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Abstract 
We describe a new approach to the visual recognition of cursive handwriting. An effort is made to attain human- 
like performance by using a method based on pictorial alignment and on a model of the process of handwriting. 
The alignment approach permits recognition of character instances that appear embedded in connected strings. 
A system embodying this approach has been implemented and tested on five different word sets. The performance 
was stable both across words and across writers. The system exhibited a substantial ability to interpret cursive 
connected strings without recourse to lexical knowledge. 

1 Introduction 

The interpretation of cursive connected handwriting is 
considerably more difficult than the reading of printed 
text. This difficulty may be the reason for the relative 
lack of attention to the problem of reading cursive script 
within the field of computational vision. The present 
article describes progress made toward understanding 
and solving this problem. 

We identify and discuss two main causes of the diffi- 
culties associated with handwriting recognition: uncer- 
tainty of segmentation of words into characters and var- 
iability of character shapes. We then extend a method 
that has been recently proposed for general object rec- 
ognition, the alignment of pictorial descriptions, to 
handwriting recognition. A system based on the align- 
ment of letter prototypes has been implemented and 
tested. Our results may indicate that the achievement 
of human-like performance in reading cursive hand- 
writing is within the reach of the state of the art in com- 
puter vision. 

1.1 Problems Specific to Script Recognition 

The problem of character recognition inherits from gen- 
eral object recognition most of its difficulties (some of 
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those, such as occlusion, are absent because characters 
are two-dimensional). For printed text, the difficulties 
can be largely overcome by present-day methods. For 
example, a recently developed character recognition 
system [Kahan et al. 1987] achieved better than 97 % 
correct performance on mixtures of six dissimilar fonts. 
Even without reliance on lexical knowledge, the per- 
formance was well over 90 %. 

In comparison, the problem of cursive character rec- 
ognition without recourse to a lexicon appeared so far 
to be forbiddingly difficult. Moreover, only a few 
attempts to attack the considerably simpler problem of 
recognizing handwritten words with a lexicon have been 
made until recently. A survey of the state of the art made 
in 1980 [Suen et al. 1980] contains no reference to a 
system that performs off-line recognition of connected 
handwritten words (most of the systems for cursive 
script recognition are on-line, that is, they rely on 
knowledge of the writing sequence obtained, for exam- 
ple, from a digitizing tablet, and not just on visual data). 
During the last decade, two systems that read cursive 
words have been implemented [Hayes 1980; Srilaari and 
Bozinovic 1987]. These systems depend heavily on lex- 
ical knowledge, presumably because of the difficulties 
associated with reading cursive script. Two major 
sources of difficulty can be identified: ambiguity of seg- 
mentation of words into characters and variability of 
character shapes. 
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1.L1 Segmentation Ambiguity. In cursive connected 
script, ligatures (pieces of contour connecting the char- 
acters) may constitute a substantial portion of the image, 
serving as a pool of contour fragments in which spurious 
letters may be detected. These letters, in turn, give rise 
to unwanted alternative interpretations that may be en- 
tirely plausible as far as the contour is concerned (if 
a lexicon is used, most of the alternatives can be ruled 
out). In other words, it is frequently possible to segment 
a cursive word into characters in a manner different 
from the original intention of the writer ([Eden 1961], 
see figure 1). 

Segmentation is, therefore, ambiguous, especially 
locally, that is, when individual letters or short letter 
sequences are considered. At the entire string level, 
clashes between inconsistent local interpretations facili- 
tate the emergence of a consistent, unambiguous global 
interpretation. For example, a set of local interpretations 
that covers the input string leaving out a substantial 
piece of its contour is likely to be suppressed in favor 
of a more comprehensive cover. 

The problem of segmentation may be regarded as 
consisting of two subproblems: (1) finding the set of 
all potential segmentation points; (2) choosing from this 
set a subset that is, in effect, a guess about the intention 
of the writer. The problem is difficult because a priori 
any point on the contour may turn out to be a segmen- 
tation point. Thus, segmentation does not seem to be 
amenable to a solution by brute-force search. 

In scene interpretation, segmentation (figure-ground 
separation) is also considered a difficult problem 
[Pavlidis 1977]. It is, however, less complex than the 
segmentation of cursive script, since natural objects, 
as opposed to letters, usually cannot be subdivided into 
parts that are, in turn, meaningful objects in the same 
basic category. 

1.1.2 Character shape variability. The second problem 
that must be faced by any handwriting interpretation 
system is high variability of character shapes. This prob- 
lem is especially severe when the text is not intended 
to be read by people unfamiliar with the handwriting 

. / \  
DEAR CLEAR 

1 
??? 

(probably M I N I M U M ,  because of the dotted i's) 

Fig. 1. The interpretation of cursive strings is often ambiguous. 
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Fig. 2. 132 a's taken from the notebook ofP. Claudel, "Le voyage en Italie" (reproduced with permission from Pattern Recognition 11, Duvernoy 
& Charraut, Stability and stationarity of cursive handwriting, Copyright 1979, Pergamon Press plc). 

Fig. 3. Different versions of the handwritten numeral 2. Both the geometry and the topology of the 2's change from sample to sample. 

of the writer. An example may be seen in figure 2, 
reproduced from [Duvernoy and Charraut 1979]. This 
figure shows 132 samples of the letter a, taken from 
a notebook of the French poet, P. Claudel. If any 
regularity is to be found among these samples, it is 
hardly expressible as an isometry. Furthermore, one 
can easily think of examples where even the topology 
of the character changes from one instance to another 
(see the different versions of the numeral 2, some with 
a loop and others without a loop, in figure 3). 

2 A Parallel with Three-Dimensional Object 
Recognition 

2.1 Why Is Object Recognition Difficult 

A similar problem of variability is encountered in the 
recognition of three-dimensional objects: an object's 
appearance may vary considerably depending on its pose 
relative to the observer. Finding regularities in the set 
of views that belong to a single object appears to be 
the only way to approach recognition, short of storing 
templates of all possible views of the object and com- 
paring them with the actual view [Ullman 1986]. For 
simple geometrical shapes, such as triangles, regularity 
may be defined by specifying the set of transformations 

that a view of the shape may undergo. For the family 
of views representing a three-dimensional object, this 
set of allowable transformations cannot be defined easily. 

2.2 Recognition by Prototype Alignment 

One way to approach the problem of visual recognition 
is to search the space of all possible views of all stored 
object-models [Lowe 1986; Ullman 1986]. The purpose 
of visual recognition is to find a model whose match 
with the given object is optimal. If the viewed object 
is denoted by E object models by {Mi} and the set of 
allowable transformations of Mi by {Tg}, then the goal 
of the search is to minimize some measure of distance 
D between the object and a model, that is, to find i, j 
that give minijD(V, T~jMi). 

Some machine vision systems utilize the search para- 
digm directly, usually in conjunction with various heu- 
ristics that reduce the necessary amount of search 
[Goad 1986; Grimson and Lozano-Perez 1987]. Ullman 
[1986] pointed out that it is possible to reduce the size 
of the search space considerably by computing for each 
model a unique transformation that aligns the model 
with the image in some optimal sense. The role of the 
aligning transformation is to normalize the problem in 
such a manner that the search needs to be performed 
over all the models, but not over their different views. 
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The basic idea of the alignment approach is to decom- 
pose the process of recognition into two stages. First, 
the transformations between the viewed object and each 
one of the models are determined. This is the alignment 
stage. Second, the model that minimizes the distance 
measure is found. Thus, the search is for miniD(V, M,), 
where the transformation Tq that produces M" given V 
and Mi is computed in the alignment stage. The search 
is therefore conducted over the set of all models, but 
not over their different views. 

The success of the alignment scheme depends on the 
possibility of computing the aligning transformation 
T 0, given an image and a model Mi. The parameters 
of the transformation can be computed given the (3-D) 
coordinates of three points in the model and the (2-D) 
coordinates of three corresponding points in the image 
(the anchor points; see [Ullman 1986]). This scheme 
can compensate for transformations that include transla- 
tion in the image plane (two parameters), rotation in 
space (three parameters), and scaling (one parameter) 
of model objects, followed by an orthographic imaging 
projection. Intuitively, the three pairs of corresponding 
coordinates supply the six equations that are necessary 
to determine the six parameters of the transformation. 

The computational gain offered by the alignment ap- 
proach may be estimated using a combinatorial search 
formulation of the recognition process, as follows 
[Huttenlocher and Ullman 1987]. In combinatorial 
terms, the goal of recognition may be defined as finding 
the largest pairing of model and image features for 
which there exists a single transformation that maps 
each model feature to its corresponding image feature. 
For i image features and m model features there are 
at most p = i × m pairs of image and model features. 
In principle, any subset of these p pairs could be the 
largest set of matched image and model points, making 
the number of matches that must be examined exponen- 
tial in p. In contrast, if the search is structured as an 
alignment stage followed by a comparison stage, then 
the exponential problem of finding the largest consistent 
matching is reduced to the polynomial--O(pn)--prob - 
lem of finding the best n-tuple of matching image and 
model points (for the three-point alignment n = 3). 

3 Adapting Alignment to Handwriting Recognition 

3.1 Modeling Handwriting Generation Helps 
Recognition 

It is not a priori clear whether an alignment approach 
could be applied to cursive script recognition. One pre- 

requisite is that the information necessary for shape nor- 
malization should be available from the positions of sev- 
eral key points in the handwritten contour. Those points 
would then be used as anchors for computing the align- 
ing transformation between letter prototypes and the 
actual image. Ideally, this transformation would remove 
most of the character shape variability. 

A reason to believe that such key points exist was 
provided by studying the process of human arm move- 
ment [Hogan 1982, 1984; Flash 1983; Flash and Hogan 
1985] and, in particular, of handwriting generation 
[Edelman and Flash 1987]. We will first present a brief 
summary of the generation model, and then point out 
its implication to the recognition problem. 

