight) of

Euclidian geometry is non-negligible. Its influence is smaller for

cloverleaves, but for lemniscates and limaçons its influence co-

varies with the ratios of the size of the large versus the small loops.

For cloverleaves the R2 of the comb velocities was larger than 0.85

for all drawing trials with mean value 0.92. The equi-affine

velocities gave similar scores (0.960.03 respectively). The affine

velocity score, on the other hand, was low (0.4960.18). Hence, the

experimental velocity cannot be explained by the affine velocity

alone. The locomotion data gave a greater difference between the

comb velocity (0.8760.05) and the equi-affine velocity (0.8360.10)

and the affine velocity received negative R2 scores for most trials.

(Remark: the R2 score for non-linear functions can be negative. In

this case we say that the mean value of the data points matches the

data better than the values predicted by the model for these data

points.) These observations are confirmed by the AIC scores as

shown in Figures 3 and 4. As can be expected from these results,

the equi-affine velocity has a large influence on the combined

velocity of the cloverleaves (b1~0:64+0:22 for drawing and

Figure 4. Locomotion data: AIC scores for the 4 models and for the different figural forms. (A) Akaike’s Information Criterion (AIC)
scores, averaged across subjects and repetitions, for the 4 models for all the shapes of the locomotion data. SDs of the AIC scores are also shown.
The figure in the upper row in panel (A) shows the AIC scores for the CSDS (all data), while the figure in the lower row in panel (A) shows the AIC
scores for the SSDS data. The lower the AIC score is, the better is the model. Red bars show the scores of the combination of geometries model
(vT ); green bars, scores of the constrained minimum-jerk model (vJ ); yellow bars, the constant equi-affine speed model (vEA); cyan bars, the scores of
the constant affine velocity model (vA). (B) Brown bars show the average probabilities (averaged across subjects and repetitions) that the combined
model is better than the minimum-jerk model for the different shapes. SDs are also shown. The probabilities were calculated according to the
equation p~e{0:5DAIC=(1ze{0:5DAIC), where DAIC is the differences in scores between the two models. The figure on the left (panel (B)) shows the
results for the CSDS, while panel (B) on the right shows the results for the SSDS. In both figure panels, the cloverleaves are marked by C. The
limaçon and the lemniscate are marked by L1,L2,L3 and by A1,A2,A3 , respectively, according to the ascending ratios of perimeters of the large to
the small loops.
doi:10.1371/journal.pcbi.1000426.g004
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0.6660.18 for locomotion, see Table 6). Comparing the means of

the b functions of the trials of drawing cloverleaves at medium

speed with those of locomotion trials reveals a significant

difference for the values of b0 and for the values of b2. The

drawing trials are more affine, while the locomotion trials are

more Euclidian and both geometries are needed.

The limaçons gave high R2 scores of the combined velocity,

0.9360.16 for drawing and 0.6960.24 for locomotion. Both the

equi-affine and affine geometries had higher AIC scores than the

combined velocity but their absolute R2 scores were still very high

(R2*0:85) for the drawing trials. Thus, affine geometry is

dominant in the combined velocity (b0~0:52+0:14). The

Figure 5. Examples from the drawing experiment. Every row shows an example of the second repetition of a drawing trial. First row, drawing
of a cloverleaf; second row, drawing of an oblate limaçon; third row, drawing of an asymmetric lemniscate. Panels (A), (D) and (G) show the paths
drawn by the subject. The colors marked on the paths represent the Euclidian curvature. Blue segments have relatively low curvature (,0), red
segments have a higher curvature (,0.75). Color scale is shown at the top of the panel. Panels (B), (E) and (H) show the velocity profiles of the
drawing. Red, experimental velocity profile; blue, velocity profile predicted by the model of the combination of geometries. Panels (C), (F) and (I)
show values of the b functions. Red area, value of the b0 function; green area value of the b1 function; blue area, value of the b2 function. The values
are aggregated one above the other such that their sum equals 1.
doi:10.1371/journal.pcbi.1000426.g005
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influence of equi-affine geometry is also strong (b0~0:46+0:14),

while the Euclidian influence is negligible. In contrast, the

locomotion trials yielded negative R2 scores for the affine velocity.

This is reflected in the small role that the affine geometry plays in

the comb velocity (b0~0:08+0:11) and the significant effect of

Euclidian geometry (b0~0:36+0:18).

The R2 scores for the combined velocity model for

lemniscates were 0.8260.07 for drawing and 0.5660.18 for

locomotion. The influence of affine geometry was very weak for

both drawing and locomotion, (b0*0:09). However, affine

geometry is still important because it affects the velocity at

inflection points preventing the equi-affine velocity from rising

to infinity. In drawing lemniscates equi-affine geometry was very

dominant (b1~0:79+0:09), while in locomotion along lemnis-

cates, the Euclidian and the equi-affine geometries had an equal

influence.

Figure 6. Examples from the locomotion experiments. Every row shows an example of the second repetition of a locomotion trial. First row,
walking around a cloverleaf. Second row, walking along an oblate limaçon. Third row, walking around an asymmetric lemniscate. Panels (A), (D) and
(G) show the paths drawn by the subject. The colors on the paths represent the Euclidian curvature; Blue, segments with a relatively low curvature
(,0); red, segments with a higher curvature (,0.75). Color scale is shown in the panel. Panels (B), (E) and (H), the velocity profiles of the drawing. Red,
experimental velocity profile; blue, the velocity profile predicted by the model of the combination of geometries. Panels (C), (F) and (I) show values of
the b functions. Red area, value of the b0 function; green area, value of the b1 function; blue area, value of the b2 function. The values are aggregated
one above the other such that their sum equals 1.
doi:10.1371/journal.pcbi.1000426.g006
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The distribution of values of the b functions for the various trials

are better observed using the six triangles shown in Figure 9. Each

triangle represents data for all the trials of the same experiment

and shape. Every point within the triangles represents a specific

combination of (b0,b1,b2). The color of each point indicates how

frequently a particular combination appeared in the trials, with a

dark point representing a frequent combination and a light point

representing a rare combination. Areas within the triangles which

contain no points represent combinations that were not used at all

(see the figure legend for the correspondence of b values to any

given point within these triangles.)

Figure 9 shows that Euclidian and affine geometries contributed

similarly during the cloverleaf trials. During drawing there is a

tendency toward affine geometry. During the locomotion trials, as

can be expected from the mean values of the b functions, there is a

high tendency towards Euclidian geometry. However, in spite of

this tendency, there are still many locomotion trials during which

affine geometry showed a larger influence than Euclidian

Figure 7. The R2 scores of the 4 models for the different figural forms. Summary of the R2 scores for all 4 models for all the figural forms for
both drawing and locomotion data. The bars represent mean scores 6SD averaged over all subjects and trials. Red, score obtained for the model of
the combination of geometries (vT ); green, score of the constrained minimum-jerk model (vJ ); yellow, score for the constant equi-affine velocity
model (vEA); cyan, score for the constant affine velocity model (vA). For the marking of the different forms see Figure 3.
doi:10.1371/journal.pcbi.1000426.g007

Table 5. The R2 scores of the 4 models for the various figural forms.

