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induced through the scheduling of motor tasks by the central ner-
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roborate the predictions and support the relevance of the Kine-
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1. Introduction

One of the key applications of handwriting as a human/computer interface will be its integration
into personal digital assistants (PDAs) and smartphones. So far, numerous research projects have been
conducted to design such systems (Jäger, Liu, & Nakagawa, 2003; Liu, Jäger, & Nakagawa, 2004), and
some studies have suggested to incorporate knowledge of handwriting variability into their design
(Plamondon & Srihari, 2000). For example, starting with few specimens of a single word produced
by a PDA user, an engineer would like to evaluate the writer’s variability and then tune and incremen-
tally adapt a recognizer to a particular handwriting style. So far, most of the effort expended to achieve
this has been concerned mainly with the use of mathematical deformation models having almost no
direct link to the basics of human motor control (Matic, Guyon, Denker, & Vapnik, 1993; Mouchère,
Anquetil, & Ragot, 2005; Nakamura, 2004; Vuori, Aksela, Laaksonnen, & Oja, 2000).

To efficiently perform such an integration, preliminary studies, such as modeling of handwriting
variability, or defining practical limits for using such a model in PDA applications, are a prerequisite
for any motor control-based design.

This article constitutes the very first step in such a research program. It investigates how the Kine-
matic Theory could be used to define a working framework for the integration of some basic motor
control concepts into the blueprint for these new intelligent interfaces. Specially, this study explains
how the handwriting variability can be analyzed through the variability of the Sigma-Lognormal
parameters.
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2. Background knowledge

Probably the most widely accepted observation in goal-directed movement is the stereotypical
velocity pattern of single strokes. In early studies, the variability observed in stroke and handwriting
patterns was considered to result from random processes, and was studied accordingly using statisti-
cal tools (Engelbrecht, 2001). Over the years, several psychophysical studies have highlighted the fact
that the velocity profile of a rapid movement is strongly stereotypical. It has been reported that the
tangential velocity had a bell-shaped profile (Lacquaniti, Terzuolo, & Viviani, 1983), which was consid-
ered to be symmetrical in the earliest studies (Morasso, 1981; Morasso, Mussa-Ivaldi, & Ruggiero,
1983), with only slight variability between participants (Miall & Haggard, 1995) and a decrease in var-
iability with practice (Georgopoulos, Kalaska, & Massey, 1981). Since 1993, precise curve fitting results
have confirmed the basic asymmetry of this profile (Plamondon, Alimi, Yergeau, & Leclerc, 1993). Fur-
thermore, it has been suggested that the smooth feature of handwriting trajectories may be due to the
temporal overlap of successive submovements executed simultaneously (Morasso et al., 1983; Schil-
lings, Meulenbroek, & Thomassen, 1996). The temporal overlap schedule has been used to describe
various features of complex pen-tip paths. In such studies, the end-effector kinematics have been de-
scribed as a summation of the time-shifted velocity profiles of submovements, and it was suggested
that, at the level of the motor planning process, the virtual end-effector trajectories are represented by
vectorially adding the velocities of the strokes involved in the generation of a handwriting pattern.

Numerous studies have been conducted to model the processes involved in the production of hu-
man movements, which can be classified into various categories. Neural network models (Bullock,
Grossberg, & Mannes, 1993; Gangadhar, Joseph, & Chakravarthy, 2007; Guenther & Bullock, 1992;
Schomaker, 1991) study the emergence of invariants in arm movements, velocity invariance being
considered an intrinsic property of the network of differential equations describing the dynamics of
the system. For example, the VITE model proposes an original architecture of neural networks, where
the volitional commands for skilled movements are controlled by a ‘‘GO” signal (Bullock et al., 1993).
Gangadhar et al. (2007) exploited the oscillatory model of X and Y velocity components, initially pro-
posed by Hollerbach (1981), and designed a handwriting stroke generator, in which the velocity is ex-
pressed as resulting from the oscillatory activity of a neuromotor network. Dynamic models focus on
the mass-spring characteristics of the muscles (Bizzi, 1980; Hollerbach, 1981) or on the changes in
equilibrium-points (Feldman, 1986) to comprehend trajectory formation. Generalized motor program
models (Carter & Shapiro, 1984; Nihei, 1985) rely on various representations of the action plan
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(Meyer, Smith, & Wright, 1982) or on the diverse stochastic properties of strokes (Harris & Wolpert,
1998). Finally, principle-oriented models track the velocity invariance problem with several minimi-
zation criteria: minimum time (Enderle & Wolfe, 1987), minimum acceleration (Neilson, 1993), min-
imum jerk (Flash & Hogan, 1985), minimum snap (Edelman & Flash, 1987), and minimum torque
changes (Uno, Suzuki, & Kawato, 1989).

