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Abstract A neuromotor model of handwritten stroke
generation, in which stroke velocities are expressed as a
Fourier-style decomposition of oscillatory neural activities,
is presented. The neural network architecture consists of an
input or stroke-selection layer, an oscillatory layer, and the
output layer where stroke velocities are estimated. A separate
timing network prepares the network’s initial state, which is
crucial for accurate stroke generation. Neurobiological sig-
nificance of this preparation, and a possible mapping of our
architecture onto human motor system is suggested.
Interaction between timing network and oscillatory layer
closely resembles interaction between Basal Ganglia and
Supplementary Motor Area in the brain.

Keywords Handwriting models · Oscillatory neural
networks

1 Introduction

Handwriting is a learned, highly practiced human motor skill
that involves control and coordination of several subsystems
in our motor system. Production of handwriting requires a
hierarchically organized flow of information undergoing a
series of transformations [1,2]. The writer starts with the
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intention to write a message (semantic level), which is
transformed into words (lexical and syntactical level). When
the individual letters (graphemes) are known, the writer
selects specific letter shape variants (allographs). The selec-
tion is done according to the formal allograph selection syn-
tax, individual preference or just random choice [3]. Below
this level, the allographs are transformed into movement pat-
terns, which is the object of focus of the present work.

Models of handwriting We now briefly review some of the
key models of handwriting, particularly emphasizing those
that inspired development of the proposed handwriting
model. Two general methodologies of handwriting model-
ing seem to have been adopted by modelers in the past. The
first one, dubbed the “bottom-up” approach, refers to com-
putational models which attempt to empirically reproduce
features of human writing such as velocity and acceleration
profiles etc; they do not claim any fidelity to neuromotor
processes underlying handwriting processes [4,6,7]. The
second methodology of handwriting modeling focuses on
psychologically descriptive models [8,9]. These “top-down”
models usually summarize many issues such as, motor
learning, movement memory, planning and sequencing,
co-articulation and task complexity of strokes, etc. The pres-
ent work is closer to the “top-down” category.

Hollerbach’s oscillation theory of handwriting An impor-
tant class of handwriting models is centered on the philoso-
phy that stroke data can be resolved into certain oscillatory
components by a Fourier-style decomposition. The approach
was pioneered by Hollerbach [6] who proposed an insightful
model of handwriting generation where the hand-pen system
is represented by two orthogonal pairs of opposing springs
acting on an inertial load. It was pointed out that the oscilla-
tory natural motions of this system resemble real handwriting
segments. Anatomical justification of such a simple system
has also been explored [6].
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Schomaker’s model Schomaker [3] proposed a neural
network model in which a network of oscillators outputs hor-
izontal and vertical pen motion. Network training, performed
using a variation of delta-rule, led to uncertain results: perfor-
mance depended critically on network parameters. In spite
of the shortcomings of the performance of the model, Scho-
maker’s work clearly elucidates certain issues related to any
possible handwriting model. Accordingly, the handwriting
process—and hence its model—must have four basic events
or phases both in chaining and shaping of handwriting [3]:

1. System configuration This stage is variously known as
motor programming, coordinative structure gearing,
preparation, planning, schema build-up etc.

2. Start of pattern After configuring the system for the task
at hand, there must be a signal releasing the pattern at
the right time.

3. Execution of Pattern The duration of this phase and
actions that are performed depend on parameters such
as amount of time elapsed, the distance from a spatial
target position or force target value, or even the number
of motor segments produced.

4. End of pattern This stage deals with the termination of
the movement.

Kalveram’s model More recently, Kalveram [7] proposed a
model in which stroke data is resolved to its Fourier com-
ponents. This simple mathematical operation is described
using the metaphor of ‘central target pattern generator’. The
model, in our view, has several drawbacks. Since a hand-
written stroke — for that matter any real motor sequence
— lives for a finite duration, the dynamics of a system that
generates it must be appropriately initiated and terminated.
Fourier decomposition assumes a set of oscillators whose
initial state is accurately prepared with precise phase-rela-
tionships among the oscillators. In a large network of oscil-
lators this preparation of the initial state can be a challenge
in itself, in addition to accurate stroke learning/acquisition
and production. These issues are not addressed in [7] which
assumes a prepared initial state. Another drawback is that in
[7] a separate network has to be trained for every stroke.

Plamondon’s model Plamondon [4] presented a bottom-up
model using “delta-lognormal synergies”. The name refers
to authors’ estimation of the velocity of a muscle synergy as
a Gaussian function of the movement parameters that var-
ies logarithmically with time. The model therefore produces
bell-shaped velocity profiles similar to those seen in simple
hand movements. They also demonstrated the “Two-Thirds
Power Law” relation between angular velocity and curvature
for a limited range of elliptical movements for which the law
accurately describes human writing.

AVITE WRITE model Adaptive VITEWRITE (AVITE)
model [5] is a neural network handwriting learning and

generation system that brings together the mechanisms from
Bullock’s [9] cortical VITE (Vector Integration to Endpoint)
and VITEWRITE trajectory generation models, and the
cerebellar spectral timing model of Fiala et al [10]. This
synthesis creates a single system capable of both reactive
movements as well as memory based movements based on
previous cerebellar movement learning and subsequent read
out from long-term memory. AVITEWRITE model success-
fully explains the psychophysical and neurobiological data
about how synchronous multi-joint reaching trajectories
could be generated at variable speeds. The AVITEWRITE
model is used to simulate key psychophysical and neural
data about learning to make curved movements, including
reduction in writing time as learning progresses; generation
of unimodal, bell shaped velocity profiles for each movement
synergy; size and scaling with preservation of the letter shape
and shapes of velocity profiles; an inverse relation between
curvature and tangential velocity; and two-thirds power law
relation between angular velocity and curvature. Though the
model successfully explains several features of handwrit-
ing, it may be noted that it does not belong to the family
of “oscillatory” models of handwriting. We will argue in this
paper that investigating handwriting in terms of its oscillatory
components throws up certain important aspects of hand-
writing—or perhaps all voluntary control—like preparation,
motor delay etc. The present model addresses these issues.

A key contribution of the present model of handwriting is
its interpretation of motor preparation as the preparation of
the initial state of the oscillatory layer. The model presents
a network realization of oscillation theory of handwriting
[6], and, unlike Schomaker’s model [3], the proposed model
exhibits reliable training performance.

The outline of the paper is as follows. In Sect. 2, fea-
tures of the present model are discussed. A mechanism for
preparing the initial state of the network, training, and valida-
tion procedures are described. In Sect. 3, simulation results
of learning lower-case, single-stroke English characters are
presented. The need for appropriately preparing the network
state raises new issues, which are discussed from a biological
perspective in the final section. Proposed extensions of the
model are also discussed in the same section.