Exp Shape R2 of Combination R2 of Min-jerk R2 of EA R2 of A

Drawing C1 0.9060.05 0.8660.06 0.8760.03 20.1160.69

C2 0.9460.03 0.9260.05 0.9060.02 0.5260.17

C3 0.9160.06 0.9360.03 0.9160.01 0.4660.20

L1 0.9160.02 0.9060.02 22.8760.36 212.3863.01

L2 0.8460.03 0.8860.02 22.8260.70 211.2261.45

L3 0.7560.05 0.8360.04 23.1260.85 210.3561.92

A1 0.8660.27 0.8260.32 0.8060.28 0.7160.37

A2 0.9760.01 0.9560.02 0.8860.01 0.9160.02

A3 0.9760.01 0.9560.02 0.8760.01 0.9360.02

Locomotion C 0.8660.07 0.7460.18 0.8360.10 24.2768.38

L1 0.7960.09 0.4160.60 0.4760.80 28.09613.26

L2 0.7960.16 0.1560.51 0.4060.46 212.56611.16

L3 0.4860.27 0.2060.47 20.4461.22 27.8066.95

A1 0.5160.18 0.0860.53 28.2265.15 220.62612.90

A2 0.5460.23 0.1360.21 27.3163.22 221.3466.55

A3 0.6060.17 0.0960.31 26.5162.23 221.1965.01

The means and SDs of the R2 scores for the pure equi-affine and affine geometries, minimum-jerk and the combination of the Euclidian, equi-afine and affine
geometries. Remark: the R2 scores of non-linear functions can be negative. In this case we say that the mean value of the data points matches the data better than the
values predicted by the tested model.
doi:10.1371/journal.pcbi.1000426.t005
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geometry. For the lemniscate trials, the influence of affine

geometry can be seen mostly around the inflection point. For

the locomotion data Euclidian geometry had a larger influence

than equi-affine geometry. On the other hand, for the limaçon

paths, during which there are only parabolic but no inflection

points, drawing and locomotion were quite different. For drawing

movements, mainly affine geometry created isochrony and an

affine description alone provided a good explanation for the

observed durations and velocities. In contrast, during locomotion,

Euclidian geometry was twice as influential as affine geometry,

but, again, as in the case of locomotion along cloverleaves, we

found a large number of segments during which affine geometry

played a larger role than Euclidian geometry.

In conclusion, the equi-affine geometry was almost always the

dominant geometry. The mean value of b1 was greater than 0.45

for most of the drawing and locomotion trials. Euclidian geometry

played an important role in locomotion for the three kinds of

figural forms, whereas affine geometry played a small, though

important role. The reverse was true for drawing (except for

lemniscates): affine weights were important (i.e., the values of b0

were 0.25, 0.52, 0.09 for cloverleaves, limaçons and lemniscates,

respectively) while Euclidian weights (b2) for the same shapes were

0.11, 0.02, 0.12, respectively. For detailed results of the AIC scores

see Table S1 in Text S1.

Third test: Complex figural forms, drawing and

walking. Using the data from [4] and [17], we analyzed the

effect of the ratios between the large and small loops in the

lemniscates and limaçon forms. The generated paths consisted of

segments with different length ratios between a smaller and larger

loop. This allowed us to test the validity of the prediction presented

at the end of section sec:quantitative laws for the ratios between

the movement durations for the two loops (see section E in Text

S1).

Both for drawing (3 subjects) and for locomotion (10 subjects),

three different ratios r between the Euclidian lengths of the small

and large loops were derived from the recorded movement data.

To test equation (13), the triangle of barycenter positive

coordinates B0,B1,B2, satisfying B0zB1zB2~1, was divided

into a lattice with a mesh size of 0.01. For each point in the lattice

we calculated the value of the R2 score assessing the success of the

predicted ratios of durations to capture the experimental data (see

Figure 10).

There were always regions within the triangle where R2 was

high (more than 0.92), but these regions mostly consisted of

parallel strips. Consequently, only a fixed linear combination of B0

and B2 (generally close to B22B0 = some constant) gave high R2

scores. The red part in Figure 10 represents the area with the

highest R2 values. Only these areas corresponded to specific (large)

values of B1 (except for drawing limaçons, for which the region

always remains a strip, as in the triangle in Figure 10A). The main

result is a clear difference between drawing and locomotion: for

drawing B0 is larger than B2. That is, the strip of high R2 lies

under the altitude through the B1 vertex. The reverse holds for

locomotion, where B2 is larger than B0. This again demonstrates

that, during drawing, affine geometry has a stronger influence on

the ratios between the time spent moving along the two loops.

That is, from equation (13), the larger B0 is, the closer we come to

full isochrony. During locomotion the ratios between the durations

is similar to the ratios between the perimeters of the large versus

the small loops.

A second type of statistical analysis was performed over the

same three constants B0,B1,B2 and the exponent d such that, for

each r,

T2

T1
~B0zB1rdzB2r; ð14Þ

The purpose of this analysis was to find the values of d for which

the highest R2 could be obtained. The results demonstrated that

the interval of d’s giving the highest R2 scores contained the value

d~2=3. The differences in the degree of influence of the various

geometries between drawing and locomotion persisted for different

values of d.

Figure 11 compares the experimentally measured ratios of

movement durations with those predicted by equation (13). It

also gives
T2

T1
versus

L2

L1
~rð Þ for one of the set of B constants

in the region of high R2 scores for both locomotion and

drawing.

Discussion

A new theory: the timing of voluntary movement
trajectories arises from a combination of several
geometries

We present a new theory explaining how the timing of

voluntary movements changes according to path geometry. Our

model proposes that the velocity along the path is a specific

composition of different canonical velocities, a composition that

may vary among different segments of the same movement. Both

geometrical invariance and movement segmentation are conse-

quences of this principle. The canonical velocities to be combined

depend only on path geometry and are defined within three major

2D-spaces: equi-affine, Euclidean and affine spaces. Equi-affine

geometry is associated with a measure of area, Euclidian geometry

with a measure of distance and affine geometry with the notion of

parallelism.

The above notions are illustrated in our analysis of elliptical

hand drawings. The trajectories contained two types of curved

segments, each displaying different relationships between instan-

taneous velocity and Euclidian curvature and corresponding either

to affine or Euclidian geometries. The Euclidian segments were

those portions of the trajectory during which the Euclidian

curvature was rather low - below some threshold - while the affine

segments corresponded to the more curved portions. Such a

description of segments accounts for the observed behavior better

than a description based on a single power law (the probability of

Table 6. The mean values of the b functions for the different
figural forms.

Exp Shape mean of b0 mean of b1 mean of b2

Drawing cloverleafs 0.2560.14 0.6460.22 0.1160.12

Limaçons 0.5260.14 0.4660.14 0.0260.03

Lemniscates 0.0960.01 0.7960.09 0.1260.09

Locomotion cloverleafs 0.1660.13 0.6660.18 0.1860.11

Limaçons 0.0860.11 0.5660.19 0.3660.18

Lemniscates 0.0960.04 0.4360.13 0.4860.12

The mean and SD values of the b functions of the combinations. The function
b0 represents the influence of affine geometry in the combination of
geometries. The function b1 represents the influence of the equi-affine
geometry in the combination of geometries. The function b2 represents the
influence of Euclidian geometry in the combination of geometries.
doi:10.1371/journal.pcbi.1000426.t006

The Geometry of Motor Timing

PLoS Computational Biology | www.ploscompbiol.org 16 July 2009 | Volume 5 | Issue 7 | e1000426



providing a better model than a single power law model was

always higher than 0.64 and up to 0.97 for small ellipses). The

observed behavior is a compromise between constant ordinary

Euclidian speed and the isochrony principle, which reflects the

effect of full affine geometry on motor timing.

For drawing the three figural forms studied here (cloverleaves,

lemniscates and limaçons), the comparison of the three canonical

velocities with the corresponding experimentally recorded ones

strongly supports our new theory. The predicted purely equi-

affine and the experimentally recorded velocities were very close

for 70% of the time. The disagreement during the remaining

30%, could be systematically explained: here the velocity

departed from entirely equi-affine and varied in a direction

indicated by full affine or Euclidian velocities, as shown by the

velocity profiles (see Figures S4 and S5). For instance, for

drawing limaçons the difference between the actual and equi-

affine velocities showed a tendency towards the full affine

velocity, while during locomotion along similar curves, the

discrepancy between the actual and equi-affine velocities

suggested an influence of the constant Euclidian velocity (see

Figures S4E and S5E).