In contrast, the Kinematic Theory (Plamondon, 1995) represents the volitional commands by a Dir-
ac-Impulse occurring at a time t0 and the neuromuscular system by a network made up of a large
number of linear subsystems, where the non-linearities are embedded in the hypothesis of a propor-
tional effect that governs cumulative time delays of the impulse response as measured at the outputs
of adjacent subsystems.

These computational models generally provide, directly or indirectly, an analytical expression
describing the velocity profile using a set of parameters. They have also been used to suggest some
possible origins of the infinite variability observed in real data, which can be expressed by the variabil-
ity of their parameters. For example, Longstaff and Heath (1997), Longstaff and Heath (1999, Longstaff
and Heath (2003) supported the idea that, while biological systems involved in the production of
movement are non-linear, slight variations of initial conditions will lead to a wide and even infinite
variability of the output, which means that the handwriting velocity profile can be considered as cha-
otic realizations.

Various methods use the discontinuous representation scheme to describe complex handwriting
gestures with the superimposition of strokes (Djioua & Plamondon, 2007; Morasso et al., 1983;
Plamondon & Djioua, 2005; Plamondon & Djioua, 2006; Plamondon, Lopresti, Schomaker, & Srihari,
1999; Plamondon & Srihari, 2000). These strokes are regarded as primitives constituting a specific
class of rapid human movements from which complex trajectories are built (Giszter, Mussa-Ivaldi,
& Bizzi, 1993; Mussa-Ivaldi, Giszter, & Bizzi 1994; Paine & Tani, 2004; Thoroughman & Shadmehr,
2000; Woch, 2006; Woch & Plamondon, 2003; Woch & Plamondon, 2004). Thereafter, the wide vari-
ability observed in handwriting patterns can be interpreted as caused both by the intrinsic variability
of the individual strokes and by the fluctuations occurring in the time plan of the superimposition pro-
cess controlled at the CNS level.

Thus, our approach is based on the assumption that a complex pattern of letters, or a word, results
from the superposition, with overlapping, of a set of strokes located both in time and in space, and
described by the Sigma-Lognormal parameters.

The use of a Kinematic Theory to study the possible origins of both the single stroke and the hand-
writing deformations has shown that the distortions of word shapes seem very sensitive to slight
changes in the corresponding movement time plan, as represented by a sequence of time occurrences
{t0i}, i.e., to write a readable word, the superposition of the strokes must be planned in advance from a
previously learned original plan. Moreover, the motor control parameters that affect the stroke direc-
tions and amplitudes seem to be less critical, while the neuromuscular parameters seem to have even
less influence on the deformations. These studies have shown the existence of direct relationships be-
tween the fluctuations of the Sigma-Lognormal parameters and the observed pattern-warping.

3. Overview of the Sigma-Lognormal model

The Sigma-Lognormal model is considered to be the highest level of representation in the family of
models supported by the Kinematic Theory (Djioua, 2007; Plamondon & Djioua, 2006). It considers
single strokes as primitives from which complex patterns are built. Each primitive1 has a lognormal
velocity profile and a direction profile described by an error function (erf.). The formal expression of
the velocity profile ~vðtÞ of a complex movement is given by:
1 The
since in
2004). I
Lognorm
~vðtÞ ¼
XL

i¼1

~viðtÞ; L P 2; ð1Þ
notion of primitive used in the present study differs from that used in studies dealing with the Delta-Lognormal model,
the latter a stroke has a Delta-Lognormal velocity profile (Woch, 2006; Woch & Plamondon, 2003; Woch & Plamondon,

n the Sigma-Lognormal approach, a stroke has a single lognormal velocity profile, and is thus more basic than the Delta-
al stroke, which is made up of two opposing lognormals.
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where L represents the number of strokes involved in the generation of a given pattern and viðtÞ is the
velocity profile of the ith stroke.

