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Abstract. The present study aims to understand the 
neurally based coordination dynamics (multistability, 
loss of stability, transitions, etc.) of trajectory formation 
in a simple task. Six subjects produced two spatial pat- 
terns of coordination in the xy plane by alternating the 
abduction-adduction and flexion-extension motions of 
their right index finger. Each pattern was characterized 
by a unique temporal ratio between the x and y direc- 
tions of motion: (1) a figure zero, a 1 : 1 temporal pattern; 
and (2)a figure eight, a 2:1 temporal pattern. The pat- 
terns were produced rhythmically and movement fre- 
quency was scaled across ten frequency plateaus, with ten 
cycles of motion per step. As movement frequency in- 
creased, switching from a figure eight to a figure zero was 
observed at critical cycling frequencies. The switch from 
pattern (2) to pattern (1) was identified in the spatial 
trajectory and power spectra of x(t) and y(t). En route to 
the transition, enhancement of fluctuations was observed 
in the Fourier amplitudes of x(t) and y(t), specifically at 
fo (the metronome frequency) and 2fo (the first harmonic 
offo). Interestingly, there was no difference in the spatial 
variability of the two patterns. Overall, the data demon- 
strate that spatial patterns of coordination can be char- 
acterized in terms of the temporal relationship between 
the spatial components of the trajectory itself. We discuss 
the experimental findings in relation to other end-point 
planning and multijoint control strategies, as well as the 
much more general problem of temporal synchronization 
in many interlimb and intralimb coordination tasks. 

1 Introduction 

Moving the hand along a spatial path (trajectory), e.g., 
when reaching for an object, writing on a piece of paper 
or just doodling, requires the coordination of many neur- 
ons, muscles and joints. Compounding the problem of 
coordinating many individual degrees of freedom is the 
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fact that without imposing any external constraints on 
a multijoint limb such as the arm, there is a large degree 
of redundancy. That is to say, in a multijoint limb of three 
or more degrees of freedom there are many joint angle 
combinations that may satisfy the same end-point 
position or end-point path. Also, the same end-point 
trajectory may be traversed with many joint angular 
combinations. This is without consideration of the nu- 
merous muscle combinations that are available. From 
a computational point of the view, the problem of traject- 
ory formation is 'ill-posed' and has typically been treated 
as a problem of solving the inverse kinematics and in- 
verse dynamics relation between end-point, joint angles 
and joint torques. Even though an infinite number of 
solutions exist, an extensive amount of experimental 
work has demonstrated that only a few possibilities are 
actually realized. For example, in pointing and reaching 
tasks the path of the end effector is either straight or 
slightly curved (e.g., Morasso 1981; Abend et al. 1982; 
Atkeson and Hollerbach 1985) and the velocity profile 
bell-shaped (Kelso et al. 1979; Flash and Hogan 1985). 
Other work on discrete pointing tasks and rhythmical 
drawing tasks has shown the joints are highly con- 
strained in terms of their temporal relations (Soechting 
and Lacquaniti 1981; Lacquaniti and Soechting 1982; 
Soechting et al. 1986). Finding invariant features at differ- 
ent levels has created a debate as to whether end-point 
control is planned in terms of joint angle or end-effector 
coordinates (Flash and Hogan 1985; Soechting 1989; 
Soechting and Terzuolo 1990; Bizzi et al. 1992). As a re- 
sult, a variety of geometric (Morasso and Mussa-Ivaldi 
1982; Morasso 1983), kinematic (Abend et al. 1982; Flash 
and Hogan 1985; Soechting and Terzuolo 1986), 
biomechanical (Uno et al. 1989; Bizzi et al. 1992) and 
task-dynamical (Saltzman and Kelso, 1987) models of 
trajectory formation have been developed in favor of one 
position or the other. 

Although an understanding of how end-point coordi- 
nates are mapped on to joint angles and muscle proper- 
ties is very important, here we do not seek a specific type 
of mapping or concern ourselves with the inverse kin- 
ematics or dynamics problem. Instead, we focus on an 
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examination of two important functional properties of 
neuromotor coordination, i.e., multistability and pattern 
switching, that have received little attention in the con- 
text of the problem of trajectory formation. To address 
these features, the system's behavior must be examined in 
its nonlinear range where coordinative patterns arise and 
undergo change. The reason is that it is near critical 
points or instabilities that the system's relevant coordina- 
tion variables (order parameters or collective variables) 
can be identified (Haken 1983; Kelso and SchSner 1987; 
SchiSner and Kelso 1988a). Previous work has shown 
that multistability and pattern switching may be under- 
stood by studying transitions between temporally de- 
fined coordination patterns, e.g., in interlimb (Kelso 
1981, 1984; Haken et al. 1985; Schmidt et al. 1991), 
intralimb (Kelso et al. 1991a; Buchanan and Kelso 1993) 
and perception-action (Kelso et al. 1990; Wimmers et al. 
1992) tasks. Switching occurs when the system is driven 
to a critical value of a control parameter, e.g., frequency 
of motion, spatial orientation. At these critical points or 
instabilities, the components of a pattern must be disas- 
sembled and reassembled into another pattern. Variables 
that undergo qualitative change within this switching 
region, e.g., the relative phase between the fingers, hands, 
legs or joints of an arm, are taken to be task-specific 
collective variables. When transitions between movement 
patterns are accompanied by loss of stability, coor- 
dinative change is said to be self-organized (e.g., Haken 
1983; Kelso 1984, 1995; Schrner and Kelso 1988a). Key 
signatures of loss of stability are enhancement of fluctu- 
ations (Kelso and Scholz 1985; Kelso et al. 1986; Schrner 
et al. 1986; Schmidt et al. 1990) and critical slowing down 
(Scholz et al. 1987; Scholz and Kelso 1989; Buchanan and 
Kelso 1993) in the collective variable as the transition 
region is approached. Once task-specific order para- 
meters are identified, the coordinative patterns are then 
mapped onto attractors of a low-dimensional nonlinear 
dynamical system (e.g., Kelso and SchiSner 1987), and the 
order parameter dynamics (equations of motion) are 
taken to represent the dynamics of the coordinative pat- 
terns. Identifying the system's relevant task-specific co- 
ordination variables provides an opportunity to establish 
relations between levels, i.e., by deriving the order para- 
meter's equation of motion from the interactions of the 
individual components (see, e.g., Haken et al. 1985; Kelso 
and Scholz 1985; Schrner and Kelso 1988a, b). 