To quantify these relations, we analyzed the experimentally

recorded trajectories of human drawing or walking along the

prescribed figural forms mentioned above. More than 90% of

the velocity variance of drawing movements and 60% of the

velocity variance for walking (based on the R2 measure) was

explained by the combination of several geometries. We also

showed that for locomotion our model provides more informa-

tion on motor timing than the constrained minimum-jerk model.

For drawing, our model is only slightly better than the

minimum-jerk model and both models are excellent. Given that

the minimum-jerk model has no adapted parameters and that,

in contrast, our model of geometrical mixture involves the

selection of up to 30 parameters for each trajectory, it was

necessary to compare these models using a standard penalty

score such as the AIC. Our model generally remained more

Figure 8. The mean values of the b functions for the different figural forms. The mean values of the b0,b1 and b2 functions averaged over
trials and subjects, summarized over the templates of the different figural forms. In panel (A) the values of the b functions are aggregated and in
panel (B) they are displayed separately with their corresponding SDs. For the marking of the different forms see Figure 3.
doi:10.1371/journal.pcbi.1000426.g008
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successful in accounting for the data than the minimum-jerk

model (see Figures 3 and 4).

At first sight, the flexibility offered by three different geometries

seems so large that one could imagine that such a model would

produce a good fit for any possible movement data set. It was

therefore important for us to ask in what way are our results non-

trivial? Firstly, the prediction that speed is a weighted product of

all three canonical velocities is non-trivial since a priori the observed

speed could have exceeded the envelope corresponding to a linear

combination of the logarithmic functions of these velocities,

obtained while the total sum of their weights is precisely equal to

1.0. Secondly, we verified that the existence of several segments,

during which constant combinations of the canonical velocities

could account for the observed velocity, is unlikely due only to

chance. Thirdly, we have shown that considering the number of

free parameters and accordingly using the AIC scores, which

appropriately quantify adapted measures of goodness of fit, our

model successfully accounted for the observed data. Hence, based

on these arguments, our principal result can be formulated as

follows. The tensorial combination of canonical invariant

parameters gives rise to statistically non-trivial predictions which

were not rejected by the data against which they were examined.

Moreover, this is a relatively simple model, which is grounded on a

general point of view about the brain’s mode of functioning.

The new point of view provided by the geometrical combina-

tion of velocities permits us to demonstrate several characteristics

of motor timing.

First, we demonstrated that the global shape and size of the

trajectory essentially influence motion timing (Figure 8). For

instance, when drawing the three limaçons, subjects used affine

geometry (responsible for isochrony) more than when drawing

cloverleaves and even more so than when drawing lemniscates.

However, on average, the influence of the ratios of the sizes of the

large versus the small loops on the full affine weight was negligible.

In contrast, during locomotion, it is remarkable that the Euclidian

weight grew linearly with the ratios of the size of the large versus

the small loops. Since the total perimeter remained constant, a

decrease in the size of the smaller loop resulted in increasing the

size of the larger loop. Thus, a possible explanation of the growth

of b2 is that low Euclidian curvature without a change in convexity

makes Euclidian geometry dominant for locomotion (as we

verified directly for ellipses during drawing). Note that for

lemniscates, based on the theoretical study of singularities, we

imposed b2~0,b1~0:75,b0~0:25 exactly at the inflection points.

Figure 9. Representation of the values of the three b functions during the different trials. The distribution of the b functions aggregated
over all trials of the same figural form. A point within the triangle gives the values of the b0, b1 and b2 functions where b0zb1zb2~1. The values of
b2 function for such a point are equal to the area delineated by the small triangle created by passing lines between this specific point and the two
bottom vertices. The values of b1 are equal to the area delineated by the small triangle created by passing lines between this specific point and the
left bottom and top vertices. The values of b0 function are equal to the area delineated by the small triangle created be passing lines between this
point and the right bottom and top vertices. For example, a point on the triangle’s edge marked by b1 is a point where b1~0. For a point located at
the top vertex b2~1 and b1~b0~0. In the center of the triangle b0~b1~b2~1=3. The color of any point within the large triangle indicates the
number of times that that specific combination of b function values was found. A white point shows a combination that did not appear in any of the
trials. A dark blue point represents a combination occurring many times. Panel (A) contains all the trials of the drawing of cloverleaves. Panel (B)
contains all the trials of the drawing of oblate limaçon. Panel (C) contains all the trials of the drawing of asymmetric lemniscate. Panel (D) contains all
the trials of the locomotion of cloverleaves. Panel (E) contains all the trials of the locomotion of oblate limaçon. Panel (F) contains all the trials of the
locomotion of asymmetric lemniscate.
doi:10.1371/journal.pcbi.1000426.g009
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The good agreement achieved with the experimental data

confirms this hypothesis.

Second, we discovered that the main difference between

drawing and locomotion was the opposite degree of influence of

full affine versus Euclidian geometries. For drawing, b0 was

important and varied between 0.1 and 0.6, while for locomotion it

was b2 that varied between 0.2 and 0.6 and hence was more

important than b0. Possible reasons for these differences are

differences in the control strategies used, or the existence of

different biomechanical constraints.

We also applied a more restricted idea of segmentation by

studying the effect of alternating between different dominant

geometries. As a first approximation we assumed that segments

with a constant velocity only within one specified geometry can

successfully account for the observed ratios of time spent moving

along the large versus the small loops of the complex figural forms

as a function of their respective sizes. The observed ratios of

movement durations have also corroborated and provided further

evidence for our finding that the net balance between Euclidian

and affine geometries is totally reversed for drawing versus

locomotion.

All these results confirmed our expectation that affine geometry

is significant in a theory of movement timing. The canonical

velocity of full affine geometry yields the same total time spent on a

curve and on the curve obtained through any dilatation. That is,

the dominance of affine geometry here corresponds to isochrony,

even though it is imperfect. However, we found experimentally

that the pure affine geometrical arc-length is generally only a

secondary component in determining movement timing, although

it is always present during drawing movements. The notable

exception is hand drawing of limaçons, where full affine canonical

velocity alone explains the entire timing pattern very well. These

results point to the important role of equi-affine geometry in motor

timing.

The importance of equi-affine geometry
The equivalence of the 2/3rd power to moving at a constant

equi-affine speed [8] expresses the dominance of equi-affine

Figure 10. The R2 score for all the coefficient combinations for equation 13. The R2 values of all the possible constant coefficients for the
equation: T1=T2~B0zB1

�(L1=L2)2=3zB2
�(L1=L2). A point within a triangle describes the values of B0 , B1 and B2 where B0zB1zB2~1. The

values of B2 equal the area delineated by the small triangle created by passing lines between this specific point and the two bottom vertices, where
the area of the large triangle is equal to 1. The values of B1 are equal to the area delineated by the small triangle created by passing lines between
this specific point to the left bottom and top vertices. The values of B0 are equal to the area delineated by the small triangle created by passing lines
between the point to the right bottom and top vertices. For example, at a point on the edge of the triangle marked by B1 B1~0. For a point located
on the top vertex B2~1 and B1~B0~0. In the center of the triangle B0~B1~B2~1=3. The color of a point represents the value of the R2 score for
the corresponding combination of the B0,B1,B2 values; the darker the color, the higher the value of the R2 scores. The red points are those with the
highest R2 score. This value is given in red beside each triangle. Panel (A) contain the data of the locomotion of oblate limaçon. Panel (B) contain the
data of the drawing of oblate limaçon. Panel (C) contain the data of the locomotion of asymmetric lemniscate. Panel (D) contain the data of the
drawing of asymmetric lemniscate.
doi:10.1371/journal.pcbi.1000426.g010
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geometry in trajectory planning. It has recently been found that

3D human drawing movements also tend to be generated at a

constant equi-affine speed [46,47]. How does this dominance of

equi-affine geometry arise?