In 2D space, the x–y Cartesian coordinates of the trajectory are given by:
0.4

0.6

0.8

1

1.2

1.4

1.6

Y
 (c

m
)

a

Fig. 1.
corresp
the last
xðtÞ ¼ x0 þ
XL

i¼1

Z t

t0i

viðsÞ cos½uiðsÞ�ds; yðtÞ ¼ y0 þ
XL

i¼1

Z t

t0i

viðsÞ sin½uiðsÞ�ds; ð2Þ
with
viðtÞ ¼
Di

riðt � t0iÞ
ffiffiffiffiffiffiffi
2p
p e

� 1
2r2

i

½lnðt�t0iÞ�li �
2

; uiðtÞ ¼ hdi þ
ðhfi � hdiÞ

2
1þ erf

lnðt � t0iÞ � li

ri

ffiffiffi
2
p

� �� �
: ð3Þ
Each curved stroke, indexed by i, is completely described by a parameter vector
Pi ¼ ft0i;Di; hdi; hfi;li;rig made up of six Sigma-Lognormal parameters, which reflects both the motor
control process and the neuromuscular response. Indeed, from a functional point of view, to produce
the ith stroke, volitional commands are modeled by a Dirac-Impulse signal occurring at a time stamp
t0i and sent to the input of a neuromuscular network modeled by a convolution of a large number of
linear subsystems. The impulse command embeds the space features of a stroke, i.e., its length Di, its
starting direction angle hdi and its ending direction angle hfi: The lognormal impulse response of the
neuromuscular system is characterized by the logtime delay li and the logresponse time ri.

3.1. Generation of complex patterns

The equations described above can be used to generate any complex handwriting trajectory from
the vectorial superimposition of a set of strokes, individually described by a parameter vector Pi

(Guerfali & Plamondon, 1995; Plamondon & Guerfali, 1998; Plamondon, Feng, & Woch, 2003; Varga,
Kilchhofer, & Bunke, 2005). Fig. 1a illustrates a typical example, where the trajectory of the word
‘‘lune” has been modeled by an action plan made up of the concatenation of 14 curved strokes. In this
study, 13 strokes are sufficient to model such a cursive word. However, at the end of the movement, a
supplementary stroke produced by an antagonist movement appears when subjects stop their end-
effector displacement. The Kinematic Theory has underlined this point and proposed to model a veloc-
ity profile of a rapid movement with a Delta-Lognormal. This modeling is then applied in the gener-
ation of complex trajectories such as handwriting.

As can be seen, each stroke is identified by a start-point and an end-point. According to this virtual
target concept (Bullock et al., 1993; Plamondon & Privitera, 1995), the end-point of the ith stroke is
concatenated to the start-point of the ith + 1 stroke. From such a discontinuous action plan, the result-
ing handwriting pattern is generated by activating the control parameters (the amplitude Di and the
direction hdi; hfi) of each successive stroke, according to the time plan ft0ig of their occurrence.
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4. Possible origins of pattern variability

In handwriting, various kinds of distortions can be observed in the pattern of a letter or a word. In
this investigation, we assume the existence of two principal origins of variability. The first, which is
called global variability, affects all the superimposed strokes in the same way. The second, referred
to as local variability, represents the independent and intrinsic variability of each individual stroke.
[In this study, other sources of variability, for example the one that affects the number of strokes that
can be observed in different productions of a pattern, are not considered.]

These fluctuations of the control ðt0i; Di; hdi; hfiÞ and peripheral ðli; riÞ parameters lead to a wide
range of deformations, similar to those observed in real data. So, several predictions can be made con-
cerning stroke variability. In the context of PDA applications, we are mainly concerned with size and
orientation changes, considering the small writing surface. To enlarge or reduce the length of a stroke
of rank i, an homothetic transformation can be made with ratio ki on the parameter Di. Similarly, to
carry out a rotation around a starting point, the same positive or negative offset di can be added onto
the parameters hdi and hfi. Although the individual variation of t0i does not affect the pattern of a single
stroke i, however its influence is huge when more than two strokes are superimposed. In contrast, the
parameters ðli;riÞ produce small deformations on the pattern. To highlight these predictions, let us
consider the action plan of the word ‘‘lune”, depicted in Fig. 1a. The distortions observed in an individ-
ual pattern performed by various writers through a set of trials can be interpreted as the effect of the
global and local variability of the Sigma-Lognormal parameters around the mean values used in the
construction of the fiducial pattern. Thus, from the action plan of this latter, several possible deforma-
tions can be created by varying its descriptive parameters:
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where the global variability is represented by capital letters and the local variability by lowercase
Greek letters. Let us recall that the global variability of t0i does not result in any pattern deformations.

