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Abstract. This article describes a neural network model,
called the VITEWRITE model, for generating hand-
writing movements. The model consists of a sequential
controller, or motor program, that interacts with a tra-
jectory generator to move a hand with redundant degrees
of freedom. The neural trajectory generator is the vector
integration to endpoint (VITE) model for synchronous
variable-speed control of multi-joint movements. VITE
properties enable a simple control strategy to generate
complex handwritten script if the hand model contains
redundant degrees of freedom. The proposed controller
launches transient directional commands to independent
hand synergies at times when the hand begins to move, or
when a velocity peak in a given synergy is achieved. The
VITE model translates these temporally disjoint synergy
commands into smooth curvilinear trajectories among
temporally overlapping synergetic movements. The sep-
arate “score” of onset times used in most prior models is
hereby replaced by a self-scaling activity-released “motor
program” that uses few memory resources, enables each
synergy to exhibit a unimodal velocity profile during any
stroke, generates letters that are invariant under speed
and size rescaling, and enables effortless connection of
letter shapes into words. Speed and size rescaling are
achieved by scalar GO and GRO signals that express
computationally simple volitional commands. Psycho-
physical data concerning hand movements, such as the
isochrony principle, asymmetric velocity profiles, and
the two-thirds power law relating movement curvature
and velocity arise as emergent properties of model
interactions.
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1 Introduction

Skilled handwriting generally involves the coordinated
action of a large number of joints, from the shoulder
down to the joints of the fingers, each of which must be
controlled by the muscle groups attached to them. This
paper addresses how the kinematics of these joints may
be controlled to produce the shapes of cursive script. In
particular, we consider what the natural variables for the
control of handwriting could be, to find out which parts
of movement are explicitly planned - the motor program
- and which parts are emergent properties of neural and
mechanical interaction as the spatiotemporal motor tra-
jectory unfolds. )

A great deal of research has been devoted to explain-
ing the kinematic signatures of point-to-point move-
ments, such as the velocity and acceleration traces of
joints during reaching. In particular, the vector integra-
tion to endpoint (VITE) model (Bullock and Grossberg
1988, 1991), upon which the model described in this
paper is based, has been successful in explaining the
generation of synchronous multi-joint reaching trajecto-
ries at variable speeds. However, handwriting goes far
beyond simple point-to-point movement. The smooth,
curved trajectories of a pen tip in cursive script express
a motor plan that schedules and coordinates the time
course of action of arm and hand synergies. Analyzing
the geometry of a hand, one finds that no mere concate-
nation of point-to-point movements can produce the
complex shapes of script. Rather, such trajectories appear
to be generated by component synergies that overlap in
time; that is, elementary actions have to be superimposed.

Superimposition of elementary strokes is a common
assumption among modelers of handwriting (e.g.,
Morasso and Mussa-Ivaldi 1982; Morasso et al. 1983;
Edelman and Flash 1987, Plamondon 1989, 1992,
Schomaker et al. 1989). Models differ in the constraints
they place on stroke superimposition. Schomaker et al.
(1989), as well as Plamondon (1989, 1992), assume essen-
tially arbitrary timing relations between onsets of over-
lapping movement components, whereas Morasso et al.
(1983) constrain stoke superimposition by limiting the
number of strokes that are concurrently executed to two.



Another important issue in handwriting is the choice
of the most appropriate coordinate system for movement
planning. Psychophysical studies of handwriting and
drawing (Morasso 1981, 1986) have shown that the spa-
tial trajectory is more invariant than the joint rotations,
or than force-time patterns (Teulings et al. 1986). Based
on these findings, models for script generation have been
proposed that assume planning in two-dimensional (2-D)
or three-dimensional (3-D) space, with a continuous
mapping from this space into the joint space that con-
trols motor execution. Most models assume planning in
a system with two-degrees of freedom (DOFs) for in-
stance 2-D cartesian space (Edelman and Flash 1987,
Schomaker et al. 1989). In particular, Schomaker et al.
(1989) use a sinusoidal basis function. Plamondon (1989,
1992) describes pen-tip trajectories in terms of differential
geometry, using curvilinear and angular velocity gener-
ators. Dooijes (1983) proposes non-orthogonal “principle
axes”, and uses linear trend, the slow left-to-right motion
that occurs during writing, as a third DOF. In these
models, parameters are externally chosen to adjust the
onset ‘and offset times, durations-and amplitude and
phase lags of component velocity profiles.

The VITEWRITE model, which is summarized in
Fig. 1, approaches the problems of the synergy control
and DOFs from a different perspective. It takes advan-
tage of the fact that the human arm and hand have
redundant DOFs. The model demonstrates that these
redundant DOFs can be used to simplify the problem of
motor planning. In particular, the VITEWRITE model
demonstrates how a simple, but novel, type of motor
program can control writing movements that exhibit
many properties of human handwriting when it interacts
with a suitably defined VITE trajectory generator
coupled to a hand with redundant DOFs. Our results
thus extend the applicability of the VITE model from the
control of reaching behaviors to the control of complex
curvilinear trajectories.

Using a hand with redundant DOFs, here taken to be
three, simplifies the motor program, or plan, in at least
three ways. First, each of the three motor synergies of
such a hand can be controlled with unimodal velocity
profiles. Second, the motor program consists of a discrete
set of difference vectors that are read into a VITE circuit
at prescribed times. These difference vectors represent the
direction and desired amount of contraction of a motor
synergy. They are called planning vectors and are denoted
by DV , below. Third, the motor program automatically
launches transient directional commands to the synergies
at only two phases in a movement — when the hand
begins to move, or when a peak velocity in one of the
synergies is achieved.