Here, we treat the problem of trajectory formation as 
a self-organized pattern formation process, in order to 
determine whether spontaneous transitions among spa- 
tial coordination patterns occur and, if so, the form that 
they take. Some patterns, for example, may be more or 
less stable than others. Does pattern switching occur and 
is it due to an instability? What quantities (order para- 
meters) best describe the stability properties of spatial 
patterns? To examine these questions, we study the two- 
dimensional (x, y) trajectories of an end effector (the right 
index finger) under parametric changes in movement 
frequency. Whereas much of the aforementioned work on 
end-effector trajectories has focused on the geometric 
and kinematic aspects of the end-effector trajectory or 
joint angle relations, here we focus on the underlying 

temporal ordering between the components of the gener- 
ated spatial pattern, that is, between motion in the x and 
y directions on the frontal plane. We show that collective 
variables of the patterns may be defined in terms of the 
amplitudes and phases of the Fourier coefficients of 
x and y motion. 

2 Experimental methods 

2.1 Experimental apparatus 

The x, y, z displacement of two infrared light-emitting 
diodes (IREDs) attached to the right index finger were 
recorded with the Optotrak 3D Motion Analysis System. 
This camera system consists of three one-dimensional 
sensors (anamorphic lenses) mounted in a single unit. 
Each sensor has a 34 ~ x 34 ~ field of view and the sensor 
array has a precalibrated factory resolution of 0.1 mm in 
the x and y directions and 0.15 mm in the z direction at 
a distance of 2.5 m. The camera was mounted horizon- 
tally (at a level slightly above the subject's waist) and 
subjects were seated 2 m from the camera's center sensor. 
A specially designed hand apparatus was used to con- 
strain motion of the forearm, wrist, thumb, and nonpar- 
ticipating digits of the right arm. The forearm and wrist 
were secured in a Plastiform mold with the use of two 
Velcro straps (one over the forearm and the other just 
posterior to the wrist). The subject grasped a horizontal 
bar placed directly under the palm and extended the right 
index finger over the bar perpendicular to the camera. 
One IRED was attached to an aluminium sleeve that slid 
over the right index finger tip up to the second phalan- 
gealjoint and another IRED was mounted on the second 
metacarpophalangeal joint. A computer-generated audi- 
tory metronome (a 30-ms square-wave pulse output by 
a Mac II) was output over a loudspeaker mounted to the 
left of the subject. The IRED signals were monitored, 
recorded and stored on a Dell (466/M) PC, and the 
metronome signal was recorded with the Optotrak/Odau 
(analog to digital) device and also stored on the Dell PC. 
Both the IRED and metronome signals were recorded at 
a sampling frequency of 100 Hz. 

2.2 Task and procedures 

Six right-handed subjects (1 woman and 5 men), 24-45 
years of age, participated in this experiment. None of the 
subjects reported any physiological impairment of the 
right arm. Subjects were required to coordinate the si- 
multaneous flexion-extension and abduction-adduction 
of the right index finger so as to produce two spatial 
patterns of coordination: (1) a figure eight and (2) a 
figure zero. Idealized versions of these patterns are shown 
in Fig. 1A (zero) and Fig. 1B (eight). Five practice trials 
lasting a total of 1 min and paced at a movement fre- 
quency of 1.0 Hz were used to familiarize the subjects 
with the patterns and signalling system. A total of ten 
experimental trials of each pattern (in alternating blocks 
of five trials each) were performed following practice of 
the spatial patterns. Movement frequency was scaled in 



the experimental trials from an initial frequency of 0.8 Hz 
to a final frequency of 1.7 Hz in 0.1-Hz steps, with ten 
cycles of motion per step. Each trial lasted approximately 
80 s and the entire session approximately 1 h. The sub- 
jects were instructed to produce one complete cycle of 
motion, an entire figure eight or zero, for each beat of the 
metronome. The subjects were not required to synchro- 
nize any given reference point of the pattern with the 
metronome, e.g., the top or bottom of either pattern. 
Subjects were also instructed to maintain the initial spa- 
tial pattern of coordination for as long as possible and, 
should they feel the pattern begin to change, 'not to 
intervene', but to adopt the most comfortable spatial 
pattern of coordination between the horizontal (abduc- 
tion/adduction) and vertical (flexion/extension) compo- 
nents of motion without losing time with the metronome. 

3 Data analysis and results 

3.1 Subject grouping 

In general, the data from the figure zero trials were 
similar for all six subjects. However, the data generated in 
the figure eight trials prompted us to define the following 
subject groupings. Spontaneous switching from a figure 
eight to zero pattern was observed in the data of S1, $3 
and $4 on all ten trials. We will focus on these three 
subjects in Sects. 3.4-3.6. Pattern switching was observed 
in the figure eight trials of $2 but not from an eight to 
zero. Instead, this subject switched from a figure eight to 
a different spatially and temporally defined pattern in 
xy-space. The data of $2 will be presented in detail in 
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Sect. 4.1 and compared with the data of S1, $3 and $4. 
The behavior of the remaining two subjects, $5 and $6, 
departed dramatically from that of the other four sub- 
jects in the figure eight trials and their data will be 
discussed in Sect. 4.2. 