4.1. Predictions

For the global effects, the simulations depicted in Figs. 2a–c show that the individual variability of
the parameter Di affects the zoom of the pattern while preserving its temporal scale, a phenomenon
that has been reported regularly since the publication of Denier van der Gon and Thuring’s findings in
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1965. Rotational effects, as described in Figs. 3a–c, are produced by a global modification of the direc-
tional parameters ðhdi; hfiÞ; while keeping the other parameter values constant.

As depicted in Fig. 3c, both the spatial and temporal scales are preserved in this case. However,
when the peripheral parameters ðli; riÞ are varied, the theory predicts supplementary smoothing
and sharpening effects in the trajectory caused by the overlapping of the lognormal velocity compo-
nents. Indeed, when the parameters li and ri increase, they involve the translation and dilation of the
velocity profile of each primitive, causing an increase in the rate of overlapping between adjacent
strokes and leading to smoother trajectories (see Fig. 4). In contrast, when these parameters decrease,
the overlapping rate decreases and the patterns become sharper (see Fig. 5).

In terms of local variability, the superimposition of independent deformations on each stroke,
appearing randomly on local regions of a handwriting trajectory, leads to non-uniform deformations,
characterized by a mixing of different levels of scale changes, rotations, smoothing and sharpening.
Fig. 6 illustrates local effects resulting from slight variations of all parameters. To perform this trial,
the parameter values are randomly chosen inside narrow intervals ½Pi � DPi; Pi þ DPi� centered on
the original parameter vector Pi; used to reconstruct a fiducial pattern, while the interval width is fixed
by standard deviations DPi of parameter variability, statistically determined from real data.

In real handwriting, global and local variations are mixed, and, by modeling a set of similar patterns
with Sigma-Lognormal parameters, these variations on the parameter space can be mapped and ana-
lyzed a posteriori, since Eqs. (4a)–(4f) allow the possibility of distinguishing these two kinds of vari-
ability. Such an approach is clearly of interest for tuning a recognizer which has already been designed,
but what is of interest here is to design an experiment which will allow some of the above predictions
to be observed with a view to using this basic knowledge from the start in the design of a recognizer.
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5. Method

To act on the global variability of the handwriting scale (or to study the zoom effect), we can ask a
writer to increase the global shape of a word by writing it in rectangles of different sizes, but with
identical orientation. To act on the global variability of the direction, we can ask a writer to produce
the same word inside rectangles of the same size, but with different orientations. This methodology
can be considered as a potential way to control the magnitude and direction of a subject’s handwriting
externally.

5.1. Experimental procedure

Following the approval of the local ethics committee, experiments were performed on 6 right-
handed subjects of both genders between the ages of 22 and 45 and in good health, i.e., without
any declared history of neurological or physiological disease. They were asked to firmly grasp a stylus
in their dominant hand, and, after hearing the audio signal ‘‘Bip”, to write the word ‘‘lune” inside a
rectangle on a digitizer (Wacom Intuos II, 22 � 32 cm, resolution 100 points per mm). The stylus pres-
sure and the x–y trajectory were sampled at 200 Hz and the velocity profiles were numerically calcu-
lated using a derivative filter with Fc = 60 Hz and a Cheby II low-pass filter with Fc = 16 Hz, and
Att = �81 dB. Fig. 7a illustrates the acquisition of a typical trial with the apparatus.



(b)

Fig. 7. (a) illustration of the apparatus and the experimental protocol used in the acquisition of handwriting. After receiving an
audio stimulus, the writer writes a word in the specified rectangle, and the digitizer records the corresponding trajectory of the
stylus; (b) illustration of the three tests used in this experiment.
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The experimental protocol included a series of three tests repeated three times. In Test1, considered
as the baseline test, specimens of the word ‘‘lune” were acquired. The writers were asked to write hor-
izontally, inside a 3 cm � 1.5 cm rectangle. In Test2, a global zoom change was requested by asking
writers to write the same word in a larger horizontal rectangle (6 cm � 3 cm) (we assumed that this
window roughly corresponds to the writing surface of the most popular PDAs). In Test3, global direc-
tional variability was required by asking the participants to write inside an oblique rectangle
3 cm � 1.5 cm at 35� relative to the horizontal (see Fig. 7b). Each test was repeated three times to
build the specific fiducial pattern of the target word ‘‘lune” for each writer.