Such a motor program can be utilized with a VITE
model because the VITE model contains a processing
stage at which an outflow representation of intended
movement velocity is represented. This is the DV - GO
stage that is described below. The difference vectors DV ,,,
that are multiplied by the GO signal are used to form
continuous movement trajectories. They are not the dis-
crete planning vector DV ,. The continuously changing
DV, vectors are called movement vectors. The GO
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Fig. 1. Schematic of the VITEWRITE model: A vector plan functions
as a motor program that stores- discrete planning difference vectors
DV ,in a working memory. A GRO signal determines the size of script
and a GO signal its speed of execution. After the vector plan and these
will-to-act signals are activated, the circuit generates script automati-
cally. Size-scaled planning vectors DV ,- GRO are read into a target
position vector (TPV). An outflow representation of present position,
the present position vector (PPV), is subtracted from the TPV to define
a movement difference vector (DV ,). The DV , is multiplied by the GO
signal. The net signal DV - GO is integrated by the PPV until it equals
the TPV. The signal DV, - GO is thus an outflow representation of
movement speed. 1t is used to automatically trigger read-out of the next
planning vector DV . See text for details

signals that multiply the movement vectors are “will to
act”, or analog speed, signals that activate a motor
synergy if its DV, is not equal to zero. The DV ,,-GO
outflow commands then continuously move the synergy
towards a desired target configuration until its DV,
equals zero. The maxima in time of these DV -GO
outflow commands, in turn, can be used as control sig-
nals to read-out the next planning vector. Using this type
of internal feedback loop, an increase in the GO signal
can speed up a handwritten movement without changing
its form. In a similar way, the GRO signal (defined below)
can multiply the planning vectors DV , before the net
signals DV ,- GRO arrive at the VITE model, resulting in
a handwritten movement of different size but the same
form.

In summary, the VITEWRITE model converts
the motor program’s temporally discrete and disjoint
planning vectors DV ,-GRO into smooth curvilinear
trajectories among temporally overlapping synergetic
movements. The unimodal temporal shapes of the
DV, -GO outflow velocity commands to the motor
synergies are an emergent property of the entire
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VITEWRITE circuit. When a peak in one synergy’s
DV,.- GO function is attained, it can activate read-out of
a planning vector from the motor program to the VITE
circuitry that controls other synergies. The motor pro-
gram of the VITEWRITE model thus does not require
storage of within-stroke time lags, uses few memory re-
sources to store the planning vectors, employs activity-
based DV ,,- GO decisions to automatically read-out the
planning vectors, achieves speed and size rescaling in
response to scalar GRO (size) and GO (speed) acts of will,
and provides effortless concatenation of letter shapes into
words.

The VITEWRITE model also retains desirable prop-
erties of the VITE model that were disclosed in previous
studies of VITE-controlled reaching. Indeed, the plausi-
bility of a role for the VITE model in the control. of
handwriting was soon noticed after its announcement by
Bullock and Grossberg (1988), since VITE, by itself, gen-
erates as emergent properties several key properties of
handwriting data, including the isochrony principle
(Schomaker et al. 1989; Viviani and Terzuolo 1983), or
the tendency for strokes of different size to be completed
with approximately equal duration; skewed velocity pro-
files (Wann et al. 1988), typically with faster rise and
slower fall in velocity; the synthesis of continuous com-
plex movements from unit segments (Soechting and
Terzuolo 1987); and the tendency of maximal curvatures
of a trajectory to occur at locations of minimum velocity
(Abend et al. 1982; Fetters and Todd 1987; Viviani and
Terzuolo 1980).

While many models of handwriting maovement gen-
eration in the literature are aimed at reproducing the
script of individual humans as exactly as possible (e.g.,
Plamondon 1992; Schomaker et al. 1989), this paper is
concerned with the psychophysical properties and neural
control of handwriting as a general skill, including
the choice of the most appropriate coordinate system,
the effects and possible benefits of motor redundancy,
the design of the trajectory generator, and the organi-
zation of the planning strategics whereby elementary
strokes are generated and superimposed to produce
the smoothly curved trajectories of handwriting. The
model is defined and analyzed in Sect. 3-7 after various
issues in the handwriting literature are described in
Sect. 2

2 Issues in handwriting

At the lowest level, any motor activity is expressed as the
contractile state of agonist-antagonist muscle pairs over
time, which are changed by neural control signals sent to
these muscles. The simplest motor command, therefore,
changes the angle of a joint from one value to another,
and for a rotary joint the cartesian space motion of
the distal end of the segment is curved. Likewise, the
cartesian end-effector trajectory formed by straight-line
trajectories planned in a multi-joint space is typically
curved. For many tasks, it may be that a neural con-
troller specifies desired trajectories in a 3-D spatial
coordinate system, for example body-centered polar or
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cartesian, and subsequently maps the resulting trajectory
into joint angle changes (Greve et al. 1992; Bullock et al.
1993). The resulting trajectory in this case would then be
a straight line in 3-D space, but curved in joint space.

Skilled writers are able to fluently produce both
straight and curved trajectories with their pen. In car-
tesian space, straight strokes can be produced simply by
combining two orthogonal components with a constant
ratio between their velocities. Curved strokes, however,
require component velocity profiles whose onsets and
offsets are shifted in time with respect to each other. Thus
curved strokes are more complex. The opposite complex-
ity ordering is true for a system that plans strokes in joint
space. Which movements are simpler, and which are
more complex, depends on the coordinate system chosen.