2 The model

The essence of our approach is to produce a stable rhythm
in a network of oscillators, and resolve the stroke output in a
Fourier-like fashion, in terms of the oscillatory activities of
the network of oscillators. The architecture of our network
that learns to generate strokes has 3 layers: 1. input layer, 2.
oscillatory layer, and 3. output layer (Fig. 1). Each node in the
input layer represents a separate stroke. Under resting condi-
tions, all inputs are in a ‘low’ (0) state. To generate a stroke,
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An oscillatory neuromotor model of handwriting generation 71

Fig. 1 Architecture of oscillatory network. The stroke selection
vector, ξ , is presented at the input layer. Output of the network are pen
velocities, Ux (t) and Uy(t). The timing network coordinates events in
the network. It gates the input and output layers using IGP and OGP
signals, respectively. It prepares the oscillatory layer using PP signal.
See text for details

the corresponding input line is taken to a ‘high’ (1) state,
and held in that state throughout execution of the stroke. The
oscillatory layer has several sublayers. All the neurons in a
sublayer have the same oscillation frequency. In each sublay-
er, neurons are connected in a ring topology. Our model dif-
fers from the model of Schomaker [3] in this respect: lateral
connections are absent in Schomaker’s model.1 Output layer
has two outputs representing horizontal and vertical veloci-
ties (Ux and Uy) of the pen tip. Each of the outputs is con-
nected to all the oscillators in the oscillator layer. The timing
network controls the events in the above 3-layered network
(Fig. 1).

Single oscillator model Dynamics of a single neural oscil-
lator used in the oscillatory layer of our network are given
as:

τx
dx

dt
= −x + V − s + I (1)

V = tanh(λx) (2)

τs
ds

dt
= −s + V (3)

where ‘V ’ denotes the oscillatory output, and ‘x’ and ‘s’ are
auxiliary, internal variables of the neuron, respectively. Note
that while ‘x’ has excitatory influence on ‘s’, ‘s’ in turn inhib-
its ‘x’. Such excitatory-inhibitory pair is a standard recipe for
producing oscillations.

Analysis of Eqs. (1), (2) and (3) shows that, for I = 0,
s = 0, and λ >> 1, V in Eqs. (1) and (2) has two stable
states, V ≈ ±1. Correspondingly x also has two stable states,
a positive and a negative value. Moreover, if x is at negative
(positive) stable state, a sufficiently large negative (positive)

1 This might be a reason behind uncertain results of this model, since
lateral connections are essential to stabilize the rhythm in the oscillatory
layer.

‘s’ in Eq. (1) flips ‘x’ to its positive (negative) stable state.
In Eq. (3), ‘s’ simply follows ‘x’ with a delay. Therefore, a
persistent value of x induces a change in ‘s’ such that ‘x’ is
toggled periodically. Oscillations are produced by the above
system (see appendix for a formal proof), but only within cer-
tain limits of the external input I (Fig. 2). Beyond those limits
the neuron has fixed point behavior. Note also Eqs. (1), (2)
and (3) have an unstable fixed point at origin (x = 0, s = 0).
The average output of the neuron as a function of ‘I ’ has a
sigmoidal form (Fig. 2). τx and τs are the time constants of
Eqs. (1) and (3). The period of oscillation of the oscillator can
be varied trivially by scaling these two time constants appro-
priately. This method is used to vary the frequency of various
sublayers in the oscillatory layer in Sect. 3, experiment no. 1.

Sublayer model Each sublayer consists of a network of
oscillators [see Eqs. (6), (7) and (8) below] connected in a
ring topology. By a proper choice of parameters, such a net-
work of oscillators can produce a limit cycle, with specific
phase relationships among individual oscillators. Odd num-
ber of oscillators in ring (sublayer) is preferred for mode
locking as even number of oscillators may lead to loss of
rhythm stability i.e., “oscillator death.”[12]. Choice of such
special architectures is imperative since it is known that a gen-
eral network of nonlinear oscillators is intrinsically chaotic
[11]. A sublayer with ring topology, odd number of oscilla-
tors, where each oscillator is coupled with one (right or left
only) neighbor with sufficiently strong (negative) coupling
strength exhibits mode locking, where each oscillator pro-
duces a periodic output and adjacent oscillators differ by a
phase difference of �φ = π + 2π /m (m is the number of
oscillators) [12].

Preparing the network state This important stage is
described variously in literature as system configuration,
motor programming, coordinative structure gearing, prepara-
tion, planning, schema build-up etc [3]. We will use the term
preparation in this paper. Although the problem of motor
preparation has several dimensions, in context of our net-
work model we give it a specific meaning. Since the network
is a dynamic system, it must be brought to a “standard state”,
V s , if possible, from a random, unspecified state, before it
can produce a stroke. This preparation is achieved by giving
a preparatory pulse (PP) to a specific neuron (chosen to be
the first neuron in every sublayer without loss of generality)
and waiting for a specific delay interval. The delay must be
long enough to allow the oscillatory layer to approach the
limit cycle sufficiently closely; beyond this minimum value
the delay must be precisely chosen such that the oscillatory
layer state is at a predetermined phase in the limit cycle.
We refer to this state as the “standard state”, V s , henceforth.
Since the oscillatory layer has a limit cycle attractor, once the
steady state is reached, the oscillatory layer, in free-running
conditions (no external input), periodically visits every point
on the limit cycle. The standard state is chosen to be a point
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Fig. 2 a Schematic depicting the dynamics of a single neural
oscillator. Variable ‘x’ excites ‘s’, which in turn inhibits ‘x’. ‘x’ passed
through a sigmoid yields ‘V ’. b Dynamic flow of the system described
by Eqs. (1), (2), and (3) indicating presence of a limit cycle attrac-
tor. c Response of single neuron for various values of external input

I (= 1.00, 0.22, 0.00, −0.22, −1.00, respectively from top to bottom).
d Average output response (Va) of a single neuron as a function of I .
The average is computed with simulations of oscillator with 100 cycles
(= 100 × 120/70s) and 100 trials for each I with random initial values
for ‘x’ and ‘s’ in the range [−1 1]. (τx = τy = 0.24 s, λ = 3)

on the limit cycle. We define the standard state, V s , as the
state reached by the oscillatory layer at the end of a specific
preparatory delay (time elapsed after the PP), � (=600 time
units), and with a specific PP of duration, τ , (=20 time units)
and amplitude, A (=20).

The timing network The timing network controls the tim-
ing of various events in the network (Fig. 3). The command to

A
PP

IGP

A B C D

Ti

Events

1

0

1

0OGP

Fig. 3 The timing signals (PP preparatory pulse, IGP input gate pulse,
OGP output gate pulse), ‘A’ is the amplitude of preparatory pulse, τ is
the duration of PP, Ti is the duration of OGP for i th stroke, which is
presently the same, T f , for all strokes. See text for a summary of events
A, B, C and D

execute a stroke corresponding to the j th neuron in the input
layer, is received by the timing network at t = 0. At the same
time the j th input line in the input layer is set to a ‘high’ value.
Immediately (at t = 0+) the timing network sends PPs (of
duration τ ) to all the sublayers in the oscillatory layer. After
a delay, �, (i.e., t = τ + �) the timing network sends an
enabling signal, the input gating pulse (IGP) to the input
layer so that the input signal, transformed by a weight stage,
reaches the oscillatory layer. An output gate pulse (OGP) is
also sent to the output layer enabling the output. That is, dur-
ing this interval (t = [0, τ+�]) the oscillatory layer does not
know about the change in the state of the input lines. Imme-
diately after (t > τ + �), the OGP is given to the output
layer, and the stroke velocity information begins streaming
out of the output layer. The output gating duration, Ti , gen-
erally speaking, must be specific to the stroke that is being
produced. However we consider a simpler situation where
all strokes are of equal duration, which is presently equal to
the time period, T f , of the slowest oscillators (those of first
sublayer) in the oscillatory layer.
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Summary of events A, B, C, and D in Fig. 3:

A The input is fed to the network (also to timing network).
The timing network injects PP for the duration (τ ), to
the First oscillator in every sublayer. Input to the oscil-
latory network is disabled during this interval since the
IGP is low.