A first possibility is that the equi-affine invariant parameter may

be computationally simpler. This invariant parameter is of third

order, i.e., the order of the variation of acceleration, namely jerk.

It could be coded by proprioceptive or vestibular information

especially during locomotion [48,49]. In contrast, full affine

invariant parametrization is of the fifth order. Moreover, the equi-

affine subgroup of transformations is uniquely defined by the full

affine group, even without fixing a unit of area. Thus, affine

invariance can be canonically broken into equi-affine invariance,

thus simplifying the necessary computations.

A second possibility is the probable importance of area

perception during motion, and we know that equi-affine

transformations preserve areas. The amplitude of a piece of

motion can be judged from the area enclosed by the

corresponding segment of the trajectory and by the straight

segment joining its initial and final positions. As we have seen in

sec:quantitative laws (see also E in Text S1), for monotonic equi-

affine trajectories, the ratio of the total times spent along

trajectory segments is a function of the ratios between the above

enclosed areas.

A third explanation may correspond to the link between equi-

affine invariance, the optimization of smoothness and the

minimum jerk principle (cf. [4,50]) or the minimum variance

principle, both giving similar results. Todorov and Jordan [44]

observed that the 2/3 law is equivalent to nullifying the normal

component of the instantaneous jerk. Related to this is the

attractive power of parabolic points and parabolic segments (see

[51,52]), because parabolic segments, for which equi-affine

geometry is the only possibility, minimize jerk, obey the 2/3

power law and are invariant under equi-affine transformations.

This link between the 2/3 power law and the minimum-jerk

model may also be the root for the agreement between these

principles in explaining motion timing from path geometry.

The fourth explanation for the dominance of equi-affine

geometry is based on dimensional analysis which provides a

completely different direction of support for the 2/3 law. Let us

suppose that during motion, the total variation of energy DE over

each unit of time Dt and mass DM is equal to a constant C for all

the segments of the trajectory. This constant has the dimension

kgm2sec{2sec{1kg{1, where kg, m and sec mark the units of

Figure 11. Examples of the experimentally measured ratios of movement durations versus the experimentally measured ratios of

Euclidian lengths. The red dots represent the experimentally measured ratios of movement durations
T2

T1

versus experimentally measured ratios of

movement lengths
L2

L1

~rð Þ. The black line represents the function B0zB1(
L2

L1

)2=3zB2
L2

L1

for one of the set of constant B-s in the region of high R2

scores.
doi:10.1371/journal.pcbi.1000426.g011
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mass (kg), length (meters) and time (seconds), respectively. From

the constancy of C, the dimension of time sec then becomes

equivalent to m2=3 and the dimension of the resulting velocity is

m1=3. For turbulent fluid flows this is the well-known relation of

Kolmogorov and Oboukhov between the length scale and the

mean variation of velocity (see [53,54]). Note that the 2/3 law for

movement duration only refers to the radius of curvature, similarly

to the radius of a vortex in the Kolmogorov-Oboukhov law.

All the above explanations for the dominance of equi-affine

geometry in movement timing arise from some sort of invariance.

However, in the framework of our theory, it is natural to propose

that the main reason for the dominance of the equi-affine

geometry (and consequently the 2/3 law) is that it offers an

excellent compromise between full affine invariance and the

reduction of computational complexity.

Timing and the unity of action
We propose that movement duration is determined by

invariance and computation. In the present framework, movement

duration is related to space. This agrees well with Piaget’s [55]

suggestions about the development of children’s conception of

time: ‘‘The psychological interpretation of temporal notions … is

that time forms a coordination of movements of different speeds.’’

The production of time jointly with geometrical form also agrees

well with hypotheses on the neural basis of temporal processing,

see e.g. Mauk and Buanomano [56], stating that ‘‘… given the

intricate link between temporal and spatial information in most

sensory and motor tasks, timing and spatial processing are intrinsic

properties of neural function, and specialized mechanisms are not

required. Rather temporal processing may rely on state-dependent

changes in the network dynamics.’’

Our suggestions also fit those of Bernstein [57]: ‘‘There exist in

the higher levels of the central nervous system projections of space,

and not projections of joints and muscles.’’ The present study

should be understood as presenting a new repertoire of organizing

principles that operate at higher levels of the motor system and

may be considered as a possible source for the definition of

kinematic primitives.

Comparison with other studies and possible extensions
of the present study

Several other recent studies have also reported strong

departures from the two-thirds power law [58,59]; for locomotion,

see also [16,17]. These studies either employed different

experimental paradigms from those used here or offered

alternative explanations for the observed violations of the power

law.

Schaal and Sternad [58] studied the movement patterns of a

human arm (with seven degrees of freedom) during the generation

of 3D elliptical trajectories. The magnitude of the deviations from

the power law depended on the perimeters of the trajectories and

on their orientations with respect to the subject’s body. To account

for these observations, Schaal and Sternad suggested that subjects

realize the required elliptical patterns by employing smooth

oscillatory pattern generators at the joint level and that the values

of the exponent in the power law depends on the geometrical

transformations from joint to hand coordinates.

We suggest that the geometric combinations we show are also

affected by the geometrical transformations from joint to hand

trajectories. Hence, our model, though considering movement

duration only from the point of view of hand trajectories, must be

further developed to consider Schaal and Sternad’s approach and

results. We believe that the motor system has evolved to make

simplifications in motion planning compatible with the biome-

chanical characteristics of the musculoskeletal system.

Examining the generation of different patterns of complex

figural forms in various tasks and conditions (tracking, drawing

from memory, tracing) Flanders et al. [59] also showed significant

differences in the values of the exponent of the power law

depending on the size and orientation of the trajectory. In

particular the authors suggested that strategic or cognitive factors

affect the relation between hand velocity and curvature.

This points to many possible extensions of our study. In fact,

even if a combination of geometries accounts for the link between

geometry and movement duration, we suspect that the rules

dictating the mixture of geometrical timing parameters chosen by

the brain may depend on external or cognitive factors. It will be

particularly interesting to examine in what ways cognitive factors

and learning [60] contribute to the effects that global shapes of

trajectories have on their local kinematics.

Our present study is limited to 2D motion. Future work should

deal with 3D Motion, as well as with movements performed in

different orientations, as in [58,59], and at different depths with

respect to the body. This will certainly require considering

additional geometries and may reveal certain failures of invariance

due to the influence of biomechanical factors.

One limitation of the present study is that we only tested

periodic arm movements and locomotion trajectories. However, as

suggested above, our principles may also be applied to discrete

movements that start and end at rest, or to trajectories containing

reversals of movement direction. In such cases all the different

geometries are expected to be combined and one may need

models that no longer assume constant canonical velocities. Thus

new kinds of segments are expected to emerge which depend on

the particular velocities combined and on the values of the

different geometrical curvatures associated with these velocities.

The principal limitation of the present study is that the tests of

the theory have not dealt with the question of which geometrical

paths the trajectories should follow. We have only dealt with the

question of which velocity is chosen along a prescribed path, as a

function of the geometrical form being followed. It is probably not

difficult to propose which special paths should be selected,

depending on the degree of geometric invariance and symmetry

they offer. For instance, as suggested in [51,52], parabolic arcs are

selected in affine geometry, because they remain invariant under

several families of transformation. Thus their group of symmetry is

rather large.