Psychophysical evidence supports the inference that
arm movement planning often occurs in a spatial coordi-
nate system. A comparison of end-effector and joint angle
velocity profiles for planned arm movements has shown
that the former are more invariant than the latter
(Morasso 1981; Abend et al. 1982). Also, it was found that
the spatial characteristics of script are quite similar even
across different effector systems, e.g. across handwriting
and armwriting with hand joints fixed. The spatial tra-
jectory was also found to be more invariant than force-
time patterns (Teulings et al. 1986).

These observations do not exclude other possibilities.
In particular, studies also show that many free move-
ments exhibit both curved end-effector trajectories and
a tendency to avoid reversals of the direction of joint
rotations during movement (e.g., Hollerbach et al. 1986).
This suggests that the system may be able to operate in
various modes, and that component-wise point-to-point
joint-space planning, which avoids joint reversals, may
be used whenever the task and limb geometry allow such
planning. Whereas armwriting may require spatial tra-
jectory planning, handwriting ~ that is writing at a scale
appropriate to the hand’s DOFs - may only require joint

- space planning. We show below that given suitable

DOFs defined by hand muscle synergies, the resultant
“elementary” movements of the hand approximate
straight lines. However because of the special nature of
these joint coordinates, most of our results regarding
intrinsic timing and stroke planning are directly transfer-
able to larger-scale writing, even if the latter is planned in
spatial coordinates before translation into muscle or
joint coordinates. A system capable of self-organizing
such spatial coordinates and a spatial-to-motor mapping
has been described elsewhere (Greve et al. 1992; Bullock
et al. 1993). .
Two prior models are especially relevant to our con-
struction. Schomaker et al. (1989) argue for a spatial
cartesian coordinate system on the grounds of spatial
invariance, and consequently face the problem of how to
produce curved trajectories. Their solution is based on
precise control of the time lag between the respective
onsets of horizontal and vertical displacements in time.
The parameters they use to characterize a stroke, or
movement between two zero crossings in the velocity
domain, are horizontal and vertical displacement and
stroke duration, which modulate a sinusoidal velocity
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Fig. 2. The effect of shape parameters of
Schomaker et al. (1989): The curvature depends
on which of the orthogonal components (hori-
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Fig. 3. A stroke that is greatly simplified by use
of a third degree of freedom (DOF) Left: With two
DOFs, a stroke as shown in the middle can only
be obtained by a mix of bimodal and unimodal

velocity profiles, since the horizontal component
is non-zero before and after the bend. Right: Using
a third DOF (R), which acts much like X, allows
production of the same shape with only unimodal

Without 3d degree of freedom Stroke
" X
S Y
R
a

function. An additional shape factor determines degree
and direction of curvature by setting the relative phase of
velocity zero crossings in the horizontal and vertical
components. An example of shape control by a velocity
component phase shift is shown in Fig. 2.

An alternative to the model of Schomaker and
colleagues has been introduced by Plamondon
(1989). It generates trajectories by superposing a
curvilinear and an angular velocity command, rather
than by combining orthogonal component velocities as
in most other treatments. The velocity profile in
Plamondon’s model are not sinusoidal (see ‘also
Nagasaki 1989), and are similar to VITE-generated pro-
files (see Sect. 4 below). Plamondon proposes that such
profiles may arise as the output of a filter cascade pertur-
bed by a square-wave input pulse. The VITE theory
proposes a fundamentally different mechanism to explain
the origin of the non-sinusoidal velocity profiles observed
in voluntary movements. Otherwise, Plamondon’s model
is similar to the Schomaker et al. model in that it
parameterizes the duration, amplitude, and relative
phase of the two velocity components. Both models esti-
mate their parameters from measurements of actual
script.

velocity profiles. This presumably simplifies
neural control

In a model that assumes planning in two dimensions,
the trajectory is generated by a two-DOF system. The
number of DOFs involved in handwriting, however, is
much larger, involving every joint from the shoulder to
the fingers. Even if we restrict our considerations to the
hand, we find that the wrist has three DOFs and each
finger exhibits four. The most important components are
finger extension/retraction, horizontal wrist rotation,
and vertical wrist rotation (supination/pronation),
a three-DOF system.

" We suggest that this extra, third DOF can be used to
reduce the complexity of both the motor program and
the neural trajectory generator. As an example, consider
the simple stroke depicted in Fig. 3. In cartesian space,
this stroke can be generated by a mix of unimodal and
bimodal velocity profiles with unequal component move-
ment durations, as shown in Fig. 3a. By adding a third
DOF, which, at least in this example, acts in much the
same way as the horizontal component, the same stroke
can now be generated using only unimodal, bell-shaped
velocity profiles with equal durations. Thus, a redundant
DOF can be used to reduce the complexity of trajectory
generation. In turn, a trajectory generator constrained to
generate unimodal velocity profiles could help to reduce
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the number of solutions of the inverse kinematics prob-
lem that the nervous system faces in planning the execu-
tion of complex movement.

Bullock et al. (1993) have addressed the issue of re-
dundant motor control with a model of goal-oriented
reaching that is called the DIRECT model. This model
suggests a solution to the motor equivalence problem
wherein visual information about target and end effector
positions in 3-D space are transformed into spatial direc-
tion vectors. Spatial direction is adaptively mapped into
joint rotations which move the eflfector in the desired
spatial direction, given the current effector configuration.
In a redundant system, the mapping from spatial direc-
tion to motor commands is one-to-many; that is, there
might be many ways to move an effector like the hand
towards a spatially defined target. The constraint out-
lined above might help to reduce the number of possible
ways. In Sect. 5, we will demonstrate that a rich set of
realistic letter shapes can be produced even if the phase
relations between component movements are con-
strained to be either 0 deg or 90 deg. Such a constraint in
the timing domain might further simplify the inverse
kinematics problem.