B This event is the end of PP and start of preparatory delay
for duration �. IGP and OGP continue to be low.

C Start of IGP and OGP with duration Ti , which enable the
input and output. The network starts generating velocity
information.

D The end of IGP and OGP, network output is again dis-
abled, velocities become 0, and the pen tip stops.

Network response Pen-tip velocities (Ux and Uy) estimated
by the network are expressed as weighted sum of the outputs
of neurons in the oscillatory layer:

Ux (t) =
Ns∑

k=1

Nk∑

i=1

W x
ik Vik(t) (4)

Uy(t) =
Ns∑

k=1

Nk∑

i=1

W y
ik Vik(t) (5)

where, Ns is the number of sublayers in the oscillatory layer
and Nk is the number of oscillators in kth sublayer, W x

ik and
W y

ik are connections from i th oscillator in kth sublayer to
output nodes Ux and Uy , respectively. Output, Vik , of the i th
oscillator in the kth sublayer is given by:

τx
dxik

dt
= −xik +

∑
W lat

irk Vrk − sik + I net
ik (6)

Vik = tanh(λxik) (7)

τs
dsik

dt
= −sik + Vik (8)

where, xik is the state of i th neuron in kth sublayer, sik is the
auxiliary internal variable of the i th oscillator in the kth sub-
layer, W lat

irk is the lateral connection from r th oscillator to i th
oscillator in kth sublayer. As described earlier each sublayer
is a ring in which oscillators are connected in a unidirectional
fashion with negative coupling strengths as follows:

W lat
irk = ν; if (r = i + 1), or (r = Nk and i = 1)

= 0, otherwise. (9)

In the simulations of the following section we take ν = −0.5.
I net
ik is the net input to i th oscillator in the kth sublayer is

given by

I net
ik =

∑

l

W 1
likξl (10)

where, ξl is lth input in input vector ξ = {ξ1, ξ2, ξ3 . . . ξl . . .

ξn,−1} and W 1
lik is the weight connecting lth input node and

i th oscillator in kth sublayer. The last component of ξ,−1,
is the bias input to the oscillatory layer.

Preparatory pulse (PP) is given as external input, I net
ik , in

Eq. (6). PP is a rectangular pulse of amplitude, A, and dura-
tion, τ , given to the first neuron in each sublayer.

Training Since the time-averaged output of the oscillatory
neuron varies in a sigmoid form as a function of external input
(see Fig. 2) backpropagation (BP) algorithm may be used for
training [13]. Backpropagation with (BP momentum) and
without momentum (plain BP) are applied [13]. BP algorithm
is normally used to train a multi-layered perceptron model to
map static input/output vector pairs. In the present case, the
oscillatory network is trained to produce stroke velocities as
follows. To train the network on lth stroke, ξl , the lth input
component in input vector ξ = {ξ1, ξ2, ξ3 . . . ξl . . . ξn,−1},
is set to 1, and all other input components are set to 0. The cor-
responding target output is a set of stroke velocities, Vx (t) and
Vy(t). Note that the oscillatory layer is prepared, as described
earlier, and brought close to the standard state, before train-
ing every stroke. Since time is discretized, when the network
is trained to produce a stroke, it is actually trained to map the
following sequence of input/output pairs:

ξ(tm) → (Vx (tm), Vy(tm))

where ξ(tm) = ξ , (input is constant throughout the stroke)
and tm is the mth instant.

Only the first and second stage weights are trained; the lat-
eral weights in the oscillatory layer are held constant. Weight
update equations are as in [13]. Comparison of training error
corresponding to learning algorithms Plain BP and BP with
momentum is shown in Fig. 4.

Calculation of mean error The mean error shown in the
Fig. 4 is calculated using the formula,

E =
NS∑

p

NL∑

q

{
(V pq

x − U pq
x )2 + (V pq

y − U pq
y )2

}
(11)

Fig. 4 Comparison of training error corresponding to learning
algorithms Plain BP and BP with momentum. The mean error for “BP
with momentum” converges faster than plain BP learning mechanism.
An epoch means a single presentation of all strokes
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where, V pq
x and U pq

x are the qth points in the desired and
actual x-velocities of the pth stroke respectively. Similarly
subscript ‘y’ indicates y-velocity. E is the average recon-
struction error in stroke velocity, NS is the number of strokes
and NL is the number of points in velocity profile of a stroke,
which is the same for all strokes.

3 Results

Lower case English alphabets are collected using a stylus
(electronic pen) connected to a computer. These strokes are
represented by pen tip coordinates, x(t) and y(t), along x-
direction, and y-direction, respectively. The sampling fre-
quency of the device is approximately 70 Hz and hence the
sampling time (referred as ’time unit’ in the paper) is equal
to 1/70 s. The collected strokes are nearly of the same length;
points towards the end are dropped to make them all equally
long (120 points per stroke). The duration (T ) of each stroke
is therefore 120× (1/70) = 1.7143 s. These strokes are used
to train the oscillator neural network model of handwriting
generation. The frequency of sublayer with lowest frequency
of oscillations is set to f = 1/T . In the following simula-
tion experiments, the effect of various network parameters on
training performance is studied. Training is performed using
BP with momentum. Learning rates for the first and second
stage weights are 0.000005, and 0.0001, and the momentum
factor is 0.7.

3.1 Experiment no. 1

(i) In this experiment, the oscillatory layer is designed with
n = 10 sublayers with intrinsic frequencies of the oscillators
taken as {n × f : n = 1–10}, where f = 1/T and T is the
(common) duration of strokes. The number of oscillators per
sublayer is kept constant and is equal to 25.

The results of training of the above network show that
the contribution of weights corresponding to oscillators with
higher frequencies is not significant (see Fig. 5b); and the
reconstructed strokes have a high-frequency ‘tremor-like’
distortion (see strokes in B of Fig. 5a). In order to eliminate
this high-frequency distortion, we consider the following net-
work modification.

(ii) In this simulation the oscillatory layer has five sub-
layers, and each sublayer has 25 oscillators. The oscillators
are assigned frequencies limited to the band � f = [f, 3f],
where the frequency of any oscillator in the kth sublayer is
given as f k = f + � f × (k − 1)/(Ns − 1), and Ns is the
number of sublayers in the oscillatory layer. On testing, it is
observed that reconstructed strokes have substantially lesser
high-frequency distortion (see strokes of row B in Fig. 6a)
than those of row C in Fig. 5b.