3.2 Accuracy of tracking 

To examine the effects of increasing cycling frequency on 
spatial patterns of coordination, we first show that sub- 
jects tracked the required metronome frequency with 
accuracy. Using a peak-picking algorithm, peak-to-peak 
cycle durations were calculated from y(t) by taking the 
time difference between the peak at t, + 1 and the peak at 
t, for each cycle. The individual cycle durations (ten per 
plateau) were averaged within a plateau by trial to pro- 
duce a mean cycle duration (T) as a function of required 
frequency, ft. The actual plateau cycling frequency is, 
then,fp = 1/T. A regression offv onf~ for each subject by 
condition produced r 2 values t> 0.9, except for $6 in the 
figure eight condition (r2= 0.84). Overall, the high r 2 
values indicate that the subjects paced quite well with the 
metronome. 

3.3 Basic patterns: spatial trajectories and 
Fourier decomposition 

Idealized version of the spatial patterns constructed from 
harmonic oscillations are plotted in Fig. 1A (zero) and 
Fig. 1B (eight). The corresponding x and y time series for 
one cycle of motion are plotted in Fig. 1C (zero) and 
Fig. 1D (eight), and representative line spectra plots of 
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Fig. 1A-F. Depicted in A (eight) and B (zero) are idealized examples of the required patterns constructed form sinusoidal waveforms. The patterns in 
A and B are decomposed into their respective x and y time series in C and D. The power spectra for these single cycles are shown in E and F 
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x(t)  and y(t)  (for any frequency of motion) are plotted in 
Fig. 1E (zero) and Fig. 1F (eight). The line spectra show 
that each spatial pattern may be uniquely defined in 
terms of a specific temporal relationship between 
x and y motion: the zero pattern, a 1:1 temporal ratio 
(Fig. 1E); and the eight pattern, a 2:1 temporal ratio 
(Fig. IF). 

How well did the subjects' observed behavior comply 
with these ideal cases? Two complete trials for a figure 
zero and eight, plotted as a function of required cycling 
frequency, are shown in Fig. 2A and B, respectively. The 
1:1 frequency ratio characterizing the zero pattern is 
evident in the spectral plots (Fig. 2A, rows 2 and 3). The 
alignment of the lone peak in the power spectra with the 
vertical dashed line demonstrates that this subject ($3) 
paced quite well with the metronome for all required 
frequencies. The behavior displayed in this trial is typical 
of all the figure zero trials for all subjects. The picture for 
the figure eight pattern is quite different. As seen in the 
superposition of x (t) and y (t) in Fig. 2B, the figure eight 

pattern is maintained through a required cycling fre- 
quency of 1.1 Hz, and then switches to the figure zero 
pattern around 1.2 Hz. This change in spatial pattern is 
reflected nicely in the spectral plots. Before the transition, 
there is a dominant peak in the x direction at twice the 
required frequency, and in the y direction there is a single 
peak at the required cycling frequency. After the 
transition, only single peaks at the required frequency are 
present in the spectral plots. This shift in temporal pat- 
tern from a 2: 1 to 1 : 1 frequency ratio in xy-space reflects 
the change observed in the spatial trajectory. Also, notice 
that the shape of the figure zero in Fig. 2B is similar to 
the zero in Fig. 2A for the higher cycling frequencies. In 
general, the behavior portrayed in this figure eight trial is 
representative of the behavior of S 1, $3 and $4. For these 
subjects, most of the observed transitions occurred be- 
tween frequencies of 1.2 and 1.4 Hz. 

The above description demonstrates that spatial pat- 
terns of coordination may be described in terms of the 
temporal pattern between the spatial components of the 
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trajectory, in this case motion in the x and y directions. 
These results are in good agreement with the idealized 
cases. Spatial transitions can be characterized as a spon- 
taneous switch in the temporal ordering of the spatial 
components. Next, we show that the transition from the 
figure eight to zero pattern resulted from a loss of stabil- 
ity in the 2:1 ratio between x and y. Both the direction of 
the transition and fluctuation enhancement are predicted 
from theoretical considerations regarding 2:1 to 1:1 
transitions in coupled nonlinear oscillators (see Dis- 
cussion). 

3.4 Transitions in Fourier coefficients: loss of stability 

In this section, we show that the spatial transition from 
a figure eight to zero resulted from a loss of stability in 
the temporal ratio between the x and y spatial compo- 
nents of the end effector. Pattern stability is assessed 
through an analysis of the Fourier coefficients of x (t) and 
y(t). Any significant increases in the variability of these 
coefficients before the transition will be taken as evidence 
for enhancement of fluctuations, a signature of loss of 
stability and impending behavioral change (e.g., Kelso 
and Scholz 1985; Kelso et al. 1986). Since subjects $1, $3 
and $4 tracked the metronome accurately, we felt it 
appropriate to increase the resolution of our temporal 
measure in order to test for critical fluctuations. Thus we 
performed an FFT  on x (t) and y (t) on a cycle-by-cycle 
basis (instead of by frequency plateau: see Fig. 2): 

1 i x(t) e-i"'~ dt x(n oT) = o (1) 

1 i Y(t) e-i"'~ dt y(no)r) = -~ o (2) 

where T is the required cycle duration as a function of the 
metronome frequency ncor and mr = 2g/T, the funda- 
mental frequency. Next we normalized the power of 
the individual cycle coefficients X m, ycl), and X (z), yc2) 
corresponding to fo and 2fo, respectively, to the range 0 
to 1: 

x (o~,, 2) = I Cx (092,2)12/Ex (3) 

y(col.2) = ICr(oh.2)lZ/Er (4) 

with 

7 

Ex= Z IC (o K)I21 n (5) 
k = l  

7 

E ,  = IC,( o )l ln (6) 
k = l  

where C (mr) indicates complex coefficients, n is the num- 
ber of data points within the metronome period for 
a given plateau, and k corresponds to the first seven 
coefficients computed from (1) and (2). To arrive at 
a mean power value for each plateau, we averaged the 
individual cycle values of X ~ and ycx.2) within each 

individual trial: 

P N 

p=1 n=1 

P N 

+~. ,+. (8) - - p  
p = l  n = l  

where P is the number of plateaus (i.e., 10) and N the 
number of cycles in each plateau. Cycle one on plateau 
one is considered a startup or transient cycle and there- 
fore dropped from the analysis. Thus N is 9 for plateau 
one and 10 for all the other plateaus. 