• Kinematics from shape. The shape of a handwritten 
trajectory determines its kinematics (the dependence 
of position on time). 

• Strokes. Cursive characters are represented and gen- 
erated as concatenations of basic strokes. Although 
different sets of such strokes are conceivable, the 
repertoire appearing in figure 4 can account for the 
diversity of handwritten characters. The shape of a 
stroke is determined by the positons of just three 
control points (the two endpoints and a middle, via, 
point). 

• Dynamic optimization. Stroke trajectories are planned 
with the minimization of a cost function as an objec- 
tive. The form of the cost function reflects the charac- 
teristics of the desired trajectory. For example, smooth 
trajectories are produced if the cost function penalizes 
high value of position derivative with respect to time. 

An empirical investigation [Edelman and Flash 1987] 
indicated that snap (the fourth derivative of position) 
has to be minimized to successfully simulate stroke tra- 
jectories recorded from subjects. Accordingly, the cost 
function is 

C = fof I (d4x-~ Z + I j (1) 

where x(t) and y(t) are the Cartesian coordinates of the 
tip of the pen. The cost function C and an appropriate 
set of boundary conditions (including the constraint of 
passing through the via point) define a variational prob- 
lem, which can be solved, for example, using Pontry- 
agin's maximum principle with equality constraints on 
internal points [Flash and Hogan 1985]. The resulting 
expression for x(t) is 

7 
x(t) = ~a a~ tn + px(t + h)7+ (2) 

n=O 
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' ,k ._ .  j 

Fig. 4. The four basic stroke types--hook, cup, gamma, and oval. All cursive characters can be represented as combinations of strokes belonging 
to this set, with the addition of a straight-line stroke. 

where an and Px depend on the boundary conditions, 
on the positions of the control points, and on the move- 
ment duration tf, with (t - tl)+ defined as follows: 

/ -  h if t _> tl 
(t  tl)+ 

otherwise 

Here h is the time of passage through the via point, 
obtained together with an and Px by solving the mini- 
mization problem. The expression for y(t) is analogous 
to (2). 

Equation (2) corresponds to a familiar result from 
spline theory, stating that a natural spline of degree 
2m - 1 minimizes the L 2 n o r m  of dmx/dt m [de Boor 
and Lynch 1966]. An important difference between 
dynamic optimization and spline interpolation is that 
the former specifies the time at the via point (or knot, 
using spline terminology). An analogous spline prob- 
lem is therefore interpolation with variable knots. As 
opposed to the interpolation with regularly spaced knots, 
which is a problem of linear algebra, the variable-knot 
problem must be approached using the calculus of vari- 
ations [Karlin 1969]. 

The optimization model of handwriting, called MS~ 
(for minimum snap with one via point), has been eval- 
uated experimentally, by simulating handwritten trajec- 
tories recorded from subjects [Edelman and Flash 1987]. 
A statistical evaluation indicated a good agreement be- 
tween recorded and computed values of all kinematic 
characteristics of the trajectories. More important, 
stroke trajectories could be reliably computed from 
rotation and translation invariant geometrical descrip- 
tions: the relative positions of the start, via, and end 
points of the stroke. 

3.1.1 Understanding Handwritten Shape Variability. An 
intuitive constraint on any model of handwriting is that 
similar shapes, such as the 2's appearing in figure 3, 
should be produced by similar motor programs. Within 
the MS1 model, the apparent difference between the two 
2's can be accounted for by the influence of small 
perturbations of control point locations on the trajec- 

tory, as follows. Consider a complex parametric curve 
of the form 

Zo + zlu + . . .  + Zn u 
Z = (3) 

mo + mlu + . . .  + mnu 

where the m~ are real, the zi are complex and u is a 
real parameter [Zwikker 1963]. Clearly, the trajectories 
generated by the MS1 model are of this form (with the 
coefficients of x(t) in (2) and of y(t) in an analogous 
expression being Re(zi) and Im(zi), respectively). For 
such curves, a continuous change of the coefficients 
in (3) may cause the disappearance of an existing loop, 
or the appearance of a new one in place of a cusp 
(Zwikker [1963], p. 74). Now, the transformation from 
the control point locations to the polynomial expres- 
sion for the trajectory is linear, therefore continuous. 
Consequently, continuous perturbations of control 
points may cause variability similar to the observed 
changes in the shape of the character "2." 

Another way to regard this issue is through the formal 
notion of well-posedness. One of the conditions for a 
problem to be well-posed is continuous dependence on 
boundary conditions (e.g. [Torre and Poggio 1986]). 
Computation of the polynomial spline coefficients a, 
and b, given the control points is an instance of 
Hermite-Birkhoff interpolation, a well-posed problem. 
The continuous dependence of its solution on the loca- 
tions of the control points is discussed, for example, 
by Ritter [1969]. 

3.1.2 Control Points as Alignment Anchors. The gener- 
ation model described above suggests that recognition 
by alignment could be applied to cursive script by using 
the control points as anchor points for the alignment 
stage. The analysis of stroke recordings collected from 
subjects [Edelman and Flash 1987] indicates that control 
points (start, end, and via points of the generation 
model) are typically placed along the contour in posi- 
tions that have simple descriptions in visual terms and 
therefore can be recovered from the shape of the char- 
acters. Specifically, they can be defined in terms of the 
local vertical axis orientation, or in terms of salient 
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contour features such as terminators. Since the visual 
saliency of the control points is a prerequisite for their 
use in alignment, this situation is rather fortuitous. Were 
the control points to be found in random places along 
the contour, the integration between the generation 
model and the recognition paradigm would be less 
straightforward. We shall describe now the properties 
of the two major classes of anchor/control points that 
can be distinguished. 

Pr imary Control Points. Control points that corre- 
spond to stroke start and end locations are typically 
situated at the vertical extrema of the contour and the 
line endings (including T-junctions). Their main prop- 
erty is stability with respect to moderate changes in the 
local vertical reference. 

For the purpose of classification, let us define the 
valency of a contour point as the number of distinct 
places in which the contour crosses a small circle 
ascribed around the point. For primary points of valency 
2, the localization of contour extrema is more stable 
if the curvature in the vicinity of the point is sharp 
rather than blunt (see figure 5). Points of valency 1 (i.e., 

• (  
LEFT 

TOP is stable, 
LEFT is not 

OP 

J 
TOP 

LEFT 

Fig. 5. Sharply bending contours allow better localization of control 
(anchor) points. 

endpoints), corresponding to an extreme case of a sharp 
contour, are naturally well localized. T-junctions, having 
valency 3, may be decomposed into an endpoint abut- 
ting a simple contour. 

Note that X-crossings should not be used as anchor 
points because their location can change drastically with 
small deviations of control parameters. Indeed, a cross- 
ing may even disappear entirely, as it often does in a 
3,-like stroke that serves as the ascender or descender 
in letters such as b, d, h, g, or y. The account given 
by the generation model for this phenomenon appeared 
above. 

Secondary Control Points. Although normally the 
middle (via) points of the strokes occupy primary loca- 
tions along the contour, sometimes they may be found 
at the horizontal rather than vertical extrema. An exam- 
ple is provided by the via point of the C -stroke that 
comprises the left part of an a (figure 6). The secon- 
dary importance attributed to a horizontal-extremum 
anchor point is due to its poor localization relative to 
the primary points. This asymmetry stems from the 
tendency of handwritten letters to have sharp tops and 
bottoms and somewhat more rounded left and right 
curves. 

C )  - P R I M A R Y  A N C H O R  P O I N T  

/ ~  - S E C O N D A R Y  A N C H O R  P O I N T  

Fig. 6. Primary and secondary control (anchor) points for a particular 
instance of the letter a. 
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3.2 Practical Issues in Recognition by Alignment 

The process of recognition involves comparison between 
a given shape and a set of exemplars or prototypes 
[Paivio 1978]. If shape variability remains even after 
the viewing conditons have been compensated for, for 
example, by alignment, then the task may be regarded 
as including elements of classification. The variability 
inherent in the writing process clearly makes the task 
of reading a matter of classification. The remainder of 
this section is devoted to three important issues pertain- 
ing to the application of alignment to the problem of 
recognition/classification of handwritten characters. 
The first issue has to do with representation of character 
prorotypes. The second deals with the transformations 
that the prototypes are allowed to undergo (and that are 
to be compensated for by alignment). The third issue 
is that of quantification of the discrepancies that remain 
after the transformations are carried out. 

3.2.1 Stroke Representation. How should stroke proto- 
types be represented? From the computational point of 
view, the issue of representation is important, because 
it can greatly affect how easy it is to do different things 
with it [Marr 1982]. Consequently, if a stroke prototype 
is to be compared to the input image by alignment, a 
simple choice is to store it as a set of points and to carry 
out the comparison pictorially. An alternative is, for 
example, to store the Fourier decomposition of the 
stroke [Persoon and Fu 1977]. In that case, the image 
would have to be transformed too. Moreover, the trans- 

formation necessary for alignment would have to be 
figured out in terms of Fourier components rather than 
image elements such as points or other place tokens 
[Marr 1982]. 

An example of a pictorial representation of a stroke 
appears in figure 7. Characters such as c that contain 
a single stroke each are called simple. Most of the char- 
acters consist, however, of two strokes. These characters 
are called compound. The reasons behind the simple/ 
compound distinction are discussed below. 

3. 2.2 Compound Characters. In order to be able to deal 
with flexible or articulated objects such as cats or com- 
passes, the original three-point alignment scheme must 
be extended [Ullman 1986]. A possible extension pro- 
posed by Ullman involves the subdivision of the image 
into several regions by triangulation. Each of the tri- 
angular regions then undergoes independent alignment, 
with its vertexes serving as anchor points. In this man- 
ner, the two arms of a compass would be transformed 
independently, permitting it to be recognized irrespec- 
tively of the angle formed by its arms in a given image. 
Analogously, individual strokes that form clearly bipar- 
tite letters such as h or y should be transformed indepen- 
dently, because normally their parameters (e.g., size 
and, to a lesser extent, orientation) are free to vary inde- 
pendently of each other without affecting the identity 
of the entire letter. 