Compatibility with optimization theories
Some optimization principles predict the complete actual

trajectories. Using only via points and end-points, the minimum

jerk principle successfully accounted for both the trajectory path

and velocity of curved and drawing movements [4,61]. Similarly,

when the path is fully prescribed, the constrained minimum jerk

model successfully predicts the velocities along such paths [44,50].

The minimum variance principle [62], the optimal feedback

control model [63], and the minimum time principle in the

presence of signal-dependent noise [64] do predict movement

duration, but so far only for point-to-point movements.

The minimum variance principle is grounded on Fitts [65] and

Schmidt’s laws [66] based on the dependence of average

movement duration MT on movement amplitude A and error

tolerance W , achieved through either a logarithmic function of the

ratio A=W (Fitt’s law) or a linear relationship (Schmidt’s law) of

this ratio. This ratio is invariant under affine transformations, since

only ratios between lengths of parallel segments and not absolute

values of length appear in these laws. Fitt’s and Schmidt’s law are
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therefore a priori compatible with affine geometry. In many cases,

the predictions of the minimum jerk or minimum variance

principles are almost compatible with geometrical invariance.

The use of invariance or mixtures of invariance as proposed

here is only a constraint. To realize the actual movements, subjects

must apply tools other than, but compatible with, invariance. For

example, the geometrical invariance principles can be used

together with optimization principles to solve redundancy

problems at the task level. Even more importantly, the anticipation

of singular points before and during movement generation can

help particularly in determining where the motion should be

segmented or the precise combination of the canonical geometrical

parameterizations to be used. More generally, geometry may

indicate in what parametric space or coordinate frames motor

commands for movement generation should be planned. Our

suggestion does not contradict the need for online optimization of

ongoing movements. When needing to anticipate or to respond

optimally to trajectory perturbations, optimal feedback, control

theory can complement our formulation of invariance principles

[63]. This combination of the planning of geometrically invariant

trajectories with the anticipation of both geometrical singularities

and expected perturbations could allow control of the optimal

selection of the relevant parameters.

We emphasize that our model relates naturally to the neural

encoding of movement because it suggests the possibility that

different neural populations represent movement kinematics in

terms of the different geometries or combined geometrical

representations:

The neural basis for several geometries
Evidence has accumulated for the use of different ‘‘reference

frames’’ in movement planning ([67–71]). For instance, the

parietal cortex codes movement in head- or gaze-centered

coordinate frames [72,73], the putamen in a body reference

frame [74] and the hippocampus [75,76] in an environmental

reference frame, etc. Furthermore, there is ample evidence that

different or even ‘‘mixed’’ coordinate frames are used within the

posterior parietal cortex which may be well addressed by the

concept of the mixture of geometries suggested here. Target and

hand locations during arm movements are represented in terms of

eye-centered coordinates, while the motor error between target

and hand positions are represented with respect to a hand-based

coordinate frame (for review see [77]). In relation to the theory

presented here, it may be suggested that the target and the initial

hand position are coded in terms of an absolute eye-centered or

visually based Euclidian coordinate frames while an evolving

coordinate frame, using a motor error between the instantaneous

current and the immediate next hand positions, is better

characterized as an affine moving frame.

The notion of moving frames (as in section Mathematical

preliminaries), particularly the affine geometrical representation,

may throw new light on the currently available neurophysiological

observations and on the roles of different cell populations in

representing movement. Schwartz and colleagues [78,79] have

reported observations consistent with the notion that arm

trajectories are well encoded by motor cortical activity in monkeys.

A key finding was that the endpoint velocities (including the speed

and movement direction) are well represented by single cells and

by neuronal populations. This is an instantaneous, relative

representation and the magnitude of the population vector was

shown to obey the 2/3 power law, while the instantaneous

movement direction matched the direction of the population

vector [78,79].

In a recent study Polyakov et al. [52] analyzed the kinematic

properties of monkey scribbling movements and the related neural

activities of motor cortical units. The scribbling movements were

found to be composed of parabolic segments. Using the partial

cross-correlation method developed by Stark et al. [80], Polyakov

et al. [52] showed that equi-affine velocity was represented more

strongly than the Euclidian speed in the activity of several

recorded units and the segmentation of the neural activities

predicted parabolic segments. Therefore parabolic segments

constitute geometrically defined motion primitives which subserve

the construction of scribbling movements. This study has also

provided the first direct evidence that equi-affine geometry may be

used in the neural coding of arm movements.

Consistent with the theory presented here we speculate that

there must be many dynamically interconnected neuronal

populations, either within one area or more probably within

different areas, which use different geometrical representations.

These assemblies would be selective for parameters intrinsic to a

particular geometry. Some supporting evidence has been obtained

in a recent fMRI study [81]. A large number of brain areas

responded more strongly to a dot moving along elliptical

trajectories with velocities consistent with the 2/3 power law;

activity was seen particularly in motor areas (M1, PMd,

cerebellum and the basal ganglia) as well as in frontal, cingulate

and parietal regions. Brain regions responding more strongly to a

dot moving in elliptical trajectories with constant Euclidian were

found in the occipital visual areas, the fusiform gyrus and the right

parahippocampal gyrus [81]. Neural assemblies within these areas

may therefore generate different possible combinations of

geometries which may influence movement timing.

The development of multiple geometries in ontogeny
Analyzing how children draw simple ellipses Viviani and

Schneider [43] have shown that both the 2/3 law and the

isochrony principle are qualitatively present at 5 years of age and

evolve further until age 12. Variability, and geometrical and

kinematic distortions of the drawn trajectories diminish greatly

between ages 5 and 7 and continue to diminish thereafter. The

exponent b of the radius of curvature in the formula V~CPaRb,

increased from about 0.25 at age 5 to 0.33 at age 12. The

exponent a for the perimeter decreased from 0.4 at age 5 to 0.2 at

age 12. These findings suggest that Euclidian geometry develops

first, followed by equi-affine or affine geometries.

Piaget and Inhelder [82] suggested that the chronological

sequence of development of geometric intuition in children is: 1)

topology for the most elementary stages of perception, for which

only continuity within the spatial field is important; 2) projective

geometry, subserving the coordination between prehension and

vision through operations that depend on and integrate different

points of view; 3) Euclidian geometry utilizing proportions and

distances, for perception and storage in memory of places and

distances, e.g., in navigation. Piaget and Inhelder suggested that

progress is made through the use of concrete operations associated

with these different geometries. In their view, affine geometry

would be used during the intermediate phases between those

associated with projective and Euclidian geometries, e.g., at the

beginning of coordination between gaze direction and the

direction of body motion during active exploration.

Our data on voluntary movements suggest a different order of

development of the different geometries. Implicit motions, unlike

explicit or iconic descriptions, seem to be acquired initially using

more Euclidian reference frames. This is suggested by the

exponent b initially being closer to zero in young subjects.
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Thereafter these exponents move closer to 1/3 [43,83,84] possibly

reflecting the use of equi-affine or affine representations.

Final remarks
Every action is a specific solution to a problem. What is a priori

undetermined by this solution before it is selected is partly encoded

by a particular set of symmetries of space and time, a set

permitting possible actions at a given level of computation. Any

given decision confines the original symmetry group to a specific

subgroup, and an action is ultimately chosen when the symmetry is

further reduced to the identity. Similarly to perception, geomet-

rical invariance gives motor actions a structure. The most familiar

instance of a particular invariance is the global isochrony principle

that we interpret as being a manifestation of the use of full affine

geometry. Another instance is the 2/3 power law for parabolic

segments. However, to be compatible with the strong Euclidian

constraint of the physical world and with the restrictions on the

computational capacity of the system, full affine invariance is only

achieved through the mixing of invariant canonical durations

specified by several geometries, such as the equi-affine and

Euclidian geometries.