In the case of the figure zero, the values of .,~(1,2) 

F(p~,2) were averaged (across subjects) as a function of 
cycling frequency, and for the figure eight, the values of 
X~t,2) F~,2) were aligned to the transition plateau and 
averaged backwards and forwards (across subjects) from 
this point. This produced a total of five pre-transition 
and four post-transition plateaus in the figure eight data. 
Plotted in Fig. 3A-D are the resulting group means of 
.,~(1,2) '~(1.2) and their standard deviations for the figure p - -p  
eight and zero. The group mean and standard deviations 
were compared statistically. The pre-transition figure 
eight data were compared with the first five frequency 
plateaus of the figure zero (0.8-1.2 Hz) in a 2 condition 
(eight vs zero)x 5 plateau (pre-tran) ANOVA, and the 
post-transition figure eight data were compared with the 
last four frequency plateaus of the figure zero 
(1.4-1.7 Hz) in a 2 condition x 4  plateau (post-tran) 
ANOVA. 

For the figure zero (Fig. 3A, C), the values o f X  ~ and 
y m  remain near 0.95 across all frequencies,while the 
values of X c2) and yt2) remain near 0.04. The picture is 
quite different for the figure eight (Fig. 3B, D). Before the 
transition (pre-transition plateaus 5 through 1 on the 
abscissa), the value o fX cl) is around 0.25 and yO) around 
0.86, while the value of X c2) is around 0.68 and yC2) 
around 0.1. The statistical analyses confirm that the 
power in the pre-transition values of X t~' 27 and Y" '  2) for 
the figure eight is significantly different from those of the 
figure zero across the first five frequency plateaus 
(0.8-1.2 Hz), Fs(1,336) > 125.6, ps < 0.01. These differ- 
ences confirm our earlier predictions based on the 
sinusoidal representation of the patterns (Fig. 1) and the 
power spectra plots shown in Fig. 2. These figures indi- 
cate that the power in the x-direction of the figure eight 
should be concentrated in X (2), while the power in the 
x-direction of the figure zero should be concentrated in 
X m. As for the y-direction, our representation suggests 
that if any difference occurs between patterns it should be 
small. Thus it is not surprising that the order of greatest 
to least statistical significance is as follows: X c~), X c2), 
ym,  yC2). Differences between the two patterns are also 
evident in the mean variability of the Fourier amplitudes. 
As seen in Fig. 3A and C, the variability of X ~ and 
y(1,2) for the figure zero is small (<  0.05) and constant 
across all cycling frequencies. The variability of ycl,2) 
and especially X "'2) for the figure eight (Fig. 3B, D) is 
much larger across the pre-transition plateaus than is the 
case for the figure zero for all frequencies, and increases 
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Fig. 3A-D. Means (Mn) and standard deviations (sd) of X "'2) and yo,2) for the figure zero are plotted in A and C, respectively, as a function of 
required frequency. The means and standard deviations of X t1'2~ and ytl,2) for the figure eight are plotted in B and D, respectively, as a function of 
pre-transition and post-transition plateaus 

just before the switch between patterns. Statistically, the 
standard deviations of all four coefficients for the pre- 
transition figure eight are significantly larger than those 
of the figure zero across the first five frequency plateaus: 
Fs(1, 336) > 64.7, ps < 0.01. Also, the variability of the 
figure eight just before the transition is significantly lar- 
ger than the variability in the other pre-transition posi- 
tions: Fs (5, 336) > 3.6, ps < 0.01. After the transition, the 
means and standard deviations of X t1'2) and y(1,2) for 
the post-transition figure eight (plateaus 1 through 4 on 
the abscissa), now a figure zero, take on values indistin- 
guishable from the figure zero for frequency values of 
1.4-1.7 Hz. This is quite evident in the change in power 

o fX  tlJ and X <2J following the transition (Fig. 3B). Statist- 
ical analyses of the post-transition means and standard 
deviations reveal some small differences between the two 
figure zero patterns: means, Fs (1,259) > 14.6, ps < 0.01; 
and standard deviations, Fs (1 ,259)>  10.6, ps < 0.01. 
Simple main effect tests indicated that these effects result 
from a difference in the patterns on the first post- 
transition plateau in the figure eight trials (now a figure 
zero) and the figure zero pattern at 1.4 Hz. After this 
plateau, there are no significant differences between the 
two zero patterns. As with the pre-transition results, the 
above analyses of the post-transition means conform 
quite well with our hypotheses regarding the distribution 



and change in distribution of the power in the patterns as 
represented in Figs. 1 and 2. 

3.5 Fourier phases 

The switch from a figure eight to zero pattern can also be 
seen in the phases ~b (1'2) of X (1'2). To enhance this pic- 
ture, following the cycle-by-cycle FFT  performed on x(t) 
and y(t) in (1) and (2), we shifted 0 (1) (the phase of yo)) to 
zero and the phases ~b (1'2) were shifted an equivalent 

�9 r ~ ( 1  2) amount. The cycle-by-cycle phase o~ q~ ' following this 
shift were plotted as distributions to qualitatively com- 
pare the figure eight and zero patterns. 

For the figure zero, the phase distributions plotted as 
a function of cycling frequency (for all six subjects) had 
peaks centered around _+ 90 ~ (depending on the direc- 
tion of motion, clockwise or counterclockwise) for ~b (1) 
with the distribution of ~b (~) spread over the interval 

- 180 ~ to 180 ~ (not shown). As with the amplitudes, the 
picture for the figure eight is quite different. Plotted in 
Fig. 4 as a function of pre- and post-transition plateaus 
are histograms of 4) (1) and ~b (~) for the figure eight. Before 
the transition, the distribution of ~b (z) (Fig. 4A) is centered 
around 90 ~ and the distribution of ~b (1) (Fig. 4B) is spread 
over the interval - 180 ~ to 180 ~ After the transition, the 
distribution of 4) (z) broadens and two well-defined peaks 
centered around _ 90 ~ arise in ~b (1). Positive and nega- 
tive peaks are observed because S1 and $4 produced 
figure zeros in a counterclockwise direction after the 
transition and $3 (and $4 in two trials) produced figure 
zeros in a clockwise direction. These changes in the 
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distributions of ~b (1) and ~b (2) correspond well with the 
switch in power observed between X ~ and X (2) after the 
transition (Fig. 3B). The transition from a figure eight 
to zero may be characterized as a switch from a 2:1 
to 1:1 temporal pattern, with a phase difference near 
+ 90 ~ between the main Fourier coefficients of x(t) 

and y (t). 