Independent region transformation may not always 
be appropriate for nonrigid object alignment. First, it 
assumes the possibility of dividing the model naturally 

'+o. 

o 

• • 
• o 

o I I  • ° 

D raw-2  

Fig. 7. The pictorial representation of a stroke prototype. This stroke may be, e.g., a part of the letter d. The dots and the circles signify the 
positions of the prototype points. The size of a circle reflects the weight given to its contribution to the prototype-image distance. The squares 
signify "forbidden" regions. Penalty is imposed on the stroke instance if parts of the image contour are found in these regions after the alignment. 
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into nonoverlapping regions (otherwise, the aligning 
transformation would have to be one-to-many). For 
some objects (e.g., a pair of scissors) such division is 
impossible. A second problem has to do with the bound- 
ary conditions along the region borders. In handwriting, 
for example, it is logical to demand that a continuous- 
slope contour that crosses a border should be mapped 
into another continuous-slope contour. The coupling 
between transformations of adjacent regions introduced 
by this constraint can complicate matters considerably. 

A different solution to the problem of compound let- 
ters may be devised by combining stroke detection by 
alignment with letter recognition through a structural 
description. Note that this is different from structural 
recognition with sophisticated part detection [Biederman 
1985], since no a priori segmentation is required and 
the parts need not be generic. Consider again the exam- 
ple of a pair of scissors. A standard structural scheme 
would look for the blades and the handles separately 
(among other reasons, because half a pair of scissors 
is too complicated an object to be detected directly, in 
a bottom-up fashion). The modified alignment method, 
on the other hand, would represent the scissors as con- 
sisting of two halves (with coinciding designated points), 
each of which is detected using model alignment. 

An advantage of this approach is the simplicity of 
the spatial relations that must hold among object parts. 
For example, most compound characters can be divided 
into constituent strokes at cusp points, where the only 
required relation between parts is that of point coinci- 
dence. In addition, the decomposition into parts has 
psychological motivation (reviewed in [Edelman 1988]), 
and their number, in contrast with conventional struc- 
tural descriptions, does not exceed two. 

In practice, the combined stroke-structured approach 
may also have computational advantages. For the letter 
m (which has six natural anchor points) to be aligned 
with its prototype, a six-point correspondence must be 
established in the initial phase of the alignment. Conse- 
quently, if the points are unlabeled, and if all possible 
pairings are to be evaluated, then O(n 6) correspon- 
dences must be tried, where n is the number of candi- 
date anchor points detected in the image. If n = 70 (a 
typical number in our experience), the complexity is 
(~) ~ 1.3 • 10 s. In comparison, if the letter m is rep- 
resented by two strokes having each three anchor points, 
then the complexity is 2 0 + kn 2 = O(n3), or approx- 
imately 1.1 • 105 for n = 70. The lower-order term in 
the above expression reflects the complexity of relation- 
ship verification. It is quadratic, since the number of 

detected strokes is typically linear in n. This term may 
be neglected, because verification of stroke relation- 
ships is less expensive than prototype transformation 
(i.e., k is sufficiently small). An additional advantage 
of the combined method is common to all structural 
approaches: once detected for a given word, stroke in- 
stances may be used in the recognition of several letters, 
resulting in yet larger savings in computation. 

3.3 Transformations 

The success of the alignment scheme depends on the 
possibility of computing the compensating transforma- 
tion, given an image and a model. The choice of an 
appropriate set of allowable transformations for the first 
stage of recognition should be a compromise between 
the structure of the problem at hand and other consider- 
ations such as generality and computability. The struc- 
ture of the problem is important because the role of 
the transformation stage is to cancel out image variabil- 
ity caused by object position, attitude and, for recogni- 
tion of nonrigid objects, deformation. 

The general problem of multiple anchor-point align- 
ment is to find a warping function that agrees exactly 
at the anchor points while satisfying certain constraints 
on the transformation it represents. This problem was 
treated by Bookstein [1978], who studied biological 
shape and shape change using D~rcy Thompson's 
Cartesian grid method. Bookstein developed a method 
of finding an optimal diffeomorphism f :  R z ~ R 2 that 
maps one shape onto another, given a set of correspond- 
ing anchor points (in his terminology, landmarks). 

The optimality condition used by Bookstein states that 
the mappingfshould be as smooth as possible. Specifi- 
cally, it should minimize f [V 2fl2. He suggests as a 
physical model the deformation of a thin elastic sheet 
subjected to point displacements. Functionsfthat pos- 
sess the required minimization property can be shown 
to satisfy the biharmonic equation V z ~ 2f = 0. Grimson 
[19], working on the interpolation of sparse stereo data, 
arrived at an essentially similar optimization problem. 
We have experimented with his solution to this problem, 
which used the method of gradient projection, and 
found it too computationally expensive to be useful in 
the transformation stage of recognition by alignment. 
In some cases, however, modeling the aligning transfor- 
mation as a general diffeomorphism seems inevitable. 
One example is the recognition of deformable objects 
[Foster 1975; Chen and Penna 1986]. 
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If the problem is to recognize a rigid object whose 
image is formed by an orthographic projection from 
3-D into 2-D (as in [Huttenlocher and Ullman 1987]), 
then the transformation should include six parameters: 
two for position, three for 3-D orientation and one for 
scaling. Huttenlocher and Ullman [1987] chose to repre- 
sent the transformation as a composition of translation, 
rotation and scaling. For the special case of flat objects 
the result of these transformations can be conveniently 
represented as an affine mapping: 

x ' = a x  + b y  + m  

y'  = cx + dy + n (4) 

The six parameters of this transformation may be com- 
puted from the correspondence of three pairs of anchor 
points detected in the image and in the model. 

If orthographic projection is assumed, and if the 
characters are written on a flat surface, then the aligning 
transformation must be at least as powerful as (4) to 
be able to compensate for viewing conditions. On the 
other hand, according to the MS1 model of character 
generation, it is possible that transformation (4) could 
compensate for character variability, because its six 
parameters match the six degrees of freedom of stroke 
shapes (corresponding to the position of the three con- 
trol points). 

Formally, a stroke trajectory described by M S  1 pos- 
sesses sixteen rather than six degrees of freedom (see 
equation (2)). On the other hand, these sixteen param- 
eters specify more than just the shape of the stroke-- 
the time course of the generation (writing) process is 
determined too, in such a manner as to match real 
stroke trajectories produced by subjects. Thus, a sixteen- 
parameter model is needed to achieve parametric simi- 
larity between real and simulated strokes, whereas just 
six parameters suffice for geometric similarity. In other 
words, to model the shape of any instance of a stroke 
of a certain type, it is sufficient to apply the affme trans- 
form determined by control point correspondence to 
the image of the prototypicat stroke of that type. 

Note that the claim that an affine transformation plus 
a small set of prototypes suffice to describe stroke 
shapes is empirical rather than mathematical. To test 
the validity of this assumption we have matched stroke 
shapes recorded from subjects to affine transformations 
of prototypical strokes. We found that the affine trans- 
form indeed compensates adequately for character vari- 
abilityJ Figure 8, for example, illustrates how well 
strokes obtained from a c-like prototype by an affine 

transform match instances of that type that appear 
embedded in cursive strings taken from four subjects. 
A similar example for a different stroke type appears 
in figure 9. 

Given the coordinates of three points in the image 
and three corresponding points in a model, the param- 
eters of the affine transformation that would bring the 
two sets of points into a perfect register may be found 
by solving two systems of linear equations, one for a, 
b, and m, and the other for c, d, and n parameters: 

x2 Y2 1 = x~ 
x3 Y3 1 x~ 

x2 Y2 1 d = y; 
x3 Y3 1 n y~ 

or, in matrix form, PA x = X and PAy = Y. The two sys- 
tems are nonsingular and have unique solutions .,Ix = 
P-~Xand Ay = P-1Yifdet(P) ¢ O, that is, if the three 
anchor points of the model (xl, Yl), (x2, Y2), and (x3, Y3) 
are not collinear (in order for the two systems to be 
well-conditioned, near collinearity of the anchor points 
should also be avoided). 

For some prototypes, more than three anchor points 
may be needed to perform an adequate alignment. In 
that case the two systems are overdetermined, but affine 
transformation can still be used. Instead of the inverse 
p-1 of P, the pseudoinverse P+ [Ben-Israel and Greville 
1974] may be employed to compute the affine param- 
eters. The alignment then is not perfect, but it is optimal 
in a least-squares sense (the sum of the squares of dis- 
tances between pairs of corresponding points is mini- 
mized). If the matrix pVp is of full rank, then P+ = 
(pTp)-apT, otherwise a different method of computing 
P+, such as singular value decompositon [Ben-Israel 
and Greville 1974] must be used. 

Affine alignment of prototypes with just two anchor 
points (such as simple straight strokes) leads to under- 
determined linear systems. One alternative then is to 
obtain a minimum norm solution using a generalized 
inverse. Another possibility is to use four parameters: 
rotation, scale, and translation, that are sufficient in 
this case to obtain perfect alignment. 

Even if the alignment is perfect, some values of the 
computed affine parameters may be considered implaus- 
ible. This may happen, for example, when the transfor- 
mation maps a rounded letter such as an o into an 
eccentric slanted ellipse, and the result is too distorted 
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Fig. 8. Compensating for handwritten shape variability by an affine 
transform (see text). Here, the system looked for instances of the c-like 
stroke in four examples of the word cliche, written by four different 
subjects. The detected instances are marked by the dotted lines. The 
shaded areas correspond to the "forbidden" regions (see figure 7). 
Note that there is no objective way to determine whether a c-like 
stroke should be found in the input. It is easy to see, however, that 
out of the entire variety of c-like strokes that seem to be present in 
these images (20 instances) only one was missed (the borderline case 
that is a part of the h in (b)). The control points in the image were 
detected automatically in all cases. 

to be accounted for either by personal writing style or 
by viewing slant. In order to attach less weight to corre- 
spondences that bring about such excessive distortion, 
and to save post-alignment distance computation time 
(by discarding implausible matches), one needs a method 
of estimating the distortion caused by a given affine 
transformation. 