In full affine geometry, time is a pure number (e.g., going

around any ellipse takes 2p). In equi-affine geometry time

corresponds to area (the period of an ellipse is proportional to

the cubic root of its area), while in Euclidian geometry time

corresponds to length. We propose that movement time is

continuously selected by the brain based on the combination of

these geometrical measures along curves. Still, each individual

trajectory is different from all others, since it is associated with a

different combination of geometries. Sensation, intention, and

cognition can generate particular combinations.

The principle of invariance is also compatible with different

optimization principles such as the minimum-jerk [50,61] or the

minimum variance principles [62], and with optimal feedback

control [63,85]. It can even offer a framework within which such

principles can be formulated. Invariance, information, feedback

and optimality must work together in the selection and adaptation

of any movement through evolution and development, but we

suggest that by constructing the appropriate spaces at each instant

of time along the trajectory, geometric invariance is the main

component for determining movement timing.

Methods

In experimental test no. 1 three young adult men were

instructed to draw 10 types of ellipses at 3 different speeds, slow,

natural and fast. The ellipses, prescribed in advance, had 3

different eccentricities, e*0,0:5,1, and 3 different sizes, small,

medium and large, plus one ellipse which was ‘‘as large as

possible’’ called huge. Within each session, each ellipse was drawn

10 times and statistical analysis was performed based on 8

repetitions, ignoring the first and last drawings. (For further details,

see section B.1 in Text S1.)

In experimental tests no’s 2 and 3, we analyzed a series of

drawings and locomotion trajectories of cloverleaves, limaçons and

lemniscates, taken from the studies of Viviani and Flash [4] for

drawing movements and from Hicheur et al. [17] for locomotion.

For drawing, the trajectories were those of the stylus position

along the tablet. For locomotion the trajectories measured were

those of the orthogonal projection P(M) on the ground of a point

M corresponding to the mid-point between the subject’s

shoulders. To verify the stability of the geometrical models, the

trajectory of a point marked as the R-point was also considered.

The R-point is the intersection on the floor of the line connecting

the M-point with the mid-point between the sensors positioned on

the subject’s chest and back (see Figure S3. For the results of the R-

point see section D.4 in Text S1, and related figures. In particular,

Figure S9 shows the results we obtained for the locomotion data

using the R-Point. Figure S10 shows for both drawing and

locomotion (M-Point and R-Point), the mean values of the b
functions for the different figural forms and for different subjects.

Figure S11 shows the mean values of the b functions, separately

for the small and big loops of the limaçons and lemniscates, for

drawing and locomotion (both for the M-Point and R-Point).

In both analyses we started with a collection of point

coordinates (x(t),y(t)), registered at time intervals of dt~0:005
for drawing and of dt~0:017 for locomotion (200 Hz and 60 Hz

respectively). This gives N points. From the total sample set, a

smooth geometric trajectory was constructed, without considering

the actual timing. This was achieved by separately approximating

the position data for the x and y coordinates using two Fourier

series fx(r) and fy(r) with 8 harmonics (each with 17 independent

real coefficients), r being the parametrization used for the Fourier

series. From the smooth path (fx(r),fy(r)) we derived the various

curvatures (Euclidian, equi-affine, affine) and deduced the 3

monotonic velocities (see equation set 7). In addition we computed

the velocity predicted by the constrained minimum-jerk model

[44]. For both types of calculation we selected the corresponding

time parametrization which is independent of the actual

experimental one. We now needed to find the correspondence

between the experimental time series of position coordinates

(x(t),y(t)) and the position on the smooth path obtained from the

Fourier approximation. Hence, we calculated r(t) by projecting

each point of the experimental trajectory on the Fourier

approximated path (fx(r),fy(r)). We then used the new parame-

trization r(t) to derive velocities for the smoothed experimental

data (for more details see section D.2 in Text S1).

These calculations were conducted on the entire N samples

obtained from the drawing and locomotion data. For locomotion

we called this data set the complete sampled data set (CSDS). For

locomotion, we also extracted the data corresponding to positions

where the point M attained a local minimum altitude above the

ground, giving N ’ points. We called this a stepwise sampled data

set (SSDS). To compare the different velocity profiles we needed to

compare velocities occurring at the same points along the same

curve. To do this, we found a set of N points (fx(s),fy(s)) located at

an equal Euclidian distance s from each other. For all models, the

velocities at these points were calculated using a standard cubic

spline interpolation. Note that the number of independent raw

data points used for calculating each value of experimental velocity

profile was 5 or less, so the number of ‘‘statistically independent

degrees of freedom’’ used below was estimated as n~N=5 for

drawing and for CSDS for locomotion. For SSDS for locomotion

all n~N were used.

The velocity VJ (r) derived according to the constrained

minimum-jerk model depends only on one parameter correspond-

ing to the total time. The other theoretical velocities

V0(r),V1(r),V2(r), termed affine, equi-affine and Euclidian

‘‘uniform velocities’’ were computed based only on the path

coordinates.

To choose the mixture of these uniform velocities which results

in the predicted combined velocity, we looked for segments of the

experimental velocity during which we could set at least one of the

weight function b’s as a constant. We then used a cubic spline

interpolation for computing the remaining functions’ b between

these segments. (For locomotion we used the experimental step

velocity, based on the SSDS samples). Seven different algorithms

were used for this calculation. The geometrical combination
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chosen was that giving the best theoretical velocity profile

compared with the experimental velocity and which involved the

lowest number of parameters.

In the first algorithm we used a linear regression in logarithms of

velocity and found segments between points where we could

determine c,b0 and b2, such that the experimental velocities could

be well approximated by:

log Vexp(h)&cz(1{b2) log ( k(h)j j{1=3)

zb0 log ( k1(h)j j{1=2)
ð15Þ

representing straight lines (R2
w0:97) with a length of at least

30 points. Here k and k1 mark the absolute values of the Euclidian

and equi-affine curvatures, respectively. This equation is based on

equations (7), (8) and the fact that b0zb1zb2~1.

For the second algorithm we a priori imposed b2~0. The new

equation we obtained from equation (15) is:

log
Vexp(h)

k(h)j j{1=3
&czb0 log ( k1(h)j j{1=2) ð16Þ

As in the first algorithm we found segments during which the

equation represents a straight line (R2
w0:97). We then used spline

interpolation to set the values of the b weight function between

those segments.

In the third and fourth algorithms we considered the

combination of affine and Euclidian geometries and the equi-

affine and Euclidian velocities respectively. The equations used

were, respectively,

log Vexp(h)&czb0 log ( k(h){1=3k1(h){1=2
���

���) ð17Þ

and

log Vexp(h)&czb1 log ( k(h){1=3
���

���): ð18Þ

As in the second case, we constructed the theoretical velocity from

the segments of straight lines.

The velocities constructed in cases two, three and four were

marked as VT2,VT1 and VT0, respectively. we explicitly used these

velocities for the last three algorithms. By dropping the assumption

that bi equals zero we obtained V~V
1{bi

Ti V
bi

i . Hence, for

i~0,1,2 we looked for segments of straight lines in the new

equation

log
Vexp(h)

VTi(h)
&czbi log (

Vi(h)

VTi(h)
): ð19Þ

All these algorithms were based on the following arguments.

First, we expected to find segments during which a constant

combination of geometries appears the primary source for

movement segmentation. Second, we had no reason to believe

that constant combinations of all three geometries would appear at

the same time, so we looked for two-by-two constant combina-

tions. However, to reduce the number of parameters, based on the

data we limited the algorithm to the same pair of geometries all

along the trajectory.