The three main aspects of the VITEWRITE model
are defined below: a geometrical model of the hand,
a VITE neural trajectory generator, and a vector
motor plan. Our main suggestion about the read-out of

Fig. 4. The geometric model of the hand to
be controlled, with three DOFs: finger ex-
tension/retraction, which moves the pen
along the up-down (Y) axis; vertical wrist
rotation (supination/pronation), which has
the effect of moving the pen along the left-
right (X) axis; and horizontal wrist rotation
(R), which has two effects, rotating the other
two axes, and moving the pen left-right

planning vectors is that, by using a redundant hand,
precise extrinsic control of onset and offset timing is
unnecessary, and can be replaced by an activity-released
command scheme, such that the onset times of later
movement components are automatically determined by
events in the trajectory generator itself.

3 Geometry of the hand

As noted above, the number of motor segments used in
handwriting is large, involving every joint from the
shoulder to the fingers. Here, we restrict our analysis to
the hand only, which still has a total of seven DOF from
the wrist to the fingertip. Most of these joints operate in
concert during handwriting to control three main sets of
synergists. Accordingly, our hand model has three DOFs:
vertical wrist rotation (supination/pronation called X),
finger extension/retraction (called Y), and horizontal
wrist rotation (called R), as in Fig. 4.

A further simplification is made by considering the
relative scales of hand movement that are characteristic
of skilled handwriting. Both the effects of finger extension
and vertical wrist rotation in handwriting are small in
relation to the total range (cf. Lacquaniti et al. 1987), and
the radius of horizontal wrist rotation is rather large in
relation to finger extension and vertical wrist rotation.
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The trajectories of each of these components are thus
good approximations to straight lines. Therefore, we
further simplify the geometrical hand model by model-
ling both X (vertical wrist rotation) and Y (finger exten-
sion) as an orthogonal system of spatially straight lines.
However, since these axes of movement are mounted on
the hand (and not fixed with respect to the drawing
surface), this coordinate system can be rotated by hori-
zontal wrist motion.

Under these assumptions, if the wrist is located at
spatial location (0,0), then the pen tip, or end-effector
location (E,, E,) can be found by

E, = (I + y)sin(r) + x cos(r) (1)
E, = (I + y)cos(r) — xsin(r) (2)

where x and y denote the X and Y excursions, respective-
ly, and r stands for the horizontal angle of the hand with
respect to the arm. The length of the hand from the wrist
to the knuckles, denoted as I, is large relative to the X,
Y and R excursions.

4 Synchronous trajectory formation by vector integration
to endpoint

The VITE model of Bullock and Grossberg (1988, 1991)
is a neural model of how the outflow commands that
control multi-joint motor trajectories are formed. In par-
ticular, the model clarifies the intimate linkage that exists
between movement properties of synergy, synchrony,
and speed. It shows how a group of effectors may be
dynamically bound into a motor synergy and, once
bound, how the synergy can perform synchronous move-
ments at variable speeds. The VITE model outputs are
the input to a neural model called FLETE. The FLETE
model (whose name stands for “factorization of length
and tension”) clarifies how outflow movement com-
mands from a VITE circuit may be accurately performed
at variable stiffness levels without loss of positional accu-
racy (Bullock and Grossberg 1991; Bullock et al, 1992).
Whereas the VITE model is interpreted in terms of neu-
ral data about brain regions such as parietal cortex,
motor cortex, and basal ganglia, the FLETE model is
interpreted in terms of neural data about the spinal cord
and cerebellum.

The VITE model has been used to explain many
kinematic properties of synchronous multi-joint move-
ment, such as bell-shaped velocity profiles, peak ac-
celeration as a function of movement amplitude,
Woodworth’s law, Fitt's law, velocity amplification
during target switching, normalized velocity profile in-
variance across different distances, and velocity profile
asymmetry as a function of duration. These computa-
tional properties, along with the neural and behavioral
evidence supporting the assumptions of the VITE model,
make it a reasonable starting point for an analysis of
trajectory formation during handwriting.

The VITE circuit consists of four neural stages that
are depicted in Fig. 5: The first stage, the target position

Target Position Vector (TPV)

Difference Vector (DV)

GO signal

Present Position Vector (PPV)

Fig. 5. The VITE circuit, the neural controller of each component
agonist-antagonist pair of the hand

vector (TPV) stage, receives desired positions coded in
terms of muscle lengths from higher stages. The present
position vector (PPV) stage, which integrates its inputs
over time, generates outflow movement signals to spinal
neuron pools, which in turn act on muscles capable of
moving the arm. The difference vector (DV) stage con-
tinuously computes the difference between PPV and
TPV using excitatory outflow signals from the TPV and
inhibitory corollary discharge, or efference copy, signals
from the PPV. This DV is denoted by DV, in Fig. 1.
Outflow from the DV to PPV is multiplied, or gated, by
a non-specific GO signal. Before any movement begins,
a desired position command may be loaded into the TPV
and relayed to the DV. This operation is called motor
priming (Georgopoulos et al. 1984). Until the GO signal
grows positive, however, no change in PPC can occur.
Once the GO signal becomes positive, the PPV can start
integrating signals at the rate GO-DYV. This multiplica-
tive interaction maintains the direction coded by DV
while modulating the speed of movement in this direc-
tion. The size of the GO signal is assumed to grow
monotonically once a movement is initiated.. Since the
PPV integrates DV - GO, the rate of change of the out-
flow PPV signal, namely d/dt PPV, tracks DV-GO.
Thus DV - GO provides an internal measure of the com-
manded movement velocity. The DV is driven to zero by
inhibitory feedback from PPV to DV as the PPV ap-
proaches the TPV. The system thus equilibrates when the
PPV equals the TPV.