A possible method for estimating this distortion is 
computing a norm of the matrix A that represents the 
homogeneous part of (4) (clearly, the translation com- 
ponent is irrelevant). We use for this purpose the 
2-norm subordinate to the Euclidean vector 2-norm 
Ilxll -- ~ .  x, where (') designates inner product: 

Ilall = max l lx l l~ l l l~ [ I .  The expression for Ilall in 
terms of the elements of A is obtained by the Lagrange 
multiplier method. Stroke instances that yield excep- 
tionally large values of Ilhll are omitted from further 
consideration. 

3.4 Metrics 

To perform the comparison between the image and a 
transformed prototype shape, a distance function on 
shapes must be defined. The choice of the distance 
function (specifically, its complexity) largely dictates 
the structure of the entire recognition process. 

At one end of the complexity scale are distance func- 
tions that are sufficiently powerful to capture invafiance 
under admissible transformations (or deformations). 
Powerful distance functions obviate the need for a nor- 
malization stage, such as alignment. Recognition meth- 
ods that represent objects by feature vectors [Duda and 
Hart 1973] may be regarded as using such distance func- 
tions. Feature spaces with hundreds of dimensions are 
sometimes used. 2 

At the other end of the scale one finds simple methods 
such as template matching. The price of simplicity in 
this case is in the need for normalization prior to com- 
parison. This is acceptable, as long as the source of 
shape variability is known and can be compensated for 
by an alignment-like process (as it turns out to be the 
case in handwriting). 

I f  it were possible to presegment the image and to 
distinguish the contours belonging to the object to be 
recognized from those of other objects and the back- 
ground, then a function that complies with the three 
metric axioms (non-negativity, symmetry, and triangle 
inequality) could be employed in the comparison stage 
of recognition. An example of such a function for point 
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F/g. 9. Looking for instances of the/-like stroke in four examples of the word invade, written by four different subjects. All 21 of the undisputed 
instances were correctly detected. 
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sets is the Hausdorff metric (e.g., [Serra 1982]). The 
Hausdorff metric contains two components: an image 
to model distance contribution and a model to image 
one. To compute the first component, one must decide 
which part of the image corresponds to a single stroke. 
To avoid the problems associated with segmentation we 
have used an asymmetric model-to-image, distance. 

For compound characters, close model-to-image fit 
of the individual components does not suffice to make 
the entire character acceptable (see figure 10). We apply 
two kinds of goodness-of-fit criteria for compound char- 
acters after the individual strokes have been recognized. 
The first relies on affine-invariant geometrical features 
such as ratios of distances along parallel lines. An ex- 
ample is the approximate equality constraint on the 
heights of the two components of a w. The second cri- 
terion has to do with the affine transformations per- 
formed on the components. The homogeneous parts of 
these transformations must be close for the entire char- 
acter to be considered acceptable. The measure of 
closeness is supplied by a matrix metric. Suppose that 
the transformation matrixes of two stroke instances are 

{2} 

Ca} (4} 

Fig. 10. Which of the four examples here would be judged as an instance 
of an a? It is not enough that the constituent strokes of a compound 
character are connected. The connection must be at the right place 
in each of the strokes, and their relative size and orientation must 
agree. Panels (1), (2), and (3) illustrate the possible problems, and 
(4) shows an admissible configuration of the two strokes. 

A1 and A2. If the distance IIAI - A2II is too large, the 
compound character formed by the two strokes is 
rejected. 

For some letters it is desirable to penalize different 
components of the transformation distance by different 
amounts. For example, in a d the relative scale of the 
two strokes is less important than the difference in the 
rotations they have been subjected to, while in a w the 
opposite is true. To impose differential penalties, the 
matrix that defines the homogeneous part of the trans- 
formation is decomposed into a product of matrices, 
corresponding to the elementary transformations (i.e., 
scaling and rotation) that are to be discerned. We use 
singular value decompositon for this purpose [Ben- 
Israel and Greville 1974]. 

3. 5 Summary of the Method 

The main stages of the recognition process are as 
follows: 

• Anchor point extraction. This is performed by tracing 
the image contours. 

• Stroke detection. Strokes are recognized by prototype 
alignment, using affine transformations computed 
from anchor-point correspondences. 

• Letter hypothesization. Potential instances of each of 
the 26 letters are detected. Every instance at this stage 
has a score that reflects its closeness to the part of 
the contour with which it is aligned, 

• Interpretation. At this stage a best-first search is used 
to assemble the interpretation string out of the set 
of all detected letter instances. 

We have implemented a complete word recognition 
system based on control point alignment. The next sec- 
tion describes it in some detail. We also describe several 
choices and techniques that are not an integral part of 
the basic scheme, but were found useful in the practical 
implementation. 

4 Implementation 

4.1 Extracting Alignment Tokens 

In the first stage, the system traces the word contour 
to extract the primary and secondary tokens (anchor 
points) on which the subsequent stroke alignment is 
based. The tracing starts from the leftmost black pixel 
and proceeds by steps. In each step the continuation 
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points are found by collecting all the black points that 
lie along the perimeter of a square centered at the cur- 
rent point (we set the size of the square at approximately 
twice the width of the contour, but any value between 
1.0 and 5.0 times the width appears to work well). The 
continuation point that yields the lowest trace curvature 
is then selected. The tracing tends therefore to proceed 
straight wherever possible. When a continuation point is 
selected, the entire current square is "painted" (marked 
by l's in an array congruent with the original image). 
Painted points are not allowed to provide continuation. 

The coordinates of the centers of the squares are 
saved at each step. They constitute the coarse represen- 
tation of the contour that is the output of the tracing. 
Only the local order of points matters: no attempt is 
made to reproduce the original writing sequence. 

Two events can interrupt the tracing process. The first 
corresponds to a large value of the turn angle, defined 
in terms of three contiguous sample points. The second 
event is signaled by an empty continuation point set. 
Thus, the tracing stops when it falls off a termination 
of the contour, or makes too sharp a turn, or runs into 
an already painted area (as may happen at an intersec- 
tion). When this happens, a new starting point is sought. 
If none is found (i.e., the entire contour of the word 
has been painted) the tracing process terminates, return- 
ing the set of contour pieces--lists of sample points. 

Pieces of contour returned by the tracer are further 
processed in order to extract primary and secondary 
tokens: contour extrema in the vertical and the horizon- 
tal directions. First, the local orientations of the contour 
(stored in the sample point data structure) are smoothed 
by a convolution with a Gaussian mask. Consecutive 
members of the smoothed orientation list are then exam- 
ined to detect the required extrema. A positive to nega- 
tive zero-crossing signifies, for example, a maximum in 
the vertical direction (top), a transition from c~ > ~r/2 
to a a < 7r/2--a local leftmost point (left), and so on. 

Symbolic labels are assigned to the tokens in order 
to reduce the amount of search in the alignment stage. 
The classification is according to the type of the ex- 
tremum: each token is labeled as top, bottom, left, or 
right. In addition, the tokens have property lists that 
include the following information: 

1. Writing zone. Possible values of this slot are upper, 
middle, and lower (the zone is determined by a 
method described by Bo~inovid and Srihari [1985]). 

2. Sub-zone. Middle-zone tokens are further classified 
into upper-middle and lower-middle ones. 

3. Close tokens. This slot points to a list of tokens that 
are within a threshold distance from the present 
token. 

Figure 11 shows the primary tokens extracted from 
an image of the word ornate. Approximately 50 primary 
tokens were found. There were about half as many sec- 
ondary tokens (not shown). At those places where the 
curvature of the contour around a vertical extremum 
is small, the localization of the tokens is poor (see the 
previous section). To tolerate this imprecise localiza- 
tion, the system is programmed to return two additional 
tokens, one on each side of the true one. 

4.2 Finding Character Hypotheses 

Having extracted and classified the tokens, the system 
proceeds to the detection of individual characters. In- 
stances of each of the 26 characters (and a special 
character "&" that designates the ligatures) are detected 
in turn. 

Correspondence and Alignment. The first step in 
character detection is looking up its prototypes in a 
special table (multiple entries correspond to different 
versions of the same character, such as the left and the 
right-facing r). An entry includes the names of the char- 
acter's components and the name of the character expert: 
the function that is invoked to determine whether a par- 
ticular combination of components is legal and to score 
the result if it is. 

With several exceptions, the components of com- 
pound characters are simple strokes. The exceptions 
are a, b, d, g, p, and q which may include the letter 
o, and m which may include an n. After the system has 
the entire definition in terms of strokes, the prototypes 
of these are looked up in the prototype table. If instances 
of a stroke have already been detected for the current 
input word, they are reused. Otherwise, the strokes are 
found using alignment, and the result is remembered, 
to be used in the detection of a subsequent compound 
character. 

To compute the aligning transformation, the system 
must establish correspondence between the set of proto- 
type tokens and a subset of the tokens extracted from the 
image. The evaluation of potential matches is expensive: 
it involves computing and applying the aligning trans- 
formation and estimating the degree of fit of the result. 

When token classification is used, the number of 
plausible correspondences is considerably smaller than 
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Fig. 11. Primary tokens extracted from the image of the word ornate. The printed representations of the tokens (m the panel labeled "Interac- 
tion") include type (token), identify (a unique symbol), class (line, end, o r  bend), coordinates, contour slope, extremum type (T for a top, 

f o r  a bottom), zone (D for upper and appropriately placed, commas for upper-middle and lower-middle), and valency- (see text) .  

the worst case. A collection of experts, one per proto- 
type, filters the correspondences, retaining only the 
plausible ones. The rules employed by the experts are 
divided into general and prototype-specific ones. An 
example of a general rule states that top and bottom 
tokens do not match. Another example is a rule that 
is specific to the letter c, stating that the token that is 
matched to its top should be above the token that is 
matched to its bottom? 