Fig. 5 a Original and reconstructed strokes illustrating effect of har-
monics in the oscillator layer A Original strokes, B Reproduced with
harmonics, C Reproduced without harmonics b Average magnitude of
weights at the end of training; Number of sublayers = 10; Frequencies =
{ f, 2 f, 3 f, 4 f, 5 f, 6 f, 7 f, 8 f, 9 f, 10 f }; Number of units per subnet =
25. ωx

k and ω
y
k are mean of absolute values of weights connecting each

sublayer to output nodes, Ux , Uy (i.e., ωx
k =

Nk∑
i

|wx
ik |

Nk
and ω

y
k =

Nk∑
i

|wy
ik |

Nk
),

where wx
ikandw

y
ik are the weights connected from i th oscillator in kth

sublayer to Ux andUy node in the output layer, respectively

Fig. 6 a Reconstructed strokes with varying number of sublayers A
Original strokes, B five sublayers, C three sublayers, D one sublayer b
Mean of reconstruction error versus Number of sublayers

3.2 Experiment no. 2

In this experiment, the number of sublayers is varied from 6
to 1 and the number of oscillators per sublayer is kept con-
stant (=25). The frequencies of the oscillators are limited to
band � f (as discussed in experiment no. 1). The network
is trained on 10 strokes (see Fig. 6a). It is observed that as
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Fig. 7 Reconstruction of the
stroke ‘a’ by the oscillatory
network. A network with six
sublayers and 25 oscillators per
sublayer is trained with strokes
shown in Fig. 5a. Stroke ‘a’ on
the left side corresponds to the
original stroke right side
corresponds to reconstruction.
The velocities profiles of
original stroke and
reconstructed stroke are shown
along with the profile of
dynamics of oscillator network

the number of sublayers increases, the mean reconstruction
error decreases (see Fig. 6b).

The reconstruction of the stroke ‘a’ by the oscillatory net-
work with six sublayers, with 25 oscillators in each sublayer
is shown in Fig. 7. Frequencies of various sublayers are con-
fined to the band [ f, 3 f ] as described above.

3.3 Experiment no. 3

Significance of post-preparatory delay (PPD, �): After the
preparatory pulse (PP) is given to the oscillatory layer, the
layer is allowed to run freely for a post-preparatory delay
(PPD) period (�) before the input is presented (see Fig. 8).
How does the performance of the network depend on �?
Does the performance error decrease gradually with increas-
ing PPD since the network gets more time to settle? Simula-
tions conducted to answer this question show that the quality
of stroke generation depends on PPD in non-intuitive ways.
For effective preparation, the timing network should allow
enough delay to allow the oscillator layer to settle to a ‘stan-
dard state’. The following studies illustrate the implications
of such a delay.

From Fig. 8 it is clear that error in reproduction does not
vary monotonically with PPD, but acquires locally minimal
values if the stroke onset occurs at discrete, and nearly peri-
odic intervals after the preparation. This is because the state
of the oscillatory layer (almost) periodically approaches the
‘standard state’ in its circling approach to its final limit cycle
attractor (see Fig. 9). The network is originally trained using
a PPD of 600. Reproduction of strokes is legible at PPD
values of 240, 360, 480, etc., even though 600 is the PPD
value used during training. Therefore, for faster stroke exe-
cution, the network may not really need to wait for long peri-
ods: what matters is the precise delay after the preparatory
pulse. This experiment inspires some clear predictions on
human handwriting, or more generally, perhaps on all volun-
tary movements. The onset of handwriting probably always
occurs only at characteristic, discrete intervals after the com-
mand for execution is given. Further, one might surmise that

Fig. 8 Reconstruction error and reconstructed strokes with various
PPDs. a Strokes reconstructed with delays mentioned at the top of the
strokes, b Reconstruction error as a function of PPD. c The deviation
from the standard state with delay. Note that the error is not a monotonic
function of PPD. Error reaches small values at periodic values of delay
(PPD)

handwriting movements forcibly constrained to commence
at other instants should manifest larger errors.

3.4 Experiment no. 4

Origins of motor variability: One of the most commonly seen
features in human movement is motor variability. Motor con-
trol researchers view it as a window into the central orga-
nization of the system that produces voluntary movements
[14]. One of the obvious origins of motor variability is motor
redundancy. Motor variability naturally emerges in the
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Fig. 9 Schematic depicting the manner in which oscillatory layer
approaches the limit cycle. The state of the oscillatory layer, V (t), in
its circling approach to the limit cycle, (nearly) periodically passes by
the standard state. Stroke onset at those points produces locally optimal
reconstruction

present model. We now describe the various sources of motor
variability in the model.

(i) Variability due to variation of PPD in motor prepara-
tion. Two cases arise:
(A) PPD is an integral multiple of fundamental

period, T (=120): locally optimal reconstruction
is obtained for such values of PPD, which corre-
spond to the minima of the error curve in Fig. 8,
though the exact form of reconstruction varies
with the precise value of PPD (Fig. 8).

(B) PPD is not an integral multiple of fundamen-
tal period: reconstruction error increases drasti-
cally with increased deviation from the precise
discrete values of PPD (Fig. 10).

(ii) Variability due to random initial state also introduces
variability in the stroke produced (Fig. 11).

The network starts from a random state before preparation;
preparation ensures that the initial variability in the network
state, just before stroke onset, is suppressed. Therefore vari-
ability in stroke output due to variability in initial state is not
as significant as variability due to PPD (Fig. 11).

3.5 Experiment no. 5

Generating a stroke sequence: Natural handwriting involves
a smooth, flowing execution of multiple strokes in a desired
sequence. So far we have only discussed the execution of sin-
gle strokes. Can the model be extended to execute a stroke
sequence? How are timing events coordinated when multi-
ple strokes are executed in a sequence? Does the network

Fig. 10 Variation of reconstruction error with PPD in the
neighborhood of a delay at which minimum error is obtained

Fig. 11 Variability due to random initial state

have to be prepared afresh after every stroke? Two options
immediately suggest themselves: (1) to prepare the network
after every stroke, or, (2) generate multiple strokes with a
single preparation before the first stroke. The main issues in
the generation of a stroke sequence are: (1) the total time
of execution should be small (inter-stroke delays should be
minimal), and (2) the generated stroke sequence should be
robust and accurate.

Before describing the methods evolved to address the
above issues we describe a notation—we name it the Event
Chain notation— that simplifies description of the following
experiments. Any handwriting sample consists of a sequence
of events, some visible (e.g., a stroke), and some invisible
(preparatory processes before stroke execution). The Event
Chain notation describes the sequence of events in a conve-
nient fashion. An event chain is a sequence of events, like,
for example:

My_event_chain = [<event 1>, <event 2>, . . . <event
n>]

Description of each event has multiple fields, as, for exam-
ple,

My_event = <event_descriptor, duration, param1,
param2, …>
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In each event, the first field is a textual description of the
event, the second denotes event duration, and the subsequent
fields are optional, representing other parameters that char-
acterize the event. Thus Event Chain notation for a sample
sequence is shown below:

My_event_chain = [<Preparatory Pulse, 20, 20>,

<Preparatory Delay, 600>,<Stroke‘e’, 120>,<Prepara-
tory Pulse, 20, 20>, <Preparatory Delay, 600>,<Stroke‘l’,
120>].
Explanation of events:

<Preparatory Pulse, 20, 20>: A preparatory pulse of
duration =20, and amplitude =20

<Preparatory Delay, 600>: Preparatory Delay of dura-
tion 600

<Stroke‘e’, 120>: Execution of stroke ‘e’ of duration 120
(The two subsequent events are as described above.)
<Stroke‘l’, 120>: Execution of stroke ‘l’ of duration 120
Thus the above event chain describes an ‘el’ stroke

sequence executed with full preparation before every stroke.
With this notation in place, we now proceed to describe devel-
opment of methods for executing a sequence of strokes.