5.2. Preprocessing

The Sigma-Lognormal parameters that represent the best modeling of the handwriting pattern were
estimated in two steps, using a parameter extraction system. The first step resulted in the estimation of
an initial set of parameters, as obtained empirically after an interactive fitting of both the velocity profile
and the x–y trajectory of the patterns with the Sigma-Lognormal model (Djioua, O’Reilly, & Plamondon,
2006). The second module started from these initial estimates and used the Levenberg–Marquardt non-
linear optimization algorithm to automatically converge toward an optimal solution, according to the
mean square reconstruction errors (Levenberg, 1944; Marquardt, 1963). Fig. 8 depicts a typical excel-
lent Sigma-Lognormal fit, both in the velocity and in the trajectory spaces, for a specimen made up of
14 strokes.
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5.3. Normalization of Fiducial Patterns

For a given test, each subject carried out three trials from which a fiducial was built using the mean
values of the extracted parameters. Fig. 9 depicts the fiducial patterns produced by the six writers over
the three tests. In agreement with Eq. (4), the following normalization of the fiducial patterns was
made to analyze the global variability:
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t0i ! t0i � t01 ¼ Aði� 1Þ; ð5dÞ

li ! �l ¼ 1
14

X14

i¼1

li; ð5eÞ

ri ! �r ¼ 1
14

X14

i¼1

ri: ð5fÞ
In this normalization process, the maximum length of the strokes is made equal to 1 and
Dmax ¼maxfDigi¼1;...;14 is then considered as the zoom factor. Furthermore, the start angle hd1 of the
first stroke is considered as the initial direction. Other normalizations were made to characterize each
fiducial with single values representing its 14 constituent strokes. The time-based peripheral param-
eters are described by their mean values ð�l; �rÞ; and the timing of the motor plan is represented by the
slope A of a ft0igi¼1;...;14 sequence.

6. Analysis of the results

An ANOVA performed on the feature vector components of the fiducial patterns revealed that the
mean values of Dmax; hd1 and hf 1 were significantly different in the three tests, with a maximum p-level
of .003 (see Table 1).

In Fig. 10a, a significant variation of Dmax is reported: the mean values increased by a factor of 2.08
(see Table 2: row 1, columns 1 and 2) when the writers were asked to enlarge their handwriting by a
factor of 2 (from Test1 to Test2). Through this analysis, one can also deduce that the pattern size re-
mained approximately the same when comparing Test3 to Test1 (see Table 2: row 1, columns 1 and 3).
analysis: univariate results for each dependent variable.

A Dmax hd1 hf1 lmean rmean DOF

F-val. p-val. F-val. p-val. F-val. p-val. F-val. p-val. F-val. p-val. F-val. p-val.

0.282 .757 24.864 .000 17.184 .000 8.839 .003 0.370 .696 0.222 .803 2

Fig. 10. Summary of the variations with tests for the feature vector components Dmax; hd1; hf 1.

alues of the amplitude and directional parameters, obtained from each test.

Test 1 Test 2 Test 3

m) 1.2 2.5 1.4
18 20 52
75 70 110
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To sum up, the vector ðA;maxfDig; hd1; hf 1; �l; �rÞ is considered as the feature vector of the fiducial
patterns from which the two predictions under study can be analyzed.

In the case of directional variability, the results summarized in Figs. 10b and c show that the dif-
ferences were the most striking for hd1 and hf 1; where the mean values increased by 34� and 35�,
respectively, when the writers were asked to rotate their handwriting by an angle of 35� (from
Test1 to Test3) (see Table 2: rows 2 and 3, columns 1 and 3). As highlighted in Table 1, the uncontrolled
variations of the other components of the feature vector were non-significant, with p-values >.05.

This is consistent with the predictions of the Kinematic Theory, as simulated in Section 4 by the
Sigma-Lognormal model.