Once the correspondence is established, the system 
computes the affine transformation that aligns the proto- 
type with the image. Most of the prototypes have three 
anchor points, and some have two. The appropriate 
methods for computing the transformations, described 
in the previous section, are used in each case. 

Evaluating the Match• The central assumption of the 
alignment method is that the entire contour of the proto- 
type matches the image, once the corresponding anchor 
points have been brought into register by the aligning 
transformation. The goodness of the match is now com- 
puted by applying a prototype-to-image distance func- 
tion, as described in the previous section. 

For strokes and simple characters, the asymmetric 
nearest-neighbor function is applied by default. Other 
functions are available and may be selected through a 
menu. The nearest-neighbor distance is the most impor- 
tant but not the only component of a stroke's score: 
three additional factors are taken into account. The fu'st 
is the amount of distortion undergone by the stroke's 
prototype. The distortion here is defined as I]A - kill, 
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where A is the homogeneous part of the affine transfor- 
mation applied to the prototype, and k is the average 
scaling factor, computed independently. 

The second additional factor is prototype-specific. 
For an i it includes, for example, a bonus that depends 
on the location of the dot (if found) relative to the tip 
of the letter, for an 1--a penalty proportional to the dis- 
tance between its bottom and the lower border of the 
middle zone. 

The third factor penalizes intrusion of image contour 
into forbidden zones that are also prototype-specific. 
For example, the top part of a c must have a clearance 
above and to the right of it, in order to reduce the score 
of a c that is embedded in a larger letter such as d. 

The role of compound character experts mentioned 
above is to test combinations of strokes for legal con- 
figurations, and to evaluate the goodness of such con- 

figurations, using the method described in the previous 
section. The tests for legality rely mostly on computa- 
tionally inexpensive, local operations, such as detect- 
ing coincidence or proximity of two tokens. For a small 
number of characters the tests involve, in addition, 
simple spatial relations (e.g., in a t the crossbar must 
at least be close to the vertical stroke). 

The basis for the computation of a compound char- 
acter's score is the mean of the scores of its two com- 
ponents. A penalty that depends on affine-invariant 
geometric measurements, and on the distance between 
the components' transformation matrices, is imposed on 
the basic score. The penalty computation is character- 
specific and is part of the character expert. 

Both simple and compound character instances are 
represented by structures that include the following in- 
formation (see figure 12): 
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Fig. 12. An instance of the letter a, detected in a cursive string. Note the description of the Instance in the right panel. 
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- -  Location: x and y coordinates of  the character's 
centroid 

- -  Score 
- -  Tokens used in the alignment 
- -  The leftmost and the rightmost x coordinates of  the 

interval occupied by the instance 
- -  Version: most characters have more than one legal 

version or configuration 
- -  Prototype: the transformed prototype (for compound 

characters, prototypes) that represents this instance 
- -  Coverage: a list of  tokens that are accounted for by 

this instance (i.e., are close enough to one of  the 
points of the transformed prototype). A numerical 
coverage index is also stored. It is formed by assign- 
ing each covered token a contribution according to 
its type and location. 

In this stage of  the recognition process, more tokens 
are generated than justified by the image (for example, 

at a junction there are usually several tokens). All these 
tokens are kept, making the system more robust at the 
expense of an increase in the computation load. Conse- 
quently, several overlapping instances of the same char- 
acter are frequently detected. Now, for every character, 
the set of all detected instances is filtered, to discard 
those that are clearly superfluous. The filtering is based 
on the concept of domination. A character instance is 
said to dominate another one if it has a higher score 
and the overlap between the two is sufficiently large. 

The domination relation induces a partial order on the 
instance set. In the resulting partially ordered set, only 
those instances at least one of whose dominators is not 
in turn dominated may be safely discarded. The filtering 
is repeated in this manner, until no change happens. 

The system's representation of the input after instances 
of  all the characters have been detected and filtered is 
shown in figure 13. The instances are stored in a list, 
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Finished Prepar ing  char, lct :¢r hvpoth¢¢¢¢. 

(Look 13 nlnutel 39 seconds,) 
Recognlzeda "~ate" ($ - 51.3), 

Hext 4 cand|datesl 
"o~rte" (S - 5 L , L 6 )  
"ornate" (S - 51.e8) 
"oe~otl m (S = 51,85) 
"orrat." ($ - 51:04) 

Best l e x l c a l  choice| "ornate'. 
Finished S t r i n g  r t c o g n t t l o n  ~ h c u r l x t l c ) .  

(took 15 Mlnutfs 18 seconds,) 
-> 

I n t e r a c t i o n  

Fig. 13. All the letter instances detected in a string. The lower panel contains a representation of the list of instances, each placed at its proper 
x coordinate. The y coordinate is proportional to the logarithm of the corresponding instance's score. 

The R] Machine's c ~ o l e  |d|e 18 Mnute~ 
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sorted by the x coordinate. A graphic representation 
may be seen in the lower panel of figure 13, where a 
letter designating each instance appears at its correct 
x coordinate. The y coordinate is proportional to the 
logarithm of the instance's score. The dotted line across 
the panel represents the cutoff score that can be varied 
to sieve out weak instances. 

4.3 Choosing the Best-String Interpretation 

The output of the letter recognition stage may consist 
of as many as 80 letter hypotheses for a 6-letter word 
(see figure 14). Among all these, the string recognition 
module must find the one that best fits the image. In 
addition, the next best 100 or so candidates are found 
(these are used by the lexical post-processor, described 

below). All candidates must be valid strings in the fol- 
lowing sense: their constituent letters should preserve 
the original order along the x axis and should not over- 
lap in space. This is a problem of constrained combina- 
torial optimization, aggravated by the need to find more 
than just the best result. 

The problem may be solved by searching the space 
of all possible ordered subsets of the set L of the 
detected instances. The size of this space is 0 ,  where 
n = I L l .  If only those subsets of L whose length is be- 
tween 3 and 6 are considered, the size is reduced to 
E~=3(~. ) = O(n6). The above validity requirement fur- 
ther reduces this figure. The remaining complexity is, 
however, sufficiently high to preclude the application 
of exhaustive search. 

Our first attempt to solve the optimization problem 
was by a relaxation process. This process used "lateral 

9raw-7 

3ra w-2 
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-> H e u r i s t i c  

Strzng r¢cogn~: too (h~urr~t 1c2,,,, 
Reeogelized.- "~dey~t" ($ = ,~B2), 
Next 4 candldaLe,. ~ 

"adop~t ~ (S = . 9 7 ~ )  

"a l  l ap t "  ($ = .8757) 
"adnpst" (S = .892~) 

Best  l e x i e a l  d ~ i c e :  *adapt ' ,  
14ord w1~J~ ~axJ~n votes~ "ad~pt ' .  
F~t~$hed Strrng r~co~nl~:ron {heurzs~e), 

(look i| Mr.~JLes 4g seconds,) 

In teract ion 

S h i f t ,  C o n t r o l ,  H e r a - S h i f t ,  o r  Su:  ~e r  
[Sun 24 Rpr 9:19:55] edelnan CL-USER: User Input + RI:>irlna>out.dat 0 

Fig. 14. A particularly difficult example of the combinatorial nature of the interpretation problem. Without using the lexicon, the best outcome 
was adeyst. This makes sense if one scrutinizes the image while trying to disregard the solution imposed by the lexicon. The result involving 
the lexicon was adapt, as it should be. 
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inhibition" among character instances in an iterative 
fashion. The hope was that after a number of iterations 
the instances that constituted a high-scoring, consistent 
solution would be strengthened at the expense of the 
weaker, conflicting instances. 

In order to encourage the emergence of consistent 
solutions, the inhibition exerted by one instance upon 
another decreased with the distance between the two. 
It was highest when the characters actually overlapped. 
The scores of individual instances were taken into ac- 
count by making the inhibition asymmetric (weaker in- 
stances did not inhibit stronger ones). An important role 
was attached to the notion of character inclusion (such 
as that of an a within a d). The "included" or domi- 
nated characters did not inhibit their dominators. 

The lateral inhibition mechanism may be regarded 
a single-layer special case of an interactive activation 
network [McClelland and Rumelhart 1981]. As such, 
it could be extended in a straightforward manner to use 
lexical knowledge. However, our attempts to find a 
combination of parameters leading to an acceptable per- 
formance have failed, apparently for the following tea- 

sons. First, the domination rules that guide character- 
level inhibition properties that emerge at the next higher 
level: in groups of characters. In order to accommodate 
coalitions of characters into the scheme, all potential 
coalitions must be considered. This leads one back to 
the original combinatorial problem. 

A second obstacle is due to the transitivity problem. 
Consider three character instances cl, c2, and c3. Sup- 
pose that cl dominates c: but not c3, and that c2 in turn 
dominates c3. The survivors of the lateral inhibition in 
this case should be cl and c3. However, in many cases 
it turns out that c2 suppresses c3 (drives it below the 
extinction threshold) before c~ can prevent it by sup- 
pressing c2. 

When the inadequacy of the lateral-inhibition approach 
in the present context became apparent, we replaced 
in a by a best-first heuristic search. In the best-first 
approach the tree-structured state space is searched by 
expanding at each step the most promising node among 
all those situated along the current expansion frontier 
(see figure 15). The search algorithm employed by the 
system is a variant of A* [Pearl 1984]. We called it 

f f f f 
1 2 3 4 

seor¢l([4 } = miaz seorel(f i) 

O expanded node 

O current expansion frontier 

EXPAND 

Fig. 15. Algorithm A*, applied to the search for an optimal instance combination. At each iteration, the best candidate at the current search 
frontier (marked) is expanded and evaluated. 
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BCS for Best-Candidate Strings. It uses a heap [Aho 
et al. 1974] ordered by string score to hold the partial 
strings that belong to the current expansion frontier. 
This permits insertion and deletion of frontier set ele- 
ments in time proportional to the logarithm of its size. 
BCS conducts the search from left to right, expanding 
at each iteration the top element of the heap, which is 
the best string encountered so far. 