(a) Stroke sequence production with multiple preparations
According to the procedure for stroke generation
described in Sect. 2, the network has to be prepared
before the execution of every stroke. Thus production
of a stroke sequence by this method incurs a long prep-
aration before every stroke. The Event Chain descrip-
tion for the stroke sequence ‘e-l-l-e’ produced by this
method is as follows:

Stroke_Sequence_elle = [<Preparatory Pulse, 20, 20>,

<Preparatory Delay, 600>,<Stroke‘e’, 120>,<Prepara-
tory Pulse, 20, 20>,<Preparatory Delay, 600>,<Stroke‘l’,
120>,<Preparatory Pulse, 20, 20>,<Preparatory Delay,
600>,<Stroke‘l’, 120>,<Preparatory Pulse, 20, 20>,

<Preparatory Delay, 600>,<Stroke‘e’, 120>].
The inter–stroke delay (duration of preparatory pulse +

post-preparatory delay i.e., = τp + � = 620) for stroke pro-
duction by this strategy is much longer than the duration
of stroke production (T = 120) itself. The quality of the
stroke sequence ‘elle’ generated with this method (Fig. 12a)
is robust because the network is fully prepared before every
stroke. This is because the network approaches the standard
state before execution of every stroke (Fig. 12c). However it
takes 2,960 (= (620 + 120) × 4) time units to execute these
strokes instead of the ideal 480 (= 120 × 4) time units. By
way of reducing total time for stroke production, let us con-
sider stroke production without preparation between strokes.

In this method there is no preparation between strokes.
Event chain description of the ‘elle’ sequence produced by
this method is:

Stroke_Sequence_elle = [<Preparatory Pulse, 20, 20>,

<Preparatory Delay, 600>,<Stroke‘e’, 120>,<Stroke‘l’,
120>,<Stroke‘l’, 120>,<Stroke‘e’, 120>].

Although the sequence now takes only 1,100 time units,
production quality after the first stroke is poor (Fig. 12b). In
this case the network approached the standard state before
the first stroke. However, its distance from the standard state
at the onset of subsequent strokes continued to increase
(Fig. 12d).

Since the network has always been trained such that the
oscillatory layer is in the standard state at the onset of every
stroke, it is only natural that performance is impaired when
the initial state is different from the standard state. How do
we ensure that the system returns to the standard state before
every stroke with a short inter-stroke delay (preferably much
less than stroke duration)? Our present method of preparation
involves giving an initial pulse and waiting for the system to
arrive at the standard state. Can this waiting be cut short by
driving the system to the standard state within a short inter-
val?

Active preparation We now present an alternate method
of preparation, viz., active preparation (AP), by which the
oscillatory layer is driven to the standard state from an arbi-
trary initial state. Eqations (6), (7) and (8) are modified as
follows for incorporating AP:

τx
dxik

dt
=−xik +

∑
W lat

irk Vrk −sik + I net
ik +γ (V S

ik − Vik)

(12)

Vik = tanh(λxik) (13)

τs
dsik

dt
= −sik + Vik (14)

Note the extra term,γ (V S
ik − Vik), the drive term, which is

the only difference between Eqs. (6), (7), (8) and Eqs. (12),
(13) and (14) above. Equations (13) and (14) which are iden-
tical to Eqs. (7) and (8) are simply reproduced here for clar-
ity. In this method, the state of the oscillatory layer is driven
towards the standard state, (V s), through some sort of propor-
tional control. The drive factor, γ , is reset to zero (no drive)
during stroke generation, but set to a finite value in the inter-
stroke interval, during which the network is actively prepared
for the subsequent stroke. AP can be performed before the
first stroke also, thereby reducing the prolonged preparatory
delay. The Event Chain notation for a single event corre-
sponding to AP is:

< Active Preparation, d, γ >

where d is AP duration (APD), and γ is drive factor of
Eq. (12).

Network Training using AP Using AP mechanism, we
now train a network on six letters (strokes) ‘a’, ‘c’, ‘d’, ‘h’,
‘r’, ‘s’. The oscillatory layer in this case has four sublayers,
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Fig. 12 a The ‘e-l-l-e’
sequence produced with full
preparation before every stroke.
b The ‘e-l-l-e’ sequence
produced with full preparation
before the first stroke only. Note
that the stroke quality quickly
degenerates over subsequent
strokes. c, d Variation of
Euclidean distance between the
state of the oscillatory layer and
the standard state , i.e.,
||V − V s ||. In c, since full
preparation is made before every
stroke, the system reaches
standard state before every
stroke. In d, since the system is
fully prepared only once, before
the first stroke, first stroke is
robustly generated; quality of
reconstruction of subsequent
strokes quickly degenerates

each sublayer having 25 oscillators. Strokes are presented as
sequences of 3. The following sequences are used for train-
ing: d–a–c, c–a–d, h–a–d, a–r–c, h–a–s, c–a–r. The network is
trained for 5,000 epochs. Learning rates for the first and sec-
ond stage weights are 0.000005 and 0.0001, and momentum
factor is 0.7. Before presentation of each stroke, the oscilla-
tory layer is prepared by AP. For concreteness, we present
event chain notation for training of the network for a single
two-stroke sequence ‘h–a.’
Stroke_sequence_ha = [<Preparatory

Pulse, 20, 20>,<Preparatory Delay,
100>,<Active Preparation, 30, γ = 7 >,

<stroke ‘h’, 120>, <Active Preparation,
30, γ = 7 >,<stroke ‘a’, 120>].

A production of stroke sequence ‘ha’ with the above event
chain description is shown in Fig. 13a. Note that due to AP,
the state of the oscillatory layer is pushed very close to the
standard state by the time of stroke onset. Note also that the
preparatory delay is significantly lesser than what was used in
passive preparation (100 as opposed to 600). Total time taken
in this case is 420 (= 20+100+30+120+30+120), which is
a significant savings from the previous case of passive prepa-
ration. Although the second stroke ‘a’ is constructed reliably,
note that the ligature between strokes is not smooth. In natu-
ral handwriting, ligature between two successive strokes has
a smooth flowing quality. This is because often the pen tip
velocity does not drop to zero at the border of two strokes and
merely goes to a minimum. After extensive experimentation,
we found that effective ligature handling consists of terminat-
ing the preceding stroke at an early stage, and initiating the

succeeding stroke at a late stage. These results are explained
below.

Ligature handling Early termination of the preceding
stroke and late beginning of the succeeding stroke is the
recipe used for achieving smooth ligatures. Event chain for
executing the stroke sequence ‘ha’ with ligature handling
introduced is given below:
Stroke_sequence_ha = [<Preparatory

Pulse, 20, 20>,<Preparatory Delay,
100>,<Active Preparation, 30, γ = 7 >,

<stroke ‘h’, 100, 0, 100>,<Active
Preparation, 30, γ = 7 >,< stroke ‘a’,
100, 10, 120>].

Event description is as follows:
<Preparatory Pulse, 20>: preparatory pulse of duration

20 and amplitude 20.
<Preparatory Delay, 100>: preparatory delay of dura-

tion 100 (note the reduction from 600)
<Active Preparation, 30, γ = 7 >: AP of duration 30

and drive factor, γ , of 7.
<stroke ‘h’, 100, 0, 100>: stroke ‘h’ is executed.
The execution, which is of duration 100, is begun at t1 = 0,

and terminated at t2 = 100, without completing the full
120 time units. This decremented interval at the termination
end is called early stopping interval (ESI), which in this case
is 120–100 = 20.

<Active Preparation, 30, γ = 7 >: AP of duration 30
and drive factor, γ , of 7.