3.6 Spatial variability 

In this section, we present an analysis of the spatial 
properties of the trajectories themselves. Emphasis is 
placed on examining the spatial variability of the pat- 
terns in xy-space and how such variability may relate to 
the observed temporal variability reported above. This 
analysis involved deriving a mean spatial pattern for each 
frequency plateau within a trial for each subject�9 First, an 
FFT  was performed on x (t) and y (t) on a cycle-by-cycle 
basis [see (1) and (2)-I. Second, the phase ~b (~ and 0 (~ of 
X (~ and y(o, respectively, were shifted by using 0 (1) as 
a reference for all ~b (~ and 0 (~ when X (~ and y(o were 
> 0. Following the shift in ~b (~ and 0 (~ the individual 

x (t) and y (t) cycle traces were reconstructed. In Fig. 5, 
we have plotted the original (x(t), row 1 and y(t), row 3) 
and reconstructed cycle traces (x (t), row 2 and y (t), row 
4) for a complete trial of a zero (Fig. 5A) and eight 
(Fig. 5B) pattern for S1. The discontinuities in the recon- 
structed time series arise because the original signal is not 
purely periodic. However, in general, the reconstructed 
time series corresponded quite well with the original 
cycles. 

A 

,.t,~2) - J ~ - ~ o .  o .  6 o .  l o o . j ~  y . -  -lOOrflO. O. 60. 100.100. -100r~flO. 0. (~ .  100.11~0. - 1 0 0 F I ~  0. ~ .  i ~ . 1 1 ~ .  - l ~ d l O .  0. SO- I ~ . 1 ~ .  

-lOOrllO. O. 150. lO0.1llO, - IOOr l~ �9  O. 50�9 100.150. - lOOrrO.  O. 60, lO0.lllO. - lOOrrO.  O. 60. IGO.150. -IOOrl50. O. 50. 100.1150. 

- 1 ~ 1 .  ~ � 9 1 4 9  - 1 ~ . 1 ,  ~ � 9  - 1 ~  ~ 1 ~ , i ~ .  - i ~ . ~  ~ 1 ~ 1 ~ .  - 1 ~  50-100,160. 

- | O O r ~ .  O. 60,  IO0.1SO. - l O O r ~ .  O. 60. IOO.ISO. - IOOrrO.  O, W.  lO0.trO. - l O O r N .  O. aO. 100.160�9 - l O O r 4 ~  O. ~0. 100.150. 

(2) Fig. 4A, B. The distribution of q~ and q~(x) for S 1, $3 and $4 are plotted in A and B, respectively, as a function of alignment to the transition plateau. 
The window size of the distributions is 18 ~ 
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Fig. 5A, B. Individual cycle time series for x (row 1 ) and y (row 3) are plotted as a function of required frequency for a figure zero (A) and a figure eight 
(13). The reconstructed time series of x and y are plotted in row 2 and 4. The superposition of the average x and y time series produces the average 
spatial pattern shown in row 5. The spatial variability, Ssd, of the pattern is plotted as the variability band around the figures 

After recons t ruc t ing  the cycles, we averaged  across 
the ind iv idua l  d a t a  po in ts  ind iv idua l ly  for each subject,  xi 
and  yi, for all cycles in the p la teau  to create  a mean  

t ra jec tory  of m o t i o n  in the x and  y direct ions:  

N C 

z. = Z Z ~, jc (9) 
n = l  c = l  



N C 
Y, = ~ ~ y,c/C (10) 

n = l  c = 1  

where N is the number of data points in a metronome 
cycle and C the number of cycles in a plateau. Next we 
computed spatial variability, S .... for each 07,, Y,) pair in 
a plateau: 

N C 

Sva,= Z Z (X,-x,c)2/C+(7,-Y,c)2/C (11) 
n = l  c = l  

and 

s s .  = (12) 

where N is the number of data points in each cycle of 
a plateau and C the number of cycles in each plateau. In 
row 5 of Fig. 5A and B, the superposition of the X,, Y, 
pairs produce a plot of the averaged trace for the spatial 
pattern as a function of required frequency. The variabil- 
ity of the pattern is represented by plotting the values of 
Ssd as lines orthogonal to the averaged trajectory. 