The score of a string at this stage (computed by a 
function, scorel) must be independent of its length, 
otherwise the best-first search degenerates quickly into 
a depth-first one. The independence is achieved by com- 
puting a basic letter-cumulative score and dividing it 
by the length of the string. The basic score has two main 
components: the sum of the scores of constituent char- 
acters, and the sum of their token coverage indices. 4 
The two components are combined into a weighted sum 
(normally, the token coverage and the score are given 
equal weight). The result is multiplied by a penalty fac- 
tor that depends mainly on the style consistency of the 
string. 

The expansion of the best candidate is performed by 
the function expand which takes a string and returns 
all its one-letter continuations to the right, subject to 
two conditions: (1) validity of the result and (2) close- 
ness of the continuation letter to the rightmost letter 
of the original string (this heuristic uses the fact that 
no gap wider than about twice the height of an average 
letter usually exists between two successive letters of 
a word). When expansion to the right is no longer possi- 
ble, the string is removed from the heap and saved in 
an accumulator, and the entire cycle is repeated. 

When a preset number of iterations is exceeded, the 
accumulator is sorted using a different scoring function, 
score2. In contrast with score1, this function gives pref- 
erence to longer strings. Specifically, the token coverage 
of individual characters enters it in a cumulative fash- 
ion, while their scores are still averaged. This serves 
to discourage character fragmentation (e.g., breaking 
down a w into a c and a u). 

4.3.1 Algorithm BCS 

1. Initialize the heap H and an accumulator R to 0 (the 
top of an empty heap is the null string e). 

2. Do h ~- top(H); E ~ expand(h). 
3. If E ~ 0 then remove top(H) and for all e E E insert 

(e, scorel(e)) into H; else remove top(H) and add 
the result h to R. 

4. If H = 0 or the number of iterations N is exceeded, 
return the first 100 elements of R, after sorting it 
by score2; else, go to step 2. 

The maximum allowed number of iterations N was ad- 
justed empirically to a value that prevented the algo- 
rithm from returning prematurely for all the test words. 
Provided that N is high enough, the following claims 
can be made about the performance of BCS. Since the 
path from the root of the search tree to a solution is 
irrelevant for the present problem, BCS satisfies the 
condition for optimality ([Pearl 1984] p. 62). It also 
trivially satisfies the completeness condition because 
the state space is finite (the string cannot be expanded 
beyond the rightmost element of L). The condition for 
admissibility is satisfied for an infinite N. BCS is there- 
fore admissible on short enough inputs. 

The output of the heuristic search is a list of strings, 
ordered according to a set of criteria that rely solely 
on visual information. For a considerable proportion 
of inputs, the top five strings on this list include correct 
interpretation (we shall describe the statistics shortly). 5 
Even when they do not, the top interpretation can often 
be intuitively justified (see figure 14). If desired, lex- 
ical knowledge can now be applied to this raw output, 
as described below. 

4. 4 Application of Lexical Knowledge 

In the present system, the application of lexical knowl- 
edge is no optional operation, and is independent of the 
visual recognition module, described above. Because 
of the independence requirement, contextual post- 
processing [Hanson et al. 1976] or error correction is 
used, rather than an integrated approach such as that 
of Srihari and Bo~inovi6 [1987]. 

A contextual post-processor assumes that the letter 
string that is the outcome of the visual recognition stage 
is a garbled version of a legal word. It then uses the 
letter context of the string to produce the most likely 
word from which it could have originated. The degree 
of likelihood may be computed for each word in the 
lexicon directly, for example, using the Levenshtein 
metric on strings [Okuda et al. 1976]. Another possibil- 
ity is to use n-gram statistics to decide which of the 
letters are erroneously detected [Hanson et al. 1976]. 

The only input to a post-processor of the above type 
is the best string supplied by the visual module: the 
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less successful candidate strings are disregarded. This 
approach is unwarrranted in cursive script recognition, 
where the high inherent ambiguity of the image inter- 
pretation causes the spread of the useful information 
over the first several candidates. When the visual 
goodness-of-fit alone is considered, the best string often 
is an alternative parsing (interpretation) of the image. 
This parsing may have nothing to do with the legal word 
that is the intended interpretation. 

In choosing the method for lexical post-processing, 
we also considered the requirement to simulate human 
ability to interpret (recognize the letters of) nonwords. 
In particular, the facilitation of letter recognition in 
pseudowords (such as pronounceable nonwords) had 
to be accounted for. An approach that incorporates 
this feature is interactive activation [McClelland and 
Rumelhart 1981]. However, as discussed above, it 
proved to be inadequate for cursive connected script. 

The advantage of pseudowords over random strings 
may be attributed to the reader's tendency to look for 
meaning (Englishness) even where there is none. This 
makes the concept of statistical Englishness, as defined 
by Travers and Olivier [1978], useful in the simulation 
of the word (and pseudoword) superiority effect. 

The lexical module relies on the synthesis of the con- 
cepts of lexical neighborhood and statistical English- 
ness (see [Edelman 1988] for a discussion). It uses the 
fast spell-checking function available in the Symbolics 
Lisp environment. The Englishness of a string S is esti- 
mated as 

~ Ernax if S is a legal 
word 

~ length (c) otherwise 
c~c(s) (5) 

where P = {US, I(S~ c_ S) & (Is, I -> 3)} is the bag 
(set with possible repetitions) of all substrings of S of 
length 3 or more, C(s) is the set of all corrections of 
the string s, returned by the spell-checking function, 6 
and Emax--an empirically determined constant. The 
division by ]PI makes possible the comparison of E(S) 
for short and long S's alike. 

The E measure takes into account n-gram statistics 
of the language in an indirect manner, through a proce- 
dure that may be interpreted as activation of word units, 
with a subsequent excitation feedback to the letter unit 
level. The amount of excitation depends on the likeli- 
hood of letter groups. The grouping is encoded by letter 
positions relative to each other rather than by absolute 

positions. This approach incorporates the positive fea- 
tures of the interactive activation scheme, such as its 
natural account of word superiority, without suffering 
from its main shortcoming: the dependency on absolute 
positioning of letter units. 

5 P e r f o r m a n c e  

5.1 Evaluation Paradigm 

The evaluation of the system's performance proceeded 
in four stages. The first stage amounted to a feasibility 
study, in which the best possible performance on a pre- 
determined set of word images was sought. In the sec- 
ond stage, the system has been manually trained, using 
the same set of images. In the third stage, the system 
was tested on several image sets, produced by different 
writers. Finally, the influence of some of the system's 
parameters on its performance was estimated. 

Six sets of word images (generated from four different 
word sets: see table 1) were used in this study. Four 
of these were produced by the first author. The remain- 
ing two sets were generated by two other writers. The 
six sets of images are described in table 2. For easy 
reference, they are designated by a capital letter (the 
initial of the writer), subscripted by the number of the 
word set. 

Table L Word sets used in the experiments. Several images of some 
of these sets were produced (see text). The pseudowords in set #3 
were obtained from legal words by substitution of one of the letters. 
All these pseudowords were pronounceable. 

Word Set # 1 2 3 4 

Description 43 words 40 words 40 pseudowords 32 words 

Table 2. Image sets produced by 
the three writers. The set B[ was 
derived from B~ by erasing the lig- 
atures between letters (see text). 

Writer Image Sets 

EDE El, E2, E3, E4 

BEN B~, B~ 

CHE C1 

All words used in the experiments contained between 
three and six letters. The histogram of letter occurrences 
in word set number one (from which image sets El, 
B1, and C1 were generated) appears in figure 16. For 
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Fig. 16 (a) The histogram of letter occurrences in word set number 
one (from which image sets El, B1, and Cl were generated). (b) A 
similar histogram for a randomly chosen set of 1000 words. The two 
histograms are similar. 

comparison, a similar histogram for a randomly chosen 
set of 1000 words is also shown. The images were pro- 
duced by a digitizing tablet [Edelman 1988]. Ruled 
paper and an ordinary ballpoint refill, built into the 
tablet's stylus, were used. The writers were asked to 
write along the rulings. No other constraints on the 
writing style were imposed (see figure 17 for an exam- 
ple of an image set, C1). 

5.2 Evaluation Results 

5.2.1 Feasibility Study. The purpose of the feasibility 
study was to find out the best performance on a fixed 
image set, El, that could he reached with a moderate 
investment of programming effort. Such a study was 
necessary, because the initial definitions of prototype 
characters, as well as the initial versions of character 
experts (see the previous section), were empirical, 
guided by our intuition about the problem. The first 
run of the program on E1 resulted in 77% top-five cor- 
rect rate. 7 This figure has been brought subsequently 
to 95 %, with the best lexical choice being correct in 
100 % of the cases. When tested on E2 and E3, the sys- 

tem achieved an average correct rate of 51% without 
the lexicon. 

5.2.2 Training. We next tested the stability of the sys- 
tem's performance across writers. It was clear that quite 
a few new versions of characters would have to be 
added, mainly because of stylistic variation among the 
writers. Since in its present form the system was incapa- 
ble of automatic learning, it had to be trained manually, 
by parameter adjustment and program rewriting. After 
studying the image sets B1 and C1, the adjustments that 
seemed to be necessary were carried out. The resulting 
system was then repeatedly modified, until its perform- 
ance on the training set E1 reached a level somewhat 
below human performance (see the first line of table 3). 
The main reason to halt at that point was the difficulty 
to achieve further progress by manual training. The 
modification was guided mostly by the feedback from 
the E~ set, although occasionally individual character 
experts were modified using images from B1 and C1. 