<stroke ‘a’, 110, 10, 120>: stroke ‘a’ is executed. The
execution is begun at t1 = 10, and terminated at t2 = 120,
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Fig. 13 a Stroke sequence ‘h–a’ produced by event chain description
given above. Though individual strokes ‘h’ and ‘a’ are reproduced
robustly, ligature is poor. Also the line supporting the stroke sequence

is descending in left–right direction. b Euclidean distance between the
state of the oscillatory layer and the standard state, V s . Stretches of low
value of distance represent AP events

making the stroke duration only 110 time units. This
decrement in the stroke duration in the initiation end is called
Late Beginning Interval (LBI).

Production of ‘ha’ obtained by the above method is shown
in Fig. 14. Note the smoother ligature obtained by this
method. However, in Fig. 14 we may also note an undesirable
descent of the strokes from left to right.

Correcting line orientation The stroke sequence presented
in Fig. 14 forms not a horizontal but an oriented line. The
cause of this orientation is the discrepancy between the verti-
cal positions of the two terminals of individual strokes. Since
in the present method, the network estimates stroke veloc-

Fig. 14 Stroke sequence ‘h–a’ produced with ligature handling.
Although ligature is smoother than the sequence shown in Fig. 13, there
is an undesirable descent of strokes from left to right

ities only and the actual stroke is constructed by velocity
integration, vertical discrepancy between the two ends of the
first stroke carries over to the second stroke; the second stroke
therefore is drawn at a higher/lower level than the first. This
error in orientation can be corrected by adding an appropriate
offset in vertical velocity: positive vertical velocity correc-
tion must be applied to correct a dip in orientation. This offset
is called Vertical Velocity Offset (VYOFF). A reconstruction
of the stroke sequence ‘h–a’ of Fig. 14, drawn with a VY-
OFF=0.1 is shown in Fig. 15.

So far in this section, we have introduced three mecha-
nisms for improving the quality of multiple stroke execu-
tion: (1) active preparation, (2) ligature handling, and (3)

Fig. 15 Stroke sequence ‘h–a’ drawn with active preparation, ligature
handling, and orientation correction
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Correcting line orientation—to facilitate reliable multiple
stroke generation. Each of these processes involves several
parameters. AP involves its duration, APD, and drive fac-
tor, γ ; ligature handling involves ESI and LBI; correcting
line orientation involves VYOFF. Resetting the magnitude
of any of these parameters to zero amounts to withdrawal of
the corresponding corrective mechanism. We now demon-
strate the significance of presence/absence of each of these
mechanisms for effective generation of a sequence of multi-
ple strokes (Fig. 16).

The parameter values used for execution of sequence ‘h–a’
in Fig. 16a are as follows: AP duration = 30, drive factor = 7,
ESI = 20, LBI = 10, VYOFF = 0.1. Withdrawal of any of
the three corrective mechanisms described above produced
characteristic distortions in the stroke sequence generated
(Fig. 16b–e). With these parameters we now present results
related to execution of words — 2-letter, 3-letter, 4-letter and
5-letter words — produced by the network described above.
The network is trained on six letters/strokes: ‘a’, ‘c’, ‘d’,
‘h’, ‘r’, and ‘s’. Ideally, the above parameters ought to vary
depending on the stroke combinations that are produced. But
such a characterization requires a much more detailed study
and is deferred to future efforts in this direction (Figs. 17,
18).

4 Discussion

We present a neural network model of handwritten stroke
generation in which stroke velocities are expressed as a
Fourier-style decomposition of oscillatory neural activities.
Though oscillatory neural models are typically used to model

generation of rhythmic behavior like walking, swimming,
etc. [15], they have proved to be useful in non-rhythmic motor
function also [16]. Since Hollerbach’s insightful observation
on the oscillatory elements in handwriting, neural oscillators
have also figured in models of handwriting. An oscillatory
neural model of handwriting, for it to be biologically viable,
has to address certain fundamental issues.

A key issue addressed in this paper is one of preparing the
initial state of the oscillatory network. This question does not
seem have received adequate attention in modeling literature
[3–7]. Primarily the oscillatory layer must generate a stable
rhythm appropriately registered with respect to the time of
onset of the stroke. Further there must be a mechanism to
switch the network to a different, stable rhythm to produce
a different stroke. Even if the network dynamics are stable
enough to flow into a stable trajectory on random initiali-
zation, the phase of the network’s rhythmic state may not
be specific enough to produce a desired movement. There
must be some level of forgetting of initial conditions, and
therefore linear oscillator models are disallowed. Networks
of nonlinear oscillators, with their proneness to chaos [11],
must be handled with extreme delicacy to produce stable,
specific rhythms.

In the present work, we believe that a reasonable solution
that addresses the above issues is provided. Two forms of
preparation are described: (1) Passive preparation, (2) Active
preparation. In passive preparation, the oscillatory layer is
initialized with small random noise, but is immediately given
a large PP to specific neurons (the first neuron in each sub-
layer). This pushes the evolution of oscillatory layer in a
specific direction, which, after a specific delay, �, assumes
a nearly standard rhythm (in spite of the low-amplitude

Fig. 16 a Stroke sequence
‘h–a’ executed with AP duration
= 30, drive factor = 7, ESI = 20,
LBI = 10, VYOFF = 0.1. b
Sequence with no AP, all else
being equal. c Sequence with
ESI = 0, all else being equal. d
Sequence with LBI = 0, all else
being equal. e Sequence with
VYOFF = 0, all else being equal
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Fig. 17 Two-and three-letter
words generated by the
handwriting network

Fig. 18 Four and five-letter
words produced by the
handwriting network

fluctuation in the initial conditions). This is the form of prep-
aration used in Sect. 3, experiments no. 1–4. Passive prepara-
tion involves unduly long preparation times, and also yields
suboptimal results when a sequence of strokes is executed.
Efficient reconstruction of a stroke sequence is achieved by
introducing active preparation (in Sect. 3, experiment no. 5),
in which the state of the oscillatory layer is actively driven
towards the standard state. With AP, we show that it is possi-
ble to robustly produce longer stroke sequences. From purely
algorithmic point of view, AP is more efficient (shorter prep-
aration times, robust production of stroke sequences) than
passive preparation. However, at this point it is not clear
which of these faithfully describes the preparatory processes
underlying biological motor function.

In the example shown in Sect. 3, Experiment no. 5, the net-
work is trained only on a small number of strokes. To train
on larger numbers of strokes, it is desirable to train subsets
of strokes on multiple networks and use a mechanism for
gating the outputs of the networks in appropriate sequence.
For example, if Network-1 is trained on {a,b,c,d,e} and Net-
work-2 is trained on {f,g,h,k,l}, then, to execute the stroke
sequence ‘h-e-a-l-e-d’, the two networks have to gated in the
following sequence {2,1,1,2,1,1}. Such an ensemble of net-
works can be trained on a large public online handwriting
database and performance can be evaluated.

Mechanisms for ligature handling and orientation cor-
rection have been described in the paper. The parameters
involved in these mechanisms are optimized by trial and error
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for a small number of stroke sequences. However, more
systematic methods for dynamically controlling these para-
meters during execution of arbitrary stroke sequences have
to be investigated.

We now go deeper into the neuromotor significance of the
proposed model of handwriting generation.