The mean trajectory of the figure zero plotted in 
Fig. 5A maintains its shape as frequency increases. Spa- 
tial variability even tends to decrease with frequency. 
This is typical of all subjects for the figure zero. The figure 
eight more or less maintains its shape across frequency 
plateaus before the transition plateau (1.5 Hz) at least, in 
this case, with some indication that its variability changes 
as the transition region is approached. To examine this 
possibility, we computed a mean Ssd for each plateau by 
trial. These averaged values were treated as a measure of 
mean spatial variability of the patterns. The averaged 
values (across subjects) of Ssd are plotted as a function of 
cycling frequency for the figure zero in Fig. 6A. For the 
figure eight, we aligned the values of Ssa to the transition 
plateau and averaged backwards and forwards from this 
point; these values are plotted in Fig. 6B. This produced 
a total of five pre-transition and four post-transition 
plateaus in the figure eight data. The figure eight and zero 
S,d values were compared statistically. The pre-transition 
data from the figure eight trials were compared with the 
first five frequency plateaus of the figure zero trials 
(0.8-1.2 Hz) in a 2 condition (eight vs zero) x 5 plateau 
(pre-tran) ANOVA. The post-transition data from the 
figure eight trials were compared with the last four fre- 
quency plateaus of the figure zero (1.4-1.7 Hz) in a 2 con- 
dition x4 plateau (post-tran) ANOVA. Statistically, 
there is no difference in spatial variability between the 
figure zero and pre-transition figure eight: F(1,279)= 
1.0, p > 0.2. This result seems slightly counterintuitive on 
the basis of an initial inspection of the data plotted in 
Fig. 6. To explore the spatial variability data further, we 
also tested the figure eight data against the zero pattern 
across frequency plateaus (0.9-1.3 Hz). This analysis also 
revealed no significant effect of pattern or plateau: 
Fs < 2.0, p > 0.2. After the transition, the spatial vari- 
ability in the figure eight trials (now a figure zero) drops 
to the level of the zero pattern across frequencies 
1.4-1.7 Hz, with no statistical difference in variability 
between the two figure zeros: F(1,205)--0.1, p > 0.8. 
These results suggest that the temporal fluctuations 
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Fig. 6A, B. The mean spatial variability, i.e., the averaged Ssd values, 
collapsed across subjects for the figure zero are plotted as a function of 
required frequency in A, The mean spatial variability data for the figure 
eight is plotted as a function of pre-transition and post-transition 
plateau in B 

before the transition are not mirrored in the actual spa- 
tial trajectory, which retains its cycle-to-cycle shape (see 
Fig. 5). 

4 Other switching behavior 

4.1 Temporally similar but spatially unique patterns 

The previous results dealt with abrupt transitions 
from one spatial pattern to another. Here we show 
that the data of $2 exhibited a qualitative change in the 
initial figure eight pattern, but not from a figure eight to 
zero. 

Plotted in Fig. 7 is a complete trial from the figure 
eight condition for $2. Initially, the spatial pattern re- 
sembles a figure eight. However, by plateau 2 (0.9 Hz) 
a qualitative change occurs as the bottom loop of the 
figure collapses and a new spatial pattern resembling the 
Greek letter p emerges across the mid to latter frequency 
plateaus. Such a clear qualitative change in spatial pat- 
tern occurred in seven of ten trials for $2, with the initial 
change occurring between 0.9 Hz and 1.3 Hz. The power 
spectra of x (t) and y (t) reveal two important temporal 
features of the pattern: (1) the subject paces with the 
metronome; and (2) the pattern is initially characterized 
by a 2:1 temporal ratio, but as the spatial form of the 
trajectory changes, a peak arises at the required fie- 
quency in the x spectrum. The change in spatial pattern is 
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Fig. 7. A complete trial from the figure eight condition for $2 is plotted as a function of required frequency. The change in the spatial coordination 
pattern is evident in the superposition of x(t) (row 1) and y(t) (row 2) and is mirrored in the power spectra 
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Fig. 8A, B. The distribution of q~t2) and q~l~ for $2 are plotted in A and B, respectively, as a function of required frequency for the seven trials in which 
the p pattern occurred 

accompanied by an equivalent temporal change, and 
a temporal description of the pattern requires two fre- 
quency ratios: a 2:1 ratio between X (2) and Y(I) and 1 : 1 
ratio between X t~) and Y (~). 

These changes in the power spectra accompanying 
the emergence of this new pattern are reflected in the 
phase distribution of ~b ~1' 2) of X tl' 2) following the same 
shifting procedure reported in Sect. 3.5. Plotted in Fig. 8 
are the phase distributions of ~b (2) (Fig. 8A) and ~b t~) 
(Fig. 8B) for the figure eight trials (seven trials) as a 
function of required frequency. Two important 
differences exist between these distributions and those 
in Fig. 4. First, the ~b tl) distribution (Fig. 8B) is narrower 
for $2 compared with S1, $3 and $4 (Fig. 4B). Also, 

as the p pattern emerges at higher cycling frequencies, 
the peak in the distribution of ~b (1) shifts from near 
70 ~ to 40 ~ Second, the ~b (2) distribution is well defined 
for all frequency plateaus (compare Fig. 8A with Fig. 4A) 
and a shift in the peak of the distribution of ~b (2) 
from near 90 ~ to 50 ~ occurs as cycling frequency in- 
creases. These qualitative results suggest that the p 
pattern produced by $2 is a temporally more complex 
spatial pattern than either the figure eight or the 
figure zero. That  is, the p pattern cannot be sufficiently 
described in terms of a single temporal ratio between 
x and y as shown in the ideal eight and zero patterns 
in Fig. 1 and the experimental examples shown in 
Fig. 2. 
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Fig. 9A, B. Two plateaus of data from two trials of $5 showing switching back and forth between a figure eight and zero are shown: A cycling 
frequency 1.4 Hz; B cycling frequency 1.5 Hz 

4.2 Switching back and forth 

The behavior of $5 and $6 in the figure eight condition 
did not conform to that of other subjects. Shown in Fig. 9 
are two plateaus of data plotted as individual cycles from 
two trials for $5. This continual shifting back and forth 
between an eight and a zero was observed in the data of 
$5 and $6 in all ten trials for frequencies greater than 
1.2 Hz. Since the figure eight pattern was temporally less 
stable than the figure zero (see Sect. 3.4), the eight pattern 
was not maintained for long following the first shift. 
Typically, the figure eight re-emerged for one to seven 
cycles following the switch to the zero pattern and then 
a shift back to a zero occurred for several cycles and then 
a switch back to the eight, and so on (Fig. 9B). Occa- 
sionally, a distorted pattern resembling neither an eight 
nor a zero was observed (Fig. 9A). This indicates that 
fluctuations were felt quite severely when an unstable 
pattern was maintained in proximity to a critical value of 
the control parameter (here the cycling frequency). 