5.2.3 Performance Transfer. The system's performance 
was subsequently tested on sets E2, E3, E4, B1, and C1. 
For each test set, proportion of correct interpretations 
in the first 1, 5, and 100 candidates, average position 
of correct interpretation in the outcome list, and propor- 
tion of correct lexieal interpretation were recorded. The 
results are summarized in table 3. No system modifica- 
tion whatsoever was carried out between tests; thus, 
the results indicate the transfer of performance across 
word identity (lines 2 through 4) and across writers 
(lines 5 and 6). 

The system configuration that brought the top-five 
performance on the training set of 56% yielded 37% 
and 35 % average top-five correct rate across words and 
across writers, respectively. This corresponds to a per- 
formance transfer ratio across words of 0.67 and across 
writers--0.04 on the average. In absolute terms, the top- 
five correct rate averaged over the test sets, 36%, is 
about half as good as average human performance 
(72 %; the best and the worst experimental figures were, 
respectively, 59% and 86%. See [Edelman 1988], 
appendix 1). 

5. 3 Exploring Different Parameter Settings 

Several special runs on the image set B 1 w e r e  carried out 
in order to estimate the sensitivity of the results described 
above to various system parameters. The following 
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Dynamic Lisp Listener 1 
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F/g. 17. Word image set Cj. The images are reproduced here at about one fourth the resolution actually used by the system. 

Table 3. System performance summary. It is more informative to con- 
sider the top five outcomes rather than just the best one, as no effort 
has been invested in distinguishing letters that differ but slightly (such 
as n and u, or g and q). As a result, the top choice often differed 
from the correct response merely by a substitution in one of these 
letters. The low figure in line 3, column 4 reflects the performance 
of the lexical module on set E3, which contained only pseudowords. 

Correct 

Correct Correct 1st Avg Position 
Image Correct in in Using of Correct 

Set First Top 5 Top 100 Lexicon in Top 100 

E1 t 30% 56% 93% 81% 13.2 

E2 8% 23% 60% 48% 14.5 

E3 15% 43% 70% 8% 10.1 

E, 22% 41% 56% 50% 4.7 

B1 16% 40% 65% 53% 10.4 

C1 19% 30% 60% 47% 11.4 

~The training set. 

issues were considered: stroke metrics, string metrics, 
the use of ligatures, the depth of heuristic search, and 
the step size in tracing during token extraction. 

5.3.1 Influence of Stroke Metrics. The function that 
measures the goodness of fit between an aligned stroke 
prototype and the input image includes a multiplicative 
emphasis operation. The multiplication factor is greater 
than one for distances that exceed a certain threshold 
and smaller than one for distances below that threshold. 
Normally, a threshold value of w = 5 pixels was used. 
Two other values were tested. A run on the image set 
B~ with w = 4 resulted in a significant deterioration 
in performance, which dropped to 16 %. The average 
position of the correct interpretation in the results list 
improved, however, and reached 1.6 (those strings for 
which the correct interpretation is not found in the top 
100 candidates do not contribute to the average position 
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computation; thus, the average position may look good 
even when the general performance is unacceptable). 
Setting w = 6 brought the performance to 35 %, again 
a deterioration. The default value of w = 5 seems there- 
fore to be locally optimal as far as the correct top-five 
rate is concerned. A smaller value of w would improve 
the correct first rate, at the cost of a decrease in the 
correct top-five rate. This behavior of the system signi- 
fies that closer alignment is necessary before a stricter 
goodness of fit measure can be usefully applied. 

5.3.2 Influence of String Metrics. The heuristic search 
for the best interpretation relies on a measure of string 
goodness that includes two components (see the descrip- 
tion of the evaluation function score~ in the previous 
chapter). The first of these is proportional to the average 
score of the constituent characters and the second--to 
the average index of image contour coverage by the 
string (normally, the weights of the two components 
of scorem were equal). The test of the influence of com- 
ponent weights consisted of two runs. When the relative 
weight of contour coverage was decreased by a factor 
of 5, the top-five correct rate dropped from 40% to 
35 %. An increase of this weight by a factor of 2 resulted 
in a similarly degraded correct rate of 37 %. It may be 
assumed therefore that the weights normally used in 
the tests were (at least locally) optimal. 

5. 3. 3 The Use of Ligatures. The character prototypes 
used by the system are minimal in the sense that they 
include no ligatures in either the leading or the trailing 
position. Thus, even the best interpretation of the image 
of a fully connected string cannot account for its entire 
contour, since it is bound to leave the ligatures out. As 
it happens, the ligatures may constitute a substantial 
portion of the image, serving as a pool of contour frag- 
ments from which spurious letters are constructed. 
These letters in turn give rise to unwanted alternative 
interpretations (see, e.g., figure 14). 

As we have mentioned above, the set of character pro- 
totypes included one that corresponded to a typical 
ligature rather than to any of the 26 characters. To com- 
plement the minimalistic approach to character defini- 
tion, the system could try to account for as much of 
the contour as possible, by explicitly detecting the liga- 
tures. This feature was tested, again on the image set 
BI, resulting in a reduced correct rate of 35 %. This 
result justifies the minimal approach to prototype defi- 
nition: apparently, the diversity of the liguature shapes 
is such that attempting to detect the ligatures explicitly 
harms rather than helps. 

5.3.4 The Depth of Heuristic Search. When the value 
of the depth parameter of the heuristic search (desig- 
nated in the description of algorithm BCS in the pre- 
vious chapter by N) is too small, the system often fails 
to reach the correct interpretation. The default value, 
N = 7500, represents a compromise between considera- 
tions of performance and running time. To find out the 
influence of this value on performance, the system was 
run on B1 with N = 15000. The effect of the twofold 
increase in N was negligible (a 2 % increase in the top- 
five correct rate). Thus, the default value of N seems 
to be satisfactory. 

5. 3.5 Tracing Step Size in Token Extraction. Most of 
the twenty-odd minutes it takes the system to interpret 
an average string are spent in alignment and evaluation 
of candidate stroke instances. This time depends on the 
number of detected tokens (anchor points): the more 
tokens there are, the more anchor-point combinations 
must be tried. In fact, the number of combinations 
grows as n 3 for three-point alignment (see section 2). 
During system training and testing, the step size in trac- 
ing has been equal to 8 pixels (about one tenth the aver- 
age string height). With this step size, the average num- 
ber of detected tokens for a five-letter word was about 
70. To test the possibility of reducing this number, the 
system has been run on image set B1 with step size equal 
to 10 (a 20 % increase). The resulting top-five correct 
rate decreased by a small amount (just 3 %, due to the 
reduced accuracy in anchor-point positioning), while 
the average running time per string dropped from 22 
minutes to 12. This result indicates that better algo- 
rithms for token extraction may reduce the processing 
time significantly without compromising the perform- 
ance of the system. 

5.4 Difficulties of Reading Cursive Script Reassessed 

At the beginning of the article, we suggested that diffi- 
culty of segmentation and variability of individual char- 
acters are the main factors that aggravate the problem 
of interpretation of connected strings. We attempted to 
assess empirically their relative importance and con- 
tribution to the error rate exhibited by the system, as 
follows. 

5. 4.1 Performance on Discrete-Character Strings. First, 
we ran the program on image set B ~, obtained from 
B1 by erasing inter-character ligatures without affecting 
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Fig. 18. An image of a word from the set B~, dismay. The 

character shapes (see figure 18). On this set, the system 
achieved 33 % correct rate for the top interpretation, 
twice the figure for B]. In the top five interpretations the 
correct rate was 47 %, exceeding the corresponding fig- 
ure for B1 by 7 %. The average distance of correct inter- 
pretation from the top diminished from 10.4 to 8.7. Thus, 
disconnecting the characters within strings improved 
the general performance slightly, whereas the correct 
rate for the top interpretation increased by a factor of 
two. The relative stability of the top-five correct rate 
with respect to changing segmentation conditions shows 
that the system is to a certain extent capable of segment- 
ing connected strings (see also the next subsection). 
This capability is an emergent property: there are no 
explicit segmentation rules in the system. On the other 
hand, the sharp increase in the correct-first rate brought 
about by character disconnection indicates that perhaps 
explicit segmentation heuristics [Srihari and Bo~inovi6 
1987; Maier 1986] may be helpful, after all. 

image was obtained by removing the ligatures between the letters. 

5.4.2 Character Confusion Data. Another method of 
assessing the relative importance of correct segmenta- 
tion is to calculate the character error rate directly. A 
sufficiently high character error rate may mask the effect 
of incorrect segmentation and account alone for the 
observed string errors. To investigate this possibility, 
the system recorded two types of character error events 
during the test runs: missed instances and falsely de- 
tected ones. The results were presented in the form of 
confusion matrices. For example, in figure 19 the entry 
in row b, column a signifies that in half of the relevant 
strings an a overlapped the detected b. s The confusion 
matrix thus provides an estimate of the false detection 
rate for various characters. 

Many of the entries in the confusion matrix of figure 
19 are greater than 1. This is due in part to compound 
characters such as w overlapping more than one instance 
of a simple character such as v, and in part to characters 
that include ligatures. These confounding factors must 
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Fig. 19. The confusion table for the image set B 1. The entry in row b, column a signifies, for example, that in half of the relevant strings 
an a overlapped the detected b. The confusion matrix provides an estimate of the false detection rate for various characters. 

be removed to permit a faithful estimate of recognition 
rate for individual characters. Accordingly, the true con- 
fusion matrix has been computed using the set B~ and 
manual segmentation information. A list of segmentation 
points (x coordinates) was provided for each one of the 
43 images of  the set. After detecting the character in- 
stances, the system picked for each segmentation slot 
the best character that wholly resided in it. This char- 
acter was then compared with the true answer and the cor- 
responding entry in the confusion matrix was updated. 