This procedure required verification that these segments

(primary and secondary) were statistically non-trivial. We therefore

used a Fisher’s test (see below), as explained in section

Experimental tests. Our modeling approach also required

verification that the success of the model was not only a

consequence of our using a large number of fitted parameters.

For this purpose we used the Akaike criterion (AIC) as explained in

section Experimental tests.

The F-test: The data used were those of the logarithms of the

velocities. For each curve and for each of the seven computational

scenarios, let I denote the union of the m special intervals of total

length q and J the complementary part of the curve, of total length

n{q. Recall that on I the model logarithmic velocity log(Vcomb)
was directly extracted using the values of log(Vexp) and a linear

combination of two of the calculated log(Vi). The number U1 is

the residual sum of squares, SSE, on I :

U1~
X

t[I

(log(Vexp)(t){log(Vcomb)(t))2: ð20Þ

The quantity U2 is the total sum of squares, SST , for the entire

curve:

U2~
X

t[I|J

(log(Vexp)(t){log(Vexp))2: ð21Þ

where log(Vexp) is the mean value of the experimental velocity.

As usual we can write U2~U1zW2 where W2~

SST(J)zSSregr(I), and we hypothesize that the random variables

within W2 are independent of the variables within U1. With this

hypothesis the scaled ratio F~(q{2m{1)U1=(n{1)W2 follows

a Fisher law F (q{2m{1,n{qz2m) (see [86]). Note that the

number of degrees of freedom (df) for U1 is q{2m{1 because

SST(I)~SSE(I)zSSregr(I). We fixed two independent param-

eters for each connected special segment The df is n{1 as usual

for U2, so we obtain df (U1)~q{2m{1 and

df (W2)~(n{qz2m). The second formula comes from the

following decomposition

U2~SST(I)zSST(J)zq(logV (I){logVtot)
2z

(n{q)(logV (J){logVtot)
2

We then repeated the above computation by replacing the mean

value of the experimental velocity by its approximation using a

trigonometric approximation up to the fourth order. When using

the trigonometric polynomials of degree 4, we still have

df (U1)~q{2m{1, df (W2) changes from n{qz2m to

n{8{q{2m, because a trigonometric polynomial of degree 4

depends on 9 real numbers, the constant being the mean of the

function.

For drawing, 61 of 78 trials (78%) showed a P-value of

significance equal to 0.005 in the F-test. For locomotion 65 of

91 trials (71%) satisfied the test. All the results are shown in

Table 4. This gives the probability that the variance with respect

to the mean or, respectively, with respect to the trigonometric

approximation of degree four, is sufficient to explain the

presence of the detected segments. We verify that this

probability is very small according to the standard linear F-

test. The results confirm the non-triviality of the existence of

segments.

The Akaike test [45,87]: if N is the number of data samples, n is

the number of independent data samples, and p is the number of

parameters adapted from the data and used by the tested model

plus one, we used the following expression:
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AIC(model)~n log (
SSE

N
)z2p: ð22Þ

Supporting Information

Figure S1 Log c vs. Log A for each subject. All the repetitions

for each ellipse size and speed condition are grouped into a single

dot, the y-axis the log c values. The diamond shape plotted around

the mean value 61 displays the standard deviation for both axes.

The results for each subject are shown in different figures. In all

figures, blue represents slow drawing speed; green, the natural

speed; red, fast drawing speed. The dashed lines gives the

regression lines separately for each speed. The parameters of the

lines are given in table 1 in the main paper.

Found at: doi:10.1371/journal.pcbi.1000426.s001 (1.56 MB EPS)

Figure S2 The geometrical shapes used in the second and third

tests. The analytical shapes and the parametric equations of the

asymmetrical lemniscate, the oblate limaçon and the cloverleaf

used in the drawing and locomotion experiments analyzed by the

second and third tests.

Found at: doi:10.1371/journal.pcbi.1000426.s002 (0.96 MB EPS)

Figure S3 The reference points used in the locomotion

experiments. The M and R reference points marked on the

subject’s body for the locomotion experiments.

Found at: doi:10.1371/journal.pcbi.1000426.s003 (1.74 MB EPS)

Figure S4 Examples of the experimental data and the

geometrically based predicted velocities for the drawing move-

ments. Every row is an example of the second repetition of a trial.

First row, typical example of drawing a cloverleaf; second row,

drawing an oblate limaçon; third row, drawing an asymmetric

lemniscate. Panels (A),(D) and (G) show the paths drawn by the

subject, colors represent the Euclidian curvatures along the curves:

blue, low curvature; red, high curvature. Panels (B), (E) and (H)

show the velocity profiles of the movements: red, experimental

velocity used by the subject; green, the velocity profile under

Euclidian parameterization; black, the velocity profile under equi-

affine parameterization, blue, the velocity profile under affine

parameterization. Panels (C), (F) and (I) show the curvatures of the

curve; green, Euclidian curvature; black the equi-affine curvature;

blue, the affine curvature.

Found at: doi:10.1371/journal.pcbi.1000426.s004 (1.52 MB EPS)

Figure S5 Examples of the experimental data and the

geometrically based predicted velocities for the locomotion

experiment using the M-point. Every row gives an example of

the second repetition of a trial; first row, a cloverleaf; second row,

an oblate limaçon; third row, an asymmetric lemniscate. Panels

(A),(D) and (G) show the gait paths generated by the subject. The

colors used in plotting the paths represent the Euclidian curvature

along the path; blue, low curvature values; red; high curvature

values. Panels (B), (E) and (H) show the velocity profiles of the

movements. Red, the velocity used by the subject; green, the

velocity profile under Euclidian parameterization; black, the

velocity profile under equi-affine parameterization; blue, the

velocity profile under affine parameterization. Panels (C), (F) and

(I) show the curvatures of the curve; green, Euclidian curvature;

black, the equi-affine curvature; blue, the affine curvature.

Found at: doi:10.1371/journal.pcbi.1000426.s005 (1.86 MB EPS)

Figure S6 Examples of the b functions and the combined

velocities for the drawing experiment. Every row gives an example

for the second repetition of a trial. The first row, cloverleaf; second

row, an oblate limaçon; third row, an asymmetric lemniscate.

Panels (A),(D) and (G) are the paths drawn by the subject. The

colors marked on the paths represent the b functions: blue, a part

that is more Euclidian; green, a part that is more equi-affine; red, a

part that is more affine. The full range of colors and their relation

to the values of b0, b1 and b2 can be seen in Figure S8. Panels (B),

(E) and (H) display the velocity profiles for these movements: red,

the experimental velocity used by the subject; blue, the theoretical

combined velocity profile. Panels (C), (F) and (I) display the values

of the b functions. Red area, the values of the b0 function; green

area, the values of the b1 function; blue area, the values of the b2

function.

Found at: doi:10.1371/journal.pcbi.1000426.s006 (1.52 MB EPS)

Figure S7 Examples of the b functions and the combination

velocity of the locomotion. Every row gives an example of the

second repetition of a trial. The first row, a cloverleaf; second row,

an oblate limaçon; third row, an asymmetric lemniscate. Panels

(A),(D) and (G) show the path generated by the subject. The colors

on the paths represent the b functions: blue, a part that is more

Euclidian; green, a part that is more equi-affine; red, a part that is

more affine. The full range of colors and their relation to the

values of b0, b1 and b2 can be seen in Figure S8. Panels (B), (E) and

(H) show the velocity profiles of the curve: red, the experimental

velocity used by the subject; blue, the theoretical combination

velocity profile. Panels (C), (F) and (I) display the values of the b
functions: red area, the values of the b0 function; green area, the

values of the b1 function; blue area, the values of the b2 function.