Motor preparation In their classic EEG studies of vol-
untary motor action, Kornhuber and Deecke [17] found slow
negative shifts in cortical potential much before the initiation
of movement. This potential, termed the Bereitschafts poten-
tial (BP), is believed to signify pre-movement preparation of
motor cortical areas. Careful current dipole source analysis
of BP has identified supplementary motor area (SMA) as a
key player [18]. However, preparatory activity correspond-
ing to movement direction has been found in many other
brain areas including M1 [19], premotor cortex [20], pre-
frontal cortex [21], the parietal cortex [22], and basal ganglia
[23]. An interesting functional definition of motor prepara-
tion emerges out of primate experiments by Churchland et al.
(2006). This group hypothesizes that preparation is a pro-
cess by which activity of the motor cortical neurons, random
and variable in early stages of preparation, is progressively
pushed into a limited region of the state space that is specific
to a given movement. Data from premotor cortical neurons
from primates appears to confirm their hypothesis [24]. Our
model essentially conceives an idealization of this process
in which preparation pushes the oscillatory state close to the
standard state.

SMA and motor preparation From the above account SMA
seems to compete with several other motor areas as a primary
source of motor preparatory signals. Single cell recordings in
primates revealed more marked preparation-related changes
in SMA neurons than in neurons of M1 [25]. The question
can be resolved if it can be shown that preparatory activity
in SMA neurons precedes similar activity in M1. It has been
shown that SMA neurons exhibiting preparatory activity can
be identified to project to M1 [26]. Contrarily, it was also
established that M1 neurons that exhibit preparatory activity
receive inputs from SMA and not from thalamus or pari-
etal cortex [27]. Such studies strongly implicate a role to
SMA in motor preparation. However, perhaps SMA may not
be solely responsible for motor preparation. Its preparatory
action might involve interactions among subcortical struc-
tures like basal ganglia, which are often implicated in motor
timing functions.

Basal ganglia and motor timing Coordinating the relative
timing of multiple streams of processing is crucial in both
motor performance and sensory perception. Temporal pro-
cessing in biological systems occurs over a range of time
scales and is broadly classified into three categories: (1) cir-
cadian timing, which corresponds to durations of the order
of days, and handled by brain structures like suprachiasmatic
nuclei, (2) interval timing, which corresponds to durations in

the range of seconds to minutes, and coordinated primarily
by corticostriatal interactions, and (3) millisecond timing,
which obviously corresponds to millisecond durations, con-
trolled by the cerebellum [28].

The role of basal ganglia in ‘interval timing’ appears to
emerge from the dynamics of thalamo-cortico-striatal loops.
In a model— the striatal beat frequency (SBF) model [29]—
that highlights the timing function of basal ganglila, the corti-
cal oscillators are assumed to increase synchrony just before
movement onset and maintain the rhythm throughout the per-
formance. The dopaminergic burst at trial onset could trig-
ger synchronization of cortical oscillators according to SBF
model [28]. Striatal neurons are tuned to respond to specific
patterns of cortical oscillations [29].

SMA and basal ganglia in sequence generation Interaction
between SMA and basal ganglia is believed to play a crucial
role in learnt motor sequences [30]. It has been suggested
that phasic activity of basal ganglia may act as a “reset” sig-
nal to the SMA clearing the traces after one movement and
preparing it for the consecutive movement [31].

The above description of cortico-striatal interaction in
event timing and sequence generation is much in line with
the treatment of these temporal processing mechanisms in
our model of handwriting generation. The timing network
(basal ganglia) sends a preparatory signal to the oscillatory
layer (SMA) so as to induce a stable rhythm in the latter. Once
a stroke is executed, the timing network waits for a specific
state in the oscillatory layer and initiates execution of the next
stroke. We have seen that other ways of determining stroke
onset moment yielded suboptimal results. This intricate two-
way interaction between the timing network and the oscilla-
tory layer is strongly analogous to the above description of
the role of basal ganglia in timing and sequence generation.

Handwriting variability Intrinsic variability in handwriting
—and in fact all motor function—is a source of difficulty in
robust handwritten character recognition. Handwriting vari-
ability might seem to be a source of irritation if the goal is
handwriting recognition, but one must remember that motor
variability is most probably the enabling mechanism by which
organisms acquire motor skills [32]. In the present work,
we show that the time of stroke initiation is an important
source of variability. Stroke onset must be precisely timed
with respect to the evolving rhythm of the oscillatory layer.
One might envisage that a lot of variability in real handwrit-
ing originates in the variability in the duration between the
time of termination of one stroke command, and the time of
initiation of the next. However, such assertions stand to be
confirmed or rejected by analysis of real handwriting sup-
ported by data from underlying neural processes.

We are aware that our model has several simplifying
assumptions. The input layer in our model which represents
inputs from source areas of handwriting information (proba-
bly language areas in parietal cortex or dorsolateral prefrontal
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cortex if the writing is driven by the contents of working
memory) and the model’s output layer which represents all
motor areas in motor hierarchy below SMA are obviously
given a summary treatment. This is because one of the key
motivations of the work is to highlight the role of SMA and
basal ganglia in sequential behavior, specifically handwrit-
ing. The timing network, which represents basal ganglia, is at
the moment defined in terms of its inputs and outputs and not
implemented as a neural network model. Further, the most
important element of basal ganglia is perhaps the dopamine
signal, which is thought to contain reward information, is
also missing in the model. These necessities provide direc-
tion to future extensions of the biological aspect of the present
model.

In the applied domain, the potential of the present model
to generate synthetic handwriting can probably be exploited
as a generator of “handwritten CAPTCHAs” [33]. To this
end, the present model has to be trained on a large database
of online cursive data as described above. The model can
also be trained on data from a specific individual. However,
more efficient ways of deciding stroke onset and preparing
the oscillator layer have yet to be investigated.

Appendix

The proof for the system governed by the equations (i), (ii)
and (iii) has a “limit cycle”.

dx

dt
= −x + v − s + I (i)

v = tanh(λx) (ii)
ds

dt
= −s + v (iii)

We can use Lienard’s theorem for existence of limit cycle.
Follow the steps given below to convert (i), (ii) and (iii) to
Lienard’s system [34].

Differentiating (i)

ẍ = −ẋ + λ sec h2(λx)ẋ − ṡ (iv)

Substituting (ii) and (iii) in (iv)

ẍ = −ẋ + λ sec h2(λx)ẋ − (−s + tanh(λx)) (v)

Using (i) and (v)

ẍ = −ẋ + λ sec h2(λx)ẋ

−(−(−ẋ − x + tanh(λx) + I ) + tanh(λx))

On rearranging

ẍ + ẋ(2 − λ sec h2(λx)) + (x − I ) = 0 (vi)

is similar to Lienard’s equation ẍ + ẋ f (x)+g(x) = 0 where
f (x) = 2 − λ sec h2(λx), and g(x) = x − I .

Checking for the Lienard’s conditions: Let us assume
I = 0.

Both f (x) and g(x) are continuously differentiable for all
x ;

g(−x) = −g(x) for all x (i.e., g(x) is an odd function);

g(x) > 0 for x > 0;

f (−x) = f (x) for all x (i.e., f (x) is an even function);

The odd function F(x) =
x∫

0
f (u)du = 2x − tanh(λx) has

exactly one positive zero at x = xo, is negative for 0 < x < xo,
is positive and non decreasing for x > xo, and F(x) → ∞
as x → ∞. (one can estimate xo from graph of F(x)).

So the system has a unique stable limit cycle surrounding
the origin in the phase plane.