The result appears in figure 20. This matrix is less 
crowded than the previous one. It should be remembered, 
however, that while it reflects truthfully the situation 
in isolated character recognition, the string interpretation 
system must cope with a flood of character instances 
like the one that gave rise to the matrix in figure 19. 

Note the presence in figure 20 of the diagonal entries 
that are absent in figure 19. A diagonal entry equal to 1 

means that the corresponding character has been always 
detected correctly. In every case, the sum of the entries 
along the rows of the matrix is always 1. The 37 mis- 
recognized characters are listed in figure 20 below the 
matrix. In addition, in five cases it happened that a seg- 
mentation slot held no character at all. The estimate 
of  the character recognition rate from this experiment 
was 78.5 % (42 missed characters out of the total of 195). 
The string recognition rate was 35%. I f  this figure is 
compared to the 16% actual correct best rate for B1 (see 
table 3), it may be concluded that segmentation errors 
constitute a considerable proportion of the total made 
by the system. 

5.4.3 Potential Performance. To assess the potential of 
the system, we have modified the above experiment to 
look in each segmentaion slot for any (not just the best) 
instance of the true character. Under this condition, the 
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Fig. 212 The confusion table for image set B;. 

character recognition rate was 93.3 % (13 missed char- 
acters out of 195), and the string recognition rate was 
70%. In comparison, people recognize correctly 96.8% 
of handprinted characters [Neisser and Weene 1960], 
95.6 % of discretized handwriting [Suen 1983] and 
about 72 % of cursive strings (see [Edelman 1988], ap- 
pendix 1). The present system appears therefore to have 
the potential to attain human-like performance in cur- 
sive script recognition. 

5.5 Possible Improvements 

It appears that within the proposed approach a number 
of improvements can be made. All of these pertain to 
implementation details rather than to the principle on 
which the approach is based, namely, the alignment of 
pictorial descriptions. 

5.5.1 Pre-alignment Processing. The present system 
embodies an effort to obtain maximum performance in 
cursive string recognition using the alignment approach. 
Consequently, in its development we have attached sec- 
ondary importance to issues of information extraction 
prior to alignment. Experience with the system indicates 
that this brute-force approach may be unwarranted. In- 
deed, Ullman ([1986], p. 45) lists three stages in the 
recognition process that may precede alignment: selec- 
tion, segmentation and description. In reading, these 
three stages correspond to isolating a word from its 
neighbors, segmenting it into characters or strokes and 
obtaining a suitable description of the regions that will 
be used for matching character prototypes to the image. 
Paying more attention to these early processing stages 
may result in a significant performance improvement. 

Consider for instance the process of detection of 
anchor points (tokens). In the present system, zoning 
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and token extraction take about 20 seconds, which is 
less than 2 % of the total running time per string. They 
employ straightforward algorithms that are fast but not 
always reliable. For example, zoning is done by comput- 
ing the horizontal density histogram of the image (after 
[Bo~inovi6 and Srihari 1985]). This technique fails, for 
example, if the writing baseline is curved, or if most 
of the string's letters contain ascenders (as in the word 
felt). In the current implementation, a failure at this 
stage leads to a completely wrong interpretation, because 
the classification of tokens by zoning is used to prune 
the correspondence search during alignment. Several 
such failures were in fact observed in the test runs. If 
no zoning were used, these failures would not happen 
(at the expense of longer correspondence time). 

Currently, the dependency of the complexity of corre- 
spondence computation on the number of image tokens 
is cubic (see section 2). A better scheme for token 
classification could improve this situation considerably 
[Huttenlocher and Ullman 1987]. For example, sign and 
magnitude of contour curvature may be used to label 
tokens. Ultimately, token labeling could result in a 
linear dependency of correspondence complexity on the 
number of tokens. 

5.5.2 Better Metrics. At present, the degree of fit be- 
tween a transformed model and the image is evaluated 
essentially by computing for each model point the dis- 
tance to its nearest neighbor point in the image and tak- 
ing the maximum over all model points. Some potential 
problems with this approach were discussed above. A 
better degree of fit evaluation function (e.g., one that 
is sensitive to orientation as well as position discrepan- 
cies between model and image contours) can reduce 
the number of false instances and alleviate the interpre- 
tation ambiguity. 

5.5. 3 Post-alignment Adjustment. Experience with the 
present system shows that most, but not all, of the char- 
acter shape variability can be compensated for by the 
affine transform used in the alignment of character pro- 
totypes. The remaining variability seems to be small 
enough to be removed by local methods. In other words, 
an adjustment stage could be inserted after the initial 
alignment. One such local method is Burr's elastic 
matching [Burr 1981, 1983]. In elastic matching, the 
image or the prototype (or both) is modeled as elastic 
membranes that can deform under the influence of dis- 
torting forces. In Burr's work these forces were provided 
by attraction between nearest neighbors in the image 

and the model. According to Burr ([1981], p. 102), 
coarse registration is desired initially, to improve the 
chances that the nearest-neighbor relation captures the 
true correspondence between model and image. Thus, 
alignment followed by elastic adjustment could reduce 
the post-alignment discrepancies, resulting in a smaller 
number of missed character instances. 

6 D i s c u s s i o n  

61 Comparison with Previous Work 

It is hard to compare our results directly with those 
of other researchers, since all previously implemented 
systems depended on lexical knowledge. An indirect 
comparison is possible, if the lexicalized results are 
considered. The lexical module employed by the present 
system works independently of the visual recognition 
module and uses a 30,000-word dictionary. The average 
lexicalized recognition rate for legal words is 50%. This 
may be compared with 77 %, 29 % and 32 % achieved 
by the system of Srihari and Boiinovi6 [1987] for three 
different writers, without retraining and using a small, 
700-word lexicon (when a 7800-word lexicon was used, 
the performance for the first writer dropped to 48 %; 
the other two writers were not tested in that condition). 
Thus, the present system performs better than its prede- 
cessors when using lexical knowledge. In addition, it 
demonstrates a substantial capability to interpret cursive 
script by a purely visual method, without recourse to 
a lexicon. 

6 2 On the Use of Motor Knowledge in Recognition 

The system described here uses alignment by affine 
transformation to remove most of the variability of 
handwritten shapes. Our choice of anchor points for 
alignment is motivated by several empirically deter- 
mined features of handwriting: 

- -  Handwritten trajectories can be approximated by 
polynomial expressions whose coefficients are deter- 
mined by a small number of control points using 
an optimization principle. 

--  The locations of the control points for a given trajec- 
tory can be inferred visually from its shape. 

- -  The six-parameter affine transform can capture the 
variability of stroke shapes across different letters 
produced by the same writer, as welt as across 
writers. 
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Putting motor knowledge to use in recognition was 
first proposed by Halle and Stevens [1962], who called 
it analysis by synthesis (ABS). In analysis by synthesis, 
letters are recognized through their motor programs, 
which are deduced by guessing an initial program and 
iteratively updating it, using the difference between 
the synthesized shape and the actual one as feedback 
[Yoshida and Eden 1973]. Thus, ABS actively uses 
motor knowledge during recognition. In contrast, our 
approach uses motor knowledge indirectly, in the ex- 
traction and use of the anchor points. Psychological 
fmdings (reviewed in [Edelman 1988]) support our ap- 
proach by indicating that while people may use motor 
knowledge in reading, they do not seem to do so by 
mentally reproducing the process of writing. 

Finally, we mention the possibility that in humans 
a common representation of contours is involved in 
planning ann movements and in processing visual infor- 
mation in tasks such as reading cursive script and 
detecting salient curves in images• Computationally, 
both kinds of processes can be described in terms of 
optimization [Edelman and Flash 1987; Sha'ashua and 
Ullman 1988]. The co-occurrence of certain kinds of 
acquired dysgraphia and dyslexia (see [Edelman 1988] 
for a discussion) may also be interpreted as supporting 
this conjecture. 
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N o ~ s  

1Our restdt may be compared to that of Duvernoy and Charraut 
]1979], who found that the first five factors of a Karhunen-Loewe 
expansion suffice to capture the variation in the shape of the letter 
a illustrated in figure 2. 

2Stentiford [1985] reported a character recognition system that uses 
316 features. 

3The relation above is not invariant under affine transformations, 
a property that should theoretically preclude its use in this context. 
The phenomenon of perceptual upright (see [Edelrnan 1988] for a 
discussion) indicates, however, that people too use such relations in 
character recognition. 

4The use of the token coverage here partially compensates for the 
asymmetry of the distance function at the stroke level. The lost sym- 
metry can be reintroduced at this stage, because the problem of inter- 
ference due to the neighboring letters is nonexistent at the string level. 

5Obviously, "correct" here can mean only "being in an agreement 
with the majority of opinions" This notion of correctness by conven- 
tion is even more important when it is known that nonsense strings 
are allowed. For example, in figure 14 the writer may well have in- 
tended to write adeyst, in which case the system's first choice inter- 
pretation would be correct. 

6The original spell-checking function returns for a given string all 
legal words that can be obtained from it by a deletion, insertion or 
substitution of a single letter, or by transposition of two adjacent letters. 
It has been modified to disallow letter transposition, which is a com- 
mon typing error that is not relevant to the present context. 

7In the present system, no effort has been invested in distinguishing 
between highly similar letters (e.g., e and c, or g and q). Consequently, 
the top choice often differs from the correct interpretation by a sub- 
stitution of one of these letters by its look-alike, making the considera- 
tion of the top five returned interpretations more informative than 
just the best one. 

8Note that the confusion relation between characters is asymmetric. 
A string is defined as relevant for the purpose of computing the con- 
fusion between cl and ca (that is, false detection of cl in c2) if it con- 
tains c2 but not cl. The last requirement is obligatory m cursive strings 
because of position indeterminacy of character instances: a rightly 
detected cl may accidentally overlap c2, distorting the confusion 
estimate. This phenomenon does not exist if the characters are pre- 
sented one at a time (e.g., [Neisser and Weene 1960; Suen i983]). 