The ANOVA analysis corroborates the fact that there are significant global variations in the ampli-
tude and direction parameters, even in the presence of local variations in the Sigma-Lognormal
parameters, with factor values close to those required by the experimental protocol. As emphasized
in Section 4, when these global variations are assumed to occur, either from homothetic changes in
Di or from a systematic offset in the hdi; hfi; there should be no significant effect on the time scale of
the corresponding complex movements, and, furthermore, the amplitude of the velocity profile should
not be affected by the rotational effects. These latter predictions are globally confirmed in Fig. 11,
where the proportionality of the movement times (MT) is analyzed. Indeed, the proportional regres-
sion curves describing the movement times MT3 of the Test3 patterns and MT2 of the Test2 patterns
versus the movement time MT1 of the referential Test1 pattern have slopes close to 1, at 1.09 and
0.94 respectively, which reflects the fact that the movement duration remained globally constant un-
der scale changes or rotations. This result is still valid under the assumption that the number of
strokes involved in the production of a pattern is constant over scales and because writers have writ-
ten a word with smaller letters (under 3 cm). Indeed, when the number of strokes and the time plan
ft0ig are constant, this result can be explained by the isochrony principle, where, for writing move-
ments, the duration tends to remain constant across changes in trajectory length. It has been shown
that, in the case of the production of large letters, the movement time will increase when the scale
increases (Teulings & Schomaker, 1993; van Doorn & Keuss, 1993; Wright, 1993). This prediction
mainly results from the speed/accuracy trade-offs, where writers must reduce their movement speed
by increasing the movement time to produce large and accurate strokes while at the same time pre-
serving a word’s shape (Plamondon & Alimi, 1997). The Kinematic Theory proposes an analytical
expression which describes a relationship between the duration MT of a rapid movement producing
a stroke and the peripheral parameters ðl; rÞ (Djioua & Plamondon, 2008) to process these cases.
However, these equations might not be necessary in the PDA context, where the writing surface al-
ready limits scale changes.

From a local perspective, each fiducial pattern has its own local variability, and this is reflected in
the superimposition of different velocity profiles, as depicted in Figs. 12a and b, where deformations
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r2 ≈0.98
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r2 ≈ 0.93

a b 

Fig. 11. Regression results of the fiducial movement times: (a) MT2 versus MT1; and (b) MT3 versus MT1, which show the
preservation of the time scale when the six subjects scaled and rotated the word pattern respectively.
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Fig. 12. Typical superposition of velocity profiles corresponding to the fiducial patterns constructed from the (a) Test1 and Test2,
and (b) Test1 and Test3 data of a writer #1, after normalizing the scale (using Eq. (5a)). The time scale is more or less locally
preserved, depending on the residual local variability of the parameters.
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caused by the unavoidable local variations in the parameters is apparent. In other words, instead of
obtaining superposition similar to the ideal prediction illustrated in Figs. 2c and 3c, the residual local
variability has led to distortions that are similar to those shown in Fig. 6b.

7. Conclusion

In this study, specific predictions of the Kinematic Theory regarding some possible causes of hand-
writing variability have been formalized and tested, both with computer simulations and experimen-
tal investigation. The pattern variability of a word has been analyzed through the fluctuations of its
Sigma-Lognormal parameters, and global and local phenomena have been identified and modeled.
The resulting simulations have provided information about the individual effect of each parameter
on the predicted variability. From a global variability perspective, it has been shown that, if the same
preprogrammed action plan is used, the motor control system should produce a word under scale
changes and directions without affecting the synchronicity of the task execution process, as reflected
by the stability of the velocity profile. In contrast, variations in the peripheral parameters that describe
the time-based behavior of the neuromuscular system would act on the smoothness and sharpness of
the handwriting patterns, directly de-synchronizing the velocity patterns.

An experiment has been conducted to investigate two of these predictions: one associated with a
scale change and the other with a rotation. The results presented through an ANOVA analysis corrob-
orate both sets of predictions. It was observed that the subjects could voluntarily produce a scale
change without significantly affecting the timing of their velocity profiles, that is, only the amplitude
patterns were directly re-scalable by preserving the number of strokes. Similarly, the participants
were able to change the global orientation of their trajectories without notably affecting their velocity
profiles. These results are in accordance with the basic representation proposed by the Kinematic The-
ory: a set of commands that control, at a high level of organization, both the amplitude and the direc-
tion of a movement under a specific timing sequence. Regarding the other theoretical predictions
made in this paper, such as those dealing with the variability of the preprogrammed time plan, as rep-
resented by a sequence offt0ig; and those concerning the variability of a neuromuscular system, as de-
scribed by its peripheral parameters ðli; riÞ; this knowledge can be of great value in the design of an
incrementally adaptive recognizer. However, it might be quite difficult to design psychophysical
experiments which will easily provide some external control over these parameters, particularly in
the context of writing small letters (< 3 cm) in applications dealing with the generation of word dat-
abases, such as those recorded with PDAs and smartphones. Although there is still a long way to go, we
expect that our work here will provide interesting opportunities for both motor control studies deal-
ing with handwriting generation and projects aimed at the automatic generation of huge databases of
letters and words for the development, training, and testing of on-line handwriting classifiers and rec-
ognizers (Djioua & Plamondon, in press).
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