References

1. Ellis, A.W., Modeling the writing process. In: Denes, G., Semenza,
C., Bisiacchi, P., Andreewsky, E. (eds.) Perspectives in Cognitive
Neuropsychology. Erlbaum, London (1986)

2. Teulings, H.L., Thomassen, A.J.W.M., Schomaker, L.R.B., Mor-
asso, P.: Experimental protocol for cursive script acquisition: the
use of motor information for the automatic recognition of cursive
script. In: Report 3.1.2., ESPRIT Project, 419 (1986)

3. Schomaker, L.R.B.: Simulation and recognition of handwriting
movements: a vertical approach to modeling human motor behav-
ior. Ph.D. Thesis, Nijmegen University, Netherlands (1991)

4. Plamondon, R.: An evaluation of motor models of handwrit-
ing. IEEE Trans. Syst. Man Cybern. 19(5), 1060–1072 (1989)

5. Grossberg, S., Paine, R.W.: A neural model of corticocer-
ebellar interactions during attentive imitation and predictive
learning of sequential handwriting movements. Neural Netw. 13,
999–1046 (2000)

6. Hollerbach, J.M.: An oscillation theory of handwriting. Biol.
Cybern. 156(39), 139 (1981)

7. Kalveram, K.Th.: A neural oscillator model learning given tra-
jectories, or how an allo-imitation algorithm can be implemented
into a motor controller. In: Piek, J. (ed) Motor Control and Human
Skill: A Multi-disciplinary Perspective. Human Kinetics, Cham-
paign (1998)

8. Galen, G.V., Weber, J.: On-line size control in handwriting dem-
onstrates the continuous nature of motor programs. Acta Psy-
chol. 100, 195–216 (1998)

9. Bullock, D., Grossberg, S.: The VITE: a neural command circuit
for generating arm and articulator trajectories. In : Kelso, A., Shle-
singer, M.M. (eds) Dynamic Patterns in Complex Systems. World
Scientific, Singapore (1988)

10. Fiala, J., Grossberg, S., Bullock, D.: Metabotropic glutamate recep-
tor activation in cerebellar Purkinje cells as substrate for adaptive
timing of the classically conditioned eye-blink response. J. Neu-
rosci. 16, 3760–3774 (1996)

11. Chirikov, B.: A universal instability of many—dimensional oscil-
lator systems. Phy. Rev. 52, 263–379 (1979)

12. Bressloff, P.C., Coombes, S., Souza, B.: Dynamics of a ring of
pulse-coupled oscillators: group theoretic approach. Phys. Rev. E
Stat Nonlin Soft Matter Phys 66, (2002)

13. Haykin, S., Neural Networks: A Comprehensive Foundation, Pren-
tice Hall PTR, Englewood Cliffs (1998)

123



84 G. Gangadhar et al.

14. Latash, M.L., Scholz, J.F., Danion, F., Schöner, G.: Structure of
motor variability in marginally redundant multi-finger force pro-
duction tasks. Exp. Brain Res. 141, 153–165 (2001)

15. Marder, E., Calabrese, R.L.: Principles of rhythmic motor pattern
production. Physiol. Rev. 76, 687–717 (1996)

16. Chakravarthy, V.S., Thomas, S.T., Nair, N.: A model for schedul-
ing motor unit recruitment in skeletal muscle. In: Proceedings of
International Conference Theoretical Neurobio, Gurgoan (2003)

17. Kornhuber, H.H., Deecke, L.: Readiness for movement—the Ber-
eitschafts potential-story. Curr. Contents Life Sci. 33, 22 (1990)

18. Lang, W., Cheyne, R., Kristeva, R., Beistener, R., Lindinger, G.,
Deeke, L.: Three dimensional localization of SMA activity preced-
ing voluntary movement: a study of electric and magnetic fields in
a patient with inflation of the right supplementary motor area. Exp.
Brain Res. 87, 688–695 (1991)

19. Georgopoulos, A.P., Lurito, J.T., Petrides, M., Schwartz, A.B.,
Massey, J.T.: Mental rotation of the neuronal population vec-
tor. Science 243, 234–236 (1989)

20. Kubota, K., Hamada, I.: Visual tracking and neuron activity in
the post—arcurate area in monkeys. J. Physiol. Paris. 74, 297–
312 (1978)

21. Kubota, K., Funahashi, S.: Neuron activities of monkey prefrontal
cortex during the learning of visual discriminations tasks with
go/no-go performances. Neurosci. Res. 3, 106–129 (1982)

22. Crammond, D.J., Kalaska, J.F.: Neuronal activity in primate pari-
etal cortex area 5 varies with intended movement direction during
an instructed—delay period. Exp. Brain Res. 76, 458–462 (1989)

23. Alexander, G.E.: Selective neuronal discharge in monkey putamen
reflects intended direction of planned limb movements. Exp. Brain
Res. 67, 623–634 (1987)

24. Churchland, M.M., Yu, B.M., Ryu, S.I., Santhanam, G., Shenoy,
K.: Neural variability in premotor cortex provides a signature of
motor preparation. J. Neurosci. 26(14), 3697–3712 (2006)

25. Tanji, J.: The supplementary motor area in the cerebral cortex.
Neurosci. Res. 19(3), 251–268 (1994)

26. Tanji, J., Taniguchi, K., Saga, T.: Supplementary motor area: neu-
ronal response to motor instructions. J. Neurophysiol. 43, 60–68
(1980)

27. Aizawa, H., Tanji, J.: Cortico-cortical and thalamo-cortical
responses of neurons in the monkey primary motor cortex and
their relation to a trained motor task. J. Neurophysiol. 71, 550–560
(1994)

28. Buhusi, C.V., Meck, W.H.: What makes us tick? Functional
and neural mechanisms of interval timing. Nat. Rev. Neuro-
sci. 6, 755 (2005)

29. Matell, M.S., Meck, W.H.: Cortico-striatal circuits and interval
timing: coincidence detection of oscillatory processes. Cogn. Brain
Res. 21, 139–170 (2004)

30. Cunnington, R., Iansek, R., Bradshaw, J.A., Phillips, J.G.: Move-
ment-related potentials in Parkinson’s disease. Presence and pre-
dictability of temporal and spatial cues. Brain 118, 935–950
(1995)

31. Georgiou, N., Iansek, R., Bradshaw, J.L., Phillips, J.G.,
Mattingley, J.B.: An evaluation of the role of internal cues
in the pathogenesis of Parkinsonian hypokinesia. Brain 116,
1575–1587 (1993)

32. Kao, M.H., Doupe, A.J., Brainard, M.S.: Contributions of an
avian basal ganglia-forebrain circuit to real-time modulation of
song. Nature 433(7026), 638–643 (2005)

33. Rusu, A., Govindaraju, V.: Handwritten CAPTCHA: using the
difference in the abilities of humans and machines in reading
handwritten words, IWFHR, pp. 226–231. In: 9th International
Workshop on Frontiers in Handwriting Recognition (IWFHR’04)
(2004)

34. Perko, L.: Differential Equations and Dynamical Systems.
Springer, Heidelberg (2006)

123


	An oscillatory neuromotor model of handwriting generation
	Abstract 
	Introduction
	The model
	Results
	Experiment no. 1
	Experiment no. 2
	Experiment no. 3
	Experiment no. 4
	Experiment no. 5
	Discussion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