Found at: doi:10.1371/journal.pcbi.1000426.s007 (4.10 MB EPS)

Figure S8 Color map for the values of the bs. Every point in the

triangle represents a specific relation between b0, b1 and b2 values

shown in the color corresponding to this combination.

Found at: doi:10.1371/journal.pcbi.1000426.s008 (0.61 MB EPS)

Figure S9 Results in the locomotion experiments using the R-

point. Panels (A) and (B) represent the R2 and AIC scores for the

CSDS (all data) of the locomotion R-point, respectively, for the

combined velocity (red bars), minimum-jerk velocity (green bars),

constant equi-affine velocity (yellow bars) and constant affine

velocity (cyan bars). The probability of the combined velocity

being a better model than the minimum-jerk model for the

different figural forms is shown in Panel (C). Panels (D) and (E)

represent the values of the functions b0, b1 and b2 averaged over

all trials. The results are presented for the R-point at the level of

the figural form. The cloverleaf form is marked by C. The marking

L1,L2,L3 and A1,A2,A3 represent the limaçon and the lemniscate

templates, respectively, according to the ascending ratio of the

large to the small loops.

Found at: doi:10.1371/journal.pcbi.1000426.s009 (1.17 MB EPS)

Figure S10 The mean values of the b functions for the different

figural forms and different subjects. The mean values of the

functions b0, b1 and b2 averaged over each trial, summarized over

the subjects and the templates of the different figural forms. Every

b is displayed in a separate figure. Every color represents a

different subject. Every group of bars represents a different figural

form. The cloverleaves are marked by C1,C2,C3 in the order of

ascending speed for drawing and by C for locomotion. The

marking L1,L2,L3 and A1,A2,A3 represent the limaçon and the

lemniscate templates, respectively, according to the ascending

ratio of the large to the small loops.

Found at: doi:10.1371/journal.pcbi.1000426.s010 (1.18 MB EPS)

Figure S11 The mean values of the b functions averaged over

loops and figural forms. The mean values of the functions b0, b1
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and b2 over loops within a trial, summarized over the templates of

the figural forms. Every b is displayed in a separate figure. Blue

bars, the small loops; red bars, the large loops. Every group of bars

represents a different figural form, for notations see Figure S10

and section D.1 in Text S1.

Found at: doi:10.1371/journal.pcbi.1000426.s011 (0.98 MB EPS)

Text S1 Supporting Information. Mathematical background,

data processing and additional results.

Found at: doi:10.1371/journal.pcbi.1000426.s012 (0.25 MB PDF)
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With a preface by L. Pitaevskiı̆.

55. Piaget J (1970) The child’s Conception of Movement and Speed. London:

Routledge and Kegan Paul.

56. Mauk MD, Buonomano DV (2004) The neural basis of temporal processing.

Annu Rev Neurosci 27: 307–340.

57. Bernstein N (1967) The Co-ordination and Regulation of Movements. Oxford:

Pergamon Press.

58. Schaal S, Sternad D (2001) Origins and violations of the 2/3 power law in

rhythmic three-dimensional arm movements. Exp Brain Res 136: 60–72.

59. Flanders M, Mrotek L, Gielen C (2006) Planning and drawing complex shapes.

Exp Brain Res 171: 116–128.

60. Torres E, Andersen R (2006) Space-time separation during obstacle-avoidance

learning in monkeys. J Neurophysiol 96: 2613–2632.

61. Flash T, Hogan N (1985) The coordination of arm movements - an

experimentally confirmed mathematical-model. J Neurosci 5: 1688–1703.

62. Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor

planning. Nature 394: 780–784.

63. Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor

coordination. Nat Neurosci 5: 1226–1235.

64. Tanaka H, Krakauer JW, Qian N (2006) An optimization principle for

determining movement duration. J Neurophysiol 95: 3875–3886.

65. Fitts PM (1954) The information capacity of the human motor system in

controlling the amplitude of movement. J Exp Psychol 47: 381–391.

66. Schmidt RA, Zelaznik H, Hawkins B, Frank JS, Quinn JT Jr (1979) Motor-

output variability: a theory for the accuracy of rapid motor acts. Psychol Rev 47:

415–51.

67. Berthoz A (1991) Reference frames for the perception and control of movement.

In: Paillard J, ed. Brain and Space Oxford Science Publicatione. pp 81–111.

68. Soechting J, Flanders M (1992) Moving in three-dimensional space: frames of

reference, vectors, and coordinate systems. Annu Rev Neurosci 15: 167–191.

69. McIntyre J, Berthoz A, Lacquaniti F (1998) Reference frames and internal

models for visuo-manual coordination: what can we learn from microgravity

experiments? Brain Res Rev 28: 143–154.

70. Flanders M, Daghestani L, Berthoz A (1999) Reaching beyond reach. Exp Brain

Res 126: 19–30.
71. Wu W, Hatsopoulos N (2007) Coordinate system representations of movement

direction in the premotor cortex. Exp Brain Res 176: 652–657.

72. Andersen RA, Essick GK, Siegel RM (1985) The encoding of spatial location by
posterior parietal neurones. Science 230: 456–458.

73. Andersen RA (1999) Multimodal integration for the representation of space in
the posterior parietal cortex. In: Burgess N, Jeffery KJ, O’Keefe J, eds. The

Hippocampal and Parietal Foundations of Spatial Cognition Oxford University

Press. pp 90–103.
74. Graziano MSA, Gross CG (1993) A bimodal map of space: somatosensory

receptive fields in the macaque putamen with corresponding visual receptive
fields. Exp Brain Res 97: 96–109.

75. O’Keefe J, Burgess N (1996) Geometric determinants of the place fields of
hippocampal neurons. Nature 381: 425–428.

76. Berthoz A (1997) Hippocampal and parietal contribution of topokinetic and

topographic memory. Philos Trans R Soc Lond B Biol Sci 352: 1437–1448.
77. Buneo C, Andersen R (2006) The posterior parietal cortex: sensorimotor

interface for the planning and online control of visually guided movements.
Neuropsychologia 44: 2594–2606.

78. Schwartz AB (1993) Motor cortical activity during drawing movements:

population representation during sinusoid tracing. J Neurophysiol 70: 28–36.
79. Schwartz AB (1994) Direct cortical representation of drawing. Science 265:

540–542.
80. Stark E, Drori R, Abeles M (2006) Partial cross-correlation analysis resolves

ambiguity in the encoding of multiple movement features. J Neurophysiol 95:
1966–1975.

81. Dayan E, Casile A, Levit-Binnun N, Giese MA, Hendler T, et al. (2007) Neural

representations of kinematic laws of motion: evidence for action-perception
coupling. Proc Natl Acad Sci U S A 104: 20582–20587.

82. Piaget J, Inhelder B (1956) The child’s conception of space. London: Routledge
and Kegan Paul.

83. Sciaky R, Lacquaniti F, Terzuolo C, Soechting JF (1987) A note on the

kinematcis of drawing movements in children. J Mot Behav 19: 518–525.
84. Pellizzer G, Zesiger P (2009) Hypothesis regarding the transformation of the

intended direction of movement during the production of graphic trajectories: A
study of drawing movements in 8- to 12-year-old children. Cortex 45: 356–367.

85. Scott S (2004) Optimal feedback control and the neural basis of volitional motor
control. Nat Rev Neurosci 5: 534–546.

86. Lehmann E, Romano J (2005) Testing Statistical Hypotheses. New York:

Springer.
87. Burnham K, Anderson D (2004) Multimodel inference: understanding AIC and

BIC in model selection. Sociol Methods Res 33: 261–304.

The Geometry of Motor Timing

PLoS Computational Biology | www.ploscompbiol.org 27 July 2009 | Volume 5 | Issue 7 | e1000426