5 Discussion 

The main hypothesis advanced in this paper is that the 
formation of spatial patterns of coordination (end-effec- 
tor trajectories) is subject to coordination dynamics. In- 
sights into how these dynamics are instantiated by the 
central nervous system may be revealed by studying the 
system in its nonlinear range of behavior where patterns 
arise and undergo change (Kelso 1984; Haken et al. 1985; 
Schrner and Kelso 1988a). Recently, several experiments 
examining rhythmic single limb multijoint (elbow and 
wrist) coordination (Kelso et al. 1991a; Buchanan and 
Kelso, 1993) and reaching and grasping (Kelso et al. 
1994) have shown a strong relationship between the 
phase relation or timing among the joints and the end- 
effector trajectory. Although trajectory formation was 
not the focal point of such research, it nevertheless 
demonstrated that the formation of spatial patterns is 
intimately linked to the coordination among the compo- 
nents producing the trajectory. Specifically, these studies 
demonstrated that inter- and intralimb patterns of co- 
ordination and their stability can be understood in terms 

of dynamics, i.e., pattern switching, loss of stability, 
hysteresis, etc. In this experiment, we exploited the idea 
that pattern switching and concepts of stability may be 
used as a window into the problem of trajectory forma- 
tion. 

The choice of the spatial patterns studied was not 
based on their spatial or geometric characteristics, but 
instead on the temporal relation between the x and 
y components of the two-dimensional spatial pattern 
(Figs. 1, 3B). For low frequency values, both the figure 
eight and zero pattern were stably produced by all six 
subjects. As cycling frequency increased, transitions from 
a figure eight to zero occurred at critical cycling frequen- 
cies in three subjects, and this change in spatial pattern 
was easily identified in the superposition of x (t) and y (t) 
(Fig. 2). This switch in spatial pattern shows up clearly in 
the temporal ratio between the spatial components of the 
end-effector's trace, i.e., in the amplitudes and phases of 
the Fourier coefficients of x (t) and y (t). In the vicinity of 
the transition region, enhancement of fluctuations in the 
Fourier amplitudes was apparent in the data of S1, $3 
and $4 (Fig. 3B, D). This observation supports the con- 
clusion that the observed spatial transitions resulted 
from loss of stability, a key signature of self-organization. 
This is an important point in light of the data presented 
on the geometric variability of the patterns (Figs. 4, 5). 
Statistically, the spatial variability of the figure eight 
remained more or less constant and that of the figure 
zero tended to decrease with increasing frequency. As 
noted in Sect. 3.6, there is some indication that spatial 
variability in the figure eight increased immediately be- 
fore the transition, although statistically speaking it was 
not significant. The exact nature of the temporal and 
spatial relationship, however, is somewhat ambiguous in 
our data. Further refinements of the experimental pro- 
cedure may help to clarify the relation between the tem- 
poral and spatial aspects of end-point control. One way 
to shed some light on this would be to explore the figure 
eight pattern for long intervals in the vicinity of the 
critical frequency. Another way would be to utilize small- 
er time steps in the vicinity of the critical frequency. Such 
procedures may provide a more accurate measure of the 
relationship between temporal and spatially defined 
fluctuations in end-point trajectories. These spatial 
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averaging results when considered together with the tem- 
poral findings support the following conclusions. First, 
the spatial patterns studied in this task may be decom- 
posed into relevant temporal variables that capture the 
essential features of the observed behavioral changes. 
Second, the temporal ratio (described in terms of the 
Fourier amplitudes) between spatial components is the 
relevant task-specific collective variable or order para- 
meter capturing essential features of the system's coord- 
ination dynamics. 

Even though the data of $2, $5 and $6 did not 
conform with those of the other subjects, their behavior 
remained consistent with expectations based on the 
synergetic or dynamic pattern strategy (Schtner and 
Kelso 1988a, b; Kelso and Sch~Sner 1987), as well as a var- 
iety of results from other experiments. For example, 
although $2 switched from a figure eight to nonzero 
pattern, p, the shift is characterized by very systematic 
changes in both the Fourier amplitudes and phases of 
x(t) and y(t) (Figs. 7, 8). We expected that pattern 
switching would take the form of a 2: 1 to 1 : 1 temporal 
patterning in xy-space based on the differential stability 
of frequency ratios (e.g. Kelso and DeGuzman 1988; 
Beek 1989; DeGuzman and Kelso 1991; Kelso et al. 
1991b; Beck et al. 1992; Treffner and Turvey 1993). Of 
course, this does not exclude the possibility that other, 
more complex temporally defined spatial patterns may 
be more or less stable than our initial 2:1 pattern. For 
example, the p pattern produced by $2 is best character- 
ized as a 1:1 and 2:1 temporal pattern between X ~1) and 
Yt~) and X t2~ and ytl), respectively. The behavior of $2 
raises the question of how a more complex temporal 
pattern obviates the need to switch between temporal 
patterns. One possibility is that other frequency compo- 
nents represent a marshalling of available temporal de- 
grees of freedom to help stabilize the pattern. Some 
recent work on bimanual (Kelso et al. 1993) and single 
limb multijoint movements (Buchanan et al. 1994), has 
demonstrated that recruitment and suppression of kin- 
ematic degrees of freedom is a strategy that allows the 
system to adapt flexibly to changing environmental con- 
ditions without switching patterns. If temporal ratios are 
the relevant coordination variables in such end-point 
tasks, then the ability to recruit other frequency compo- 
nents (as $2 did) provides the system with another form 
of flexibility in addition to pattern switching. However, 
the serendipitous results associated with $2 only hint that 
temporal complexity may be defined in terms of the 
number of temporal ratios between the components. To 
define temporal complexity, it is necessary to study in 
more detail the switching relations between the patterns 
we studied, the p pattern, and other patterns. 