Since the GO signal multiplies all outflow commands
from the DV equally, all components of a given motor
synergy tend to complete their movement synchronously,
regardless of GO signal magnitude or component move-
ment amplitude. Even when different components are
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switched on at different times, their movements tend
to terminate at the same time. This is called the temporal
equifinality property for staggered onsets (Bullock
and Grossberg 1988). This is an important property
for stably controlling a temporal series of movements
during which one synergy precedes the next. For
example, consider a task where an arm needs to reach
in one direction before shifting to reach in another
direction. The synchronous, temporally equifinal
completion of the first reach enables the second reach
to be launched without causing an uncontrollable change
of direction. Such a destabilizing change could occur
if some, but not all, components of the first synergy
were still contracting while the second synergy was
activated.

5 Coordination of multiple motor synergies with
asynchronous onsets and offsets

Not all movements are controlled, however, by a serial
read-out of one synergy at a time. As noted above,
the production of curved trajectories during handwriting
requires that distinct movement components have
distinct but overlapping velocity profiles. These phase
lags suggest that the synergies we have identified in
the last section (finger extension, horizontal wrist
rotation, and vertical wrist rotation) need to violate
the equifinality property. If all synergies of the hand
were grouped into one TPV with a single GO signal, the

VITE circuit would work towards making all component

movements terminate at the same time, despite differen-
tially timed onsets. Therefore, we assume that the three
synergies of our hand model are controlled by their
own VITE circuits, with separately initiated GO
signals. A mechanism is also needed to reset these GO
signals before the onset of a new movement by each
synergy.

Such a decomposition of hand movements into inde-
pendently controllable, but temporally overlapping,
synergies is analogous to the decomposition of speech
articulators into coordinative structures (Fowler 1980).
In the case of hand and arm movement, various data
support the idea that multiple finger, hand and arm
movement synergies can be separately controlled during
complex movements. For example, Lacquaniti et al.
(1987) found that while arm movements are charac-
terized by constant phase relations between shoulder
and elbow motion, hand movements exhibit more vari-
able phases (see also Jeannerod 1988). Moreover, the
proposal that multiple GO signal channels exist is
consistent with data on the proposed anatomical site of
GO signal generation, namely the basal ganglia (see
Bullock and Grossberg 1991). Recent reports indicate
that pathways through the basal ganglia maintain
somatotopy, or motor-channel specificity (Parent 1990),
and work summarized by Golani (1992) implicates the
basal ganglia in the delimitation or gating of which
degrees of freedom should be included in a wide variety
of synergies.

21
6 Model equations

The equations that govern the dynamics of the multi-
channel VITE circuit that is simulated herein are now
described. The TPV is denoted by T =(T,,Ts,..., T,),
the PPV by P = (P,,P,,..., P,), the movement vector
DV,by V=(V,,V,,...,V,), the planning vector DV,
by D= (Dy,D,,...,D,), the GRO signal by
S=(8,,5:,...,S,), and the GO signal by G =
(Gy,G,,...,G,), where index i denotes the ith motor
synergy.

Target position vector
Ti(tij+1) = Ti(ts)) + S:Di(ty;) (3)

The TPV receives planning inputs from higher
processing stages. The planning vectors D;(t;;) are the
components of the motor programs. They embody direc-
tional commands whose size, scaled by S;, determines
the distance travelled by a synergy. At launch times
tij, j = 1,...,n, the jth planning vector D;(t;;), scaled by
S, is added to the ith channel of the TPV.

Difference vector

d

SVisd(=Vi+Ti=P) @
Equation (4) simplifies the original VITE equations
(Bullock and Grossberg 1988), which used an opponent
push-pull mechanism to avoid negative values for V;.
Here, agonist and antagonist activations are lumped into
one variable by allowing negative values.

GO signal
Gi(t) = Golt — ;)" t;<t<th, j=1,...,n (5)

where G, is a constant and ¢;; is the jth time at which
component i is launched. The GO signal grows mono-
tonically until time t¥, when it is reset to zero. This
stereotyped and repetitive GO signal rule is capable of
generating arbitrary cursive script letters. In all simula-
tions, n = 1.4, which produces nearly symmetrical bell-
shaped velocity profiles. Equation (5) for the growth of
the GO signal is used wholly for convenience. Bullock
and Grossberg (1988) showed that many psychophysical
properties of arm movements could be fit by a wide
variety of GO signal shapes. In particular they showed
that a physically plausible GO signal could be generated
by a cascade of two or more neurons activated by a step
function input. In the VITE model, using a cascade
to generate a GO signal is one of two determinants of
the velocity profile, the DV being the other; in the
Plamondon (1989) model, a much longer cascade is used
to generate the entire velocity profile.

Present position vector

d

aPi=V|’Gi (6)

The PPV integrates its input signals at the rate V;G;.
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7 Control of GO signal phase relations

To produce the smooth, curved trajectories of script,
synergy DV , directions and GO signal onsets need to be
appropriately timed. The directions and onset lags of
different synergies determine script curvature, Further-
more, in order to generate a letter shape, elementary
strokes need to be joined together smoothly. While in
this paper we do not discuss the self-organizing pro-
cess that discovers, learns, and stores representations of
movement commands, we do suggest what these com-
mands may be and how their onset times may be control-
led to generate cursive letter shape trajectories as
emergent properties of a multi-VITE circuit.

The onset timing for the next stroke in a motor
program could be détermined in two ways: Either the
time of launching the next stroke is a parameter of the
motor program (cf. Schomaker et al. 1989), or some event
in the controller itself, or even downstream from the
controller, triggers execution of the next stroke. The first
possibility faces the difficulty that the motor program
may not be able to compensate for changes in stroke size
and speed of execution. For example, unless the timing of
successive onsets could automatically compensate for
such motor variability, the shape of a trajectory could be
very different at different execution speeds.

If triggering a successive stroke is contingent on
a characteristic event in the velocity trace of the control-
ler, then this problem can be avoided, since onset lags
then shift automatically with speed of execution. An
outflow representation of each synergy’s velocity is avail-
able in the VITE model in the form of the activity
functions at the DV .- GO processing stage (see Sect. 4).
Such an outflow representation avoids the instability
problems that could otherwise occur if delayed inflow
signals from the muscles themselves were used. Our simu-
lations have shown that two events are suitable to launch
a stroke: Times when all velocities are close to zero, and
times at the peak of one or more velocity traces. These
two types of events are called a postural launch (detected
by a match between TPV and PPV) and a dynamic launch
(detected by a peak in one or more velocity profiles).
Figure 6 schematizes a dynamic launch: A peak in one of
the velocity profiles (point B in Fig. 6) can launch a new
movement by triggering read-in of new targets and reset
of their respective GO signals. The new targets may be
zero for some or all components (Fig. 6, points A and C).
The other type of event, a point of zero velocity, can also
trigger new movement (Fig. 6, point D). Thus the launch
times ¢;; in (5) occur either when synergy-i is at rest or
when the outflow speed command DV -GO of another
synergy reaches a maximal size. Reset occurs at times
t% when the PPV of the synergy equals its TPV. The
model is robust with respect to changes in command
timing. Perturbing onset timing results in rounder shapes
if a dynamic launch occurs before the peak of another
velocity profile and edgier shapes if the launch occurs
after the peak.

If a new target is launched only at the occurrence of
these two types of events, then the phase relations be-
tween any two component velocity traces are limited to

Fig. 6. Dynamic and postural Jaunches. Peaks in the velocity profile
can launch new movement by triggering read-in of new targets and
reset of the GO signal for other components with non-zero velocity
(points A and B trigger a dynamic launch, while in case C all targets are
zero, such that no movement is launched). Zero velocity can also trigger
new movement (point D). This is called a postural launch

either 0 deg or 90 deg. With this scheme, the variables
characterizing the motor program are merely planning
vectors, or DV s, that can be stored in a sequential
working memory (e.g., Grossberg 1982; Bradski et al.
1992; Mannes 1992), whose entire vector plan can be
learned and read out from a single unitized planning
chunk, or set of chunks (Grossberg 1982, Chap. 12;
Cohen and Grossberg 1986, 1987; Carpenter and Gros-
sberg 1991). Each peak and zero in the outflow velocity
trace DV .- GO can activate read-out of the next DV,
from the working memory, as in Fig. 1. Sucha DV ,reads
a new directional movement command into the TPV of
the VITE circuit. Each DV , also activates the GO signal
of the corresponding synergy. In the present simulations,

the TPV commands point in the independent X, Y and

R directions. Their amplitudes equal the maximal excur-
sion of the letter in that direction. The order, timing and
size of these synergy commands determine the curvature
of the movement. All the stored commands in the vector
plan that characterizes a letter in this scheme are gener-
ated at discrete times in independent directions. The
VITE model automatically converts these temporally
discrete commands into continuously. curved trajectories
of appropriate shape. Such a controller affords a huge
compression of the commands needed to generate cursive
script. We now summarize simulation experiments that
we performed with the VITEWRITE model.

8 Simulations of cursive script

An example of a script letter b is shown in Fig. 7. The
motor program - that is, the sequence of directional
targets for the controller — is summarized in Table 1.
Each row in Table 1 corresponds to a stroke segment
shown in the small panels in the lower right side portion
of Fig. 7.




B
i
4
1
H
i

Half-cycle X Y R
1 10 0 0
2 (10) 110 0
3 - 10 (110) 0
4 (- 10) — 110 0
5 40 (—110) 0
6 (40) 60 0
7 - 10 (60) 0
8 (- 10) - 15 0

-9 30 (—15) T 0

10 (30) - 10 0
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T k-
End cffector trajectory AR

Fig. 7. An example showing how to

generate the end-effector trajectory
drawn in the left panel. V,, ¥,
denote X and Y velocities,
respectively. GO signal values for

each of these components are plotted
below the velocity profiles. The
smaller panels labeled 1-10 show the
end-effector trajectory during the
time interval along the axis which the
panels touch above

Table 1. Notation for a motor program, characterizing the letter shape
shown in Fig. 6

X is launched first, with a target of 10 length units (corresponding to
about 5 mm). During the next half-cycle, which is launched at the
velocity peak of the X motion, an upward (Y) motion of 110 units is
executed. At the Y velocity peak, an X motion in the other direction is
triggered. This temporally overlapping succession of X and Y is con-
tinued until the last pattern of the motor program, which launches no
component, and so movement comes to a halt. Numbers in parentheses
denote the TPV, during the second half-cycle, i.e. the decreasing part of
the velocity profile

To start with, an X motion to the right is launched
(stroke segment 1 in Fig. 7 and half-cycle 1 in Table 1). At
the time when X reaches maximum velocity, a Y motion
upwards is launched (stroke 2). At the peak of this
Y motion, a small X motion to the left is launched (stroke
3), and so forth. The letter b is a relatively simple example
because the trajectory of this letter is a variation of
a circle, but with different amplitudes for X and Y in
every stroke. The similarity to a circular trajectory can
also easily be seen by the up-down alternation of the
velocity profiles.