The differences between $2 and the three transition 
subjects raises the issue of how equivalence classes of 
actions (cf. Greene 1972) are represented at more abstract 
levels. Two possibilities are suggested by the data: 
(1) equivalence classes are defined by the temporal ratio 
between components (1 : 1, 2:1, 3:2, etc.); or (2) they are 
defined by the number of prominent temporal ratios 
between components (1, 2, 3, etc.). In the former case, just 
the parameterization of the phase between two tem- 

porally coordinated components can produce different 
spatial patterns. For example, a figure C may be defined 
as a 2:1 temporal pattern in x, y with a 45 ~ phase be- 
tween x and y. By simply shifting the phase between 
temporal components, a variety of specific spatial trajec- 
tories can be produced. If this is the case, a spatial 
transition from an eight to a zero is a transition from one 
equivalence class to another. The latter possibility is 
suggested by the data of $2. In this case, a transition from 
an eight to a zero is a transition within an equivalence 
class of action that results from a loss of stability. Such an 
interpretation is in line with previous work on bimanual 
coordination (Kelso and Deguzman 1988; Treffner and 
Turvey 1993) that has shown that certain temporal rela- 
tionships between interlimb components (e.g., 5:2, 4:3) 
are less stable than others (e.g., 3:1 or 1:1) (Kelso and 
DeGuzman 1988; Treffner and Turvey 1993). Pattern 
stability and the direction of pattern switching in these 
bimanual experiments has been linked to the width of the 
Arnol'd Tongues in the phase attractive circle map (De- 
Guzman and Kelso 1991, 1992; Kelso et al. 1991b). If this 
latter interpretation is the case, then similarities between 
very diverse forms of behavior, both spatial and temporal 
may be shown to have very similar dynamical properties. 
The switching back and forth observed in the data of $5 
and $6, although not what we expected, is consistent with 
previous work on intentional switching in bimanual co- 
ordination. Kelso et al. (1988) (see also Scholz and Kelso 
1990) demonstrated that patterns of interlimb coordina- 
tion may be produced at frequencies higher than the 
typical (spontaneous) switching frequency. That is, con- 
scious effort or intention can stabilize (within limits) 
otherwise unstable patterns of coordination. In some 
respects, this is what we observed in the switching behav- 
ior of $5 and $6. To explore fully such intentional in- 
fluences in this task, it will be necessary to examine in 
detail spatial patterns within an intentional switching 
paradigm similar to the one devised by Kelso et al. (1988). 
On the basis of the temporal stability of the spatial 
patterns various predictions regarding switching 
time from one pattern to the other can be made and 
tested. 

Three aspects of the results we report here bear dir- 
ectly on previous work focusing on the problem of tra- 
jectory formation. First, other authors have emphasized 
how variability in the end-effector's kinematics varies 
systematically as a function of the geometry (curvature) 
of the path (Viviani and Schneider 199t). However, such 
systematic variation provides no insight into the direc- 
tion of the pattern change observed here or the lack of 
specific changes in spatial variability as frequency of 
motion increased. In fact, a close inspection of the trajec- 
tories presented in Fig. 4A and B shows that near points 
of maximum curvature a decrease in the spatial or geo- 
metric variability occurred in both figures. This finding 
agrees with other observations (Viviani and Schneider 
1991), but again does not help in identifying the system's 
relevant degrees of freedom for the production of such 
spatial figures. Nor do the slight differences in compon- 
ent displacement lead to any predictions regarding the 
direction of pattern switching. Rather, as shown here, it is 
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the temporal  patterning of the end-effector's trace (xy) 
that allows for the identification of the relevant task- 
specific degrees of freedom. A second issue concerns 
so-called redundancy, which was minimized in our ex- 
periment by limiting the motion in joint space to two 
degrees of freedom (flexion-extension and abduction-ad- 
duction). Thus our system can be described in terms of 
a one-to-one mapping  between joint space and end-effec- 
tor space. As the results show, the behavior of the end 
effector in each pattern can be said to approximate 
sinusoidal motion in the two available spatial degrees of 
freedom. These results conform to the motion of an end 
effector in a multijoint limb (Soechting and Terzuolo 
1986; Viviani and Schneider 1991). Whether or not excess 
degrees of freedom exist in joint space, it seems that 
a main organizational property of the central nervous 
system is that  motion at the end effector approximates 
sinusoidal motion. Such a phenomenon, however, pro- 
vides no relevant information regarding the organiza- 
tional principles that underlie pattern switching, which, 
as we demonstrate  here, is intimately related to pattern 
stability. The third point speaks to the notion of piece- 
wise planar motion in the end effector. Several re- 
searchers (e.g., Morasso 1983; Soechting and Terzuolo 
1987a, b) have noted that three-dimensional trajectories 
may be described as consisting of planar segments. A seg- 
ment is defined as that piece of a trajectory that lies on 
a single plane of motion, e.g., frontal sagittal, oblique. It is 
hypothesized that the construction of such trajectories 
consists of planning individual arcs or segments that 
must be linked together to form the complete trajectory. 
As before, each segment is constrained to approximate 
sinusoidal motion in two dimensions. Although our ex- 
periment limited motion to a single plane, temporal anal- 
ysis allowed us to describe the global dynamics of the 
pattern without having to decompose it and then re- 
assemble it on the basis of certain linear approximations 
(cf. Morasso and Mussa-Ivaldi 1982; Morasso 1983; 
Soechting and Terzuolo 1987a, b). In a forthcoming pa- 
per (Fuchs et al. in preparation; for preliminary results 
see Fuchs et al. 1993) we show that a global description of 
the patterns and pattern switching may be achieved by 
starting with the assumption of linear sinusoidal motion, 
and then developing a one-dimensional nonlinear equa- 
tion of motion based on the amplitudes of the compo- 
nents. 

The results we report  here suggest that the flexible 
assembly of spatial patterns of coordination or trajecto- 
ries takes the form of a coordination dynamics (Kelso 
1994). In the case presented, these coordination dynamics 
are defined by the temporal  relationship of the spatial 
components  (x,y) of the trajectory and control para- 
meters such as movement  rate. Following along these 
lines, experiments focusing on such spatial transitions in 
a multijoint system may lead to a better understanding of 
the mapping between a redundant joint space and the 
trajectory of an end effector (see e.g., Buchanan et al. 
1994). 
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