A more difficult example, the letter a, involves a richer
set of maneuvers and the third DOF, as shown in Fig. 8.
The first component to be launched in this case is R,
which rotates the hand a little to the left (stroke 1),
followed by an upward movement (stroke 2). Instead of
launching R again, a rightward X movement (of similar
effect) is launched (stroke 3). At the peak of this X move-
ment, all targets are zero, such that the total movement
comes to a stop at the top of the letter. Stroke 4 undoes

T T T T T il
End effector rajectory - N
) Y | | 7
} _Fco, St B -
H//\ | /\ | :14
L { ]
W
B Y | | |
Go T I . Fig. 8. Another example showing
- N how to generate the end-effector
—_/\ J/\/\/j{ trajectory drawn in the left-panel,
% - 1 ! using the third DOF. V.V, V,
v -1 denote X,Y and R velocities,
r | - i respectively. GO signal values for
"GO, o each of these components are
~ =4 . plotted below the velocity profiles.
= L ] The smaller panels labeled 1-10
/ (]! show the end-effector trajectory
L J | during the time interval along the
1 vo2 3 |4 6 |7 |8 9 10 axis which the panels touch above




24

the effect of R to some extent by rotating to the left,
followed by a downward movement (stroke 5). At the
peak of the downward movement, a rightward move-
ment begins (stroke 6), followed by an upward movement
(stroke 7). Again, no movement is initiated at the peak of
this last movement, so everything comes to a halt, which
gives the system a chance to reverse direction.

The horizontal wrist rotation component, R, pro-
duces end-effector movements very similar to X move-
ments, at least at small scales. This redundancy makes
possible some strokes that would otherwise require more
complex control strategies. Examples are the strokes
shown in Fig. 3 and in panel 2 of Fig. 8. Furthermore,
redundancy allows for letters to be produced in different
ways. For example, consider the beginning right-upward
stroke of most letters: This type of stroke can be achieved
by any of the following component movement sequences:
X right, Y up, R right; R right, Y up, X right; or R right,
X and Y in phase obliquely up, R right. In the present
simulations, control strategies were chosen such that the

redundant DOFs X and R were not activated concur-
rently, in order to produce similar strokes and letters in
a consistent way. Some of these choices are discussed in
the next section.

9 Elements of style in writing connected words

Redundancy allows similar shapes to be realized by dif-
ferent motor programs; for example compare the letter
b shape in Fig. 7 with the one in Fig. 9. Homogeneous
appearance of script and the need to connect letters into
words suggests, however, that a consistent style should be
used. Especially with regard to connecting letters, consis-
tent beginnings and endings of letter shapes are highly
desirable. Also, in order to change style parameters
~ such as slant and width versus height - letters should
be stroked in a consistent fashion. For example, if
a stroke leading up and to the right were realized by
X right, Y up, X right, the slant would be fixed. On the

/a_ \//\V \/

A\

=

JaN Fig. 9. Some more examples of

VoV letter shapes. To the right of each

letter, the three velocity profiles

(X,Y and R from top to bottom) are

given. All plots are on the same
scale: the end-effector trajectory is

plotted from 0 to 10 mm

~ b

horizontally and from 0 to 20 mm

vertically. Velocity profile plots:

time, on the horizontal axis, runs
from 0 to 15, V, from — 50 to 50,

v, from — 100 to 100, ¥, — 0.05

t0 0.05. The smaller excursion of r is

7 due to the fact that r is an angle,

while x and y are distances.
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n, r, s, t, u, v, 2. Shortest programs:
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were modelled after the Palmer
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Fig. 10. An example of connecting letters by simply concatenating
individual motor programs

other hand, if the same stroke is realized by R right,
X right/Y up in phase, R right, then scaling X and
Y targets by different amounts can produce the same
letter with different slant. The letters of the alphabet
shown in Fig. 9 were constructed with these constraints
in mind. Thus, all letters shown in Fig. 9 are using X
and Y in phase for vertical/oblique strokes, and R for
horizontal movements. Each letter consistently begins
with a straight oblique X/Y stroke and ends with a right-
ward R stroke. As a result of using a consistent stylistic
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strategy for each letter, these shapes can be effortlessly
connected into word shapes, of which an example is
depicted in Fig. 10.

A further advantage of using a consistent set of
strokes is the ability to scale the size and slant of letter
shapes by simply scaling the elements of the motor pro-
gram differentially. Some example of such variations are
shown in Fig. 1.

10 Size, speed, slant and curvature invariance

Some aspects of the kinematics of handwriting trajecto-
ries are invariant with respect to variations in starting
point, slant and size (Viviani and Terzuolo 1980,
Morasso 1981). These invariances are also exhibited by
the model. Figure 11 displays variations of a trajectory
achieved by differentially scaling the elements of the
motor program. Here, each planning vector component
D; and TPV, is multiplied by a different GRO scalar ;.
While the results can look quite different, the component
velocity profiles are the same for all examples in Fig. 11,
except for their relative magnitude. Uniform size scaling
of the motor program - that is multiplying each compo-
nent D; of TPV ; by the same GRO scalar S - modifies the
size of the performed letters but leaves the trajectory
shape invariant. Figure [2a—c shows the letter b per-
formed with uniformly scaled GRO movement com-
mands. The simplified geometrical model defined in (1)
and (2) produces perfect shape invariances under size
scaling. If a more elaborate geometrical model of the
hand is used, as in Fig. 12d—f, extreme finger angles at the
border of the workspace produce distortions.

Shape invariance under speed rescaling is demon-
strated in Fig. 13, which shows the same letter performed
at “normal” and at double speed, achieved by scaling the

Sx=2, Sy=0.6, S,=!

c d

Sx=0.7. Sy=1,5;=04 | | S4=2.5, Sy=1, 8§03

Fig. 11a—d. Effect of scaling component tar-
gets. a An unscaled version of a word composed
of the letter programs in Fig. 9. b The same word
written with all X targets multiplied by S, = 2,
Y targets by S, =0.6. ¢,d Another version:
€S, =07,5,=125=04d5,=25¢C,=1,
S, =03
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Fig. 12a-f. Shape invariance with two different hand geometries. a—¢
Perfect shape invariance of the letter b, scaled to three different sizes by
choosing three different values for the GRO parameter S. The trajecto-
ries were reduced to fit in the panels. The numbers in the corners of each
panel indicate the panel's original size in millimeters prior to reduction.
The end-effector position was calculated using (1) and (2). d—f The result
of a simulation that used a different hand model to calculate end
effector position. Instead of taking the x and y axes as an orthogonal
system rotated by r in the plane, a 3-D model of the hand was used. The
shoulder was fixed at (0,0,0), the pen tip was constrained to touch the
drawing surface (E, = 0), and E,, E, were calculated as E, = csin{r + y),
E, = ccos(r + y), where ¢ = 2Isin(y/2) and y = n — ysin(x). Using this
geometry, extreme ranges {f) produce distortion effects

GO signal via parameter Gq in (5). This simulation as-
sumes that new synergies are instantaneously launched
at the velocity maxima of other synergies. The more
realistic assumption that a small but finite reaction time
is needed to launch would not substantially influence the
invariance result until speeds were attained at which the
duration of each synergy was no longer very much
greater than the reaction time. Then the smooth curva-
ture of the letter shape would begin to deteriorate, lead-
ing to straighter trajectories followed by more sudden
changes of curvature.

The ease with which size and speed invariance are
demonstrated in the VITEWRITE model derives from
the model's use of DVs to control updating of the TPV in
(3) and of the PPV in (6). Once DV control is available,
scalar GRO and GO signals can transform a stereotyped
series of DVs into motor performances whose sizes and
speeds can be adjusted to match variable environmental
conditions (Grossberg et al. 1992). Models which utilize

a b

Fig. 13a, b. Shape invariance under speed rescaling. The same motor
program is executed at two different speeds, simulated by scaling the
magnitude of the GO signal. a The letter b executed at a “normal” speed
(Go = 1); b the same letter executed at twice that speed (G, = 2)

100
a Curvature
80 Tangential
Velocity
60
40
20
\
0 2 4 6 8 10
80 b R() 173
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Velocity
40
20

2 4 6 8 10

Fig. 14a, b, Relationship between pen tip (tangential) velocity V(1) and
curvature for the letter b. The simulated pen-tip trajectory x(t), y(r) was
least-squares " fitted to a polynomial. Velocity was computed as
V(t) = (x* + ?)'2 and curvature using the formula C(t) = (xj — yx)/
V(t)®. a Curvature and velocity, which show the expected inverse
relationship. b Comparison of the velocity V{r) with the predicted
curvature kR(f)'},k = 10, according to the two-thirds power law
(Wann et al. 1988)

DVs for their spatial and trajectory control have generic-

ally been called vector associative maps, or VAMs
(Gaudiano and Grossberg 1991).

Another widely observed invariant of movement is the
strong coupling between velocity and curvature (Morasso
1981; Abend et al. 1982). In general, peaks in the curvature
profile occur at troughs in the velocity profile. Lacquaniti
et al. (1983) formulated a “two-thirds power law” to de-
scribe the empirical relation between curvature and velo-
city. This law says that angular velocity A4(t) relates to
curvature C(t) as A(t) = kC(r)*/3, which can be rewritten
for tangential velocity F(t) as V() = kR(t)"’?, where
R(t) = 1/C(t) denotes the radius of curvature. Figure 14a



plots model curvature and model tangential velocity for

- the letter “b”; Fig. 14b plots model tangential velocity

alongside the tangential velocity predicted from model
curvature by the two-thirds power law. The agreement is
close but not perfect. In fact, an adequate model of
human performance does not have to agree perfectly with
the two-thirds power function, because the latter is an
imperfect descriptor, as observed by Wann et al (1988).
The latter authors also note that one basis for the dis-
crepancy is that human velocity profiles are not perfectly
symmetrical about the peak velocity value. VITE velocity
profiles show the same duration-dependent deviation
from perfect symmetry that is exhibited by human actors
(Bullock and Grossberg 1988, 1991; Nagasaki 1989).

11 Concluding remarks

The VITEWRITE model demonstrates how a multi-
channel VITE trajectory generator, controlling a suitably
designed hand with redundant degrees of freedom, en-
ables a simple motor program to generate complex cur-
vilinear movements that have many of the properties that
humans exhibit when they produce cursive script. The
processing stages of the VITE model have previously
been shown capable of controlling properties of move-
ment synergy, synchrony, and speed during reaching
behaviors. Here the same processing stages enable
a simple type of motor program to control spatially and
temporally rescalable handwriting.

In particular, the existence of a DV,,- GO processing
stage enables the VITE model to trigger read-out of new
motor commands at peak values of a synergy’s outflow
velocity profile. Using this trigger, the DV,s that update
the TPV and the PPV processing stages may be
modulated by volitional GO signals that rescale the speed
of handwriting without changing its form. Likewise, the
use of a motor program that consists of planning vectors
DV, enable volitional GRO signals to rescale the size of
handwriting without changing its form. The VITEWRITE
model thus provides a flexible new neural model for hand-
writing control while offering additional evidence that the
processing stages of VITE controllers, and more generally
of VAM controllers, may be put to multiple uses by the
brain towards generating complex motor behaviors.
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