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Abstract

Recent developments in the field of simple human movement modelling provide new ways in which to view complete models
for analysing and understanding complex movements. Based on a kinematic theory and a vectorial delta-lognormal model recently
proposed by Plamondon (1993a, 1995a,b,c, 1998), a new method for exploring and understanding the inherent mechanisms that
govern planar movement generation and predict human behaviour is presented here. This paper describes an approach for
analysing simple as well as complex movements such as cursive handwriting. It highlights some difficulties encountered in the
analysis of complex movements. Problems such as the development of robust approaches to solve the reverse engineering problem
of automatic parameter extraction of a succession of time-overlapped nonlinear functions are discussed. The analysis of natural
cursive handwriting shows many interesting properties of the model and proposes new ways to study perturbed movement
phenomena. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Planar movement modelling; Vectorial delta-lognormal model; Parameter extraction; Nonlinear function estimation;
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1. Introduction

The recovery and analysis of action plans that result
in complex movements pose some theoretical and prac-
tical difficulties for neuroscientific studies. One of the
most crucial problems is to distinguish and decompose
a complex movement into fundamental units or strokes,
taking into account the time-overlapping effect that
enables the production of fluent movements. Indeed,
many questions arise in the attempt to determine the
number of fundamental units involved in a complex
movement, and in addressing the question of how to
completely characterise each individual movement.
Some studies have focused, for example, on how hu-
man subjects react to perturbed movements and how

they correct the resulting trajectory when the target
moves during execution (Goodale et al., 1986; Pelisson
et al., 1986; Martin and Prablanc, 1992). Other studies
have tried to find fundamental laws which link move-
ment time and movement precision (see Plamondon
and Alimi, 1997 for a survey), which requires a precise
measure of the characteristics of each single neuromo-
tor command. Heuristics can be used to measure these
characteristics for simple movements, but, when the
movement units are partially hidden in a complex
movement, most of the methods become unusable.

The kinematic theory recently proposed and briefly
summarized in this paper (see Plamondon, 1993a,b,
1995a,b, 1996, 1997) suggests a formal description of
simple movements. The general case of complex planar
movements is considered as a vectorial overlapping of
simple strokes. Each stroke is totally described by a set
of parameters that characterises the movement, both in
the static and in the kinematic domains.
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The first part of this paper describes the key elements
of the kinematic theory and the vectorial delta-lognor-
mal model used for the generation and analysis of
simple and complex planar movements. Among other
things, the model explains how movements can be
described in the static and in the kinematic domains.

The second part of the paper proposes a scheme for
simple movement analysis. First, a brief overview of the
nonlinear regression technique to solve the reverse engi-
neering problem is presented. This problem can be
stated as follows: How can we extract from real 2D
signals the parameters of the model that best fit the
observed data? Approaches to parameter estimation are
proposed in the paper, with an optimisation process
based on the Levenberg–Marquardt method (Mar-
quardt, 1963).

The third part of the paper describes an approach to
complex movement analysis. Complex movements are
defined in this paper as multiple-stroke movements with
time-overlapping effects. The method proposes heuris-
tics to locate partially hidden strokes in complex move-
ments, in order to distinguish the effect of each stroke,
and applies nonlinear regression techniques to the opti-
misation process. The problem of finding the initial
conditions required to ensure the convergence of these
techniques is also discussed.

The last part of the paper presents an application of
the proposed method for handwriting analysis. It shows
how the extracted parameters can be used to represent,
understand or regenerate complex movements. The
model also proposes new ways to analyse perturbed
movements and study the effects of some properties,
such as starting time, reaction time and movement time,
taking into account the overlapping effect of the indi-
vidual strokes.

2. The kinematic theory of rapid human movements

The analysis of rapid human movements presented in
this paper is based on the kinematic theory recently
proposed by R. Plamondon (Plamondon, 1993a,b,
1995a,b, 1996, 1998). The kinematic theory is aimed
mainly at understanding the generation and control of
simple and complex human movements. The theory has
been shown in the past few years to be one of the best
and most complete approaches to describing the global
properties of the neuromuscular networks involved in a
synergistic action (Plamondon and Alimi, 1997; Plam-
ondon, 1998). It proposes within a single framework
some explanations about the emergence of the basic
kinematic relationships and psychophysical laws that
have been consistently reported in studies dealing with
rapid human movements over the last century (Plamon-
don and Alimi, 1997).

2.1. Simple rapid human mo6ements

According to the kinematic theory, simple human
movements can be described in the velocity domain as
the response of a synergistic action of an agonist and an
antagonist neuromuscular network (Plamondon, 1993a,
1995a). Each network is composed of a large set of
coupled neuromuscular subsystems that react to an
input command D1 (for the agonist) and D2 (for the
antagonist) with an impulse response that can be de-
scribed by a lognormal function (Plamondon, 1993a,
1995a). Each lognormal impulse response L(t ;t0, mi, s2

i )
can be characterised by three parameters: the starting
time t0, the parameter mi which reflects its logtime
delay, and s2

i which reflects its logresponse time (Plam-
ondon, 1993a, 1995a). The resulting curvilinear velocity
V(t) of a single movement is then described by sub-
tracting the weighted impulse response of the antago-
nist network from the agonist one, which is called a
delta-lognormal response (Eqs. (1) and (2)).

V(t)=D1L(t ;t0,m1,s2
1)−D2L(t ;t0,m2,s2

2) (1)

where L(t ;t0,mi,s2
i )=

1


2psi(t− t0)
e−

1

2s2
i

(ln(t− t0)−mi )2

(2)

Eq. (1) results in velocity profiles that can have one,
two or even three peaks (Plamondon, 1995a; Plamon-
don et al., 1993).

The vectorial delta-lognormal model (Plamondon,
1995c; Guerfali and Plamondon, 1995; Guerfali, 1996)
describes single two-dimensional movements as a veloc-
ity vector, the magnitude of which follows a delta-log-
normal response. Apart from the seven parameters of
the delta-lognormal function, each velocity vector is
also characterised in the space domain by three static
parameters which globally reflect the geometric proper-
ties of the set of muscles and joints used in a particular
movement: the starting point P0, the starting direction
u0 and the global curvature C0 (Plamondon and Guer-
fali, 1998). The curvature is considered to be positive if
the movement is clockwise, and negative otherwise.

The angular direction of the velocity vector can then
be deduced from the intrinsic relation that links the
angular and the curvilinear velocities (Plamondon,
1987; Guerfali and Plamondon, 1995) (Eq. (3)).

u(t)=u0+C0
& t

t 0

V(t) dt (3)

A single movement, also called a stroke (i ), is thus
represented in the space and velocity domains by a
velocity vector starting at time t0(i) at point P0(i) with an
initial direction u0(i), and moving along a circular path
of length D1(i)−D2(i) with a constant curvature C0(i).
According to the kinematic theory, the movement de-
scribed by this model will reach its target with a move-
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Fig. 1. A single movement or a stroke.

The analytical expression of angular velocity can be
obtained by the time-derivation of Eq. (5). This results
in a complex expression and no simple formulation is
available (Plamondon and Guerfali, 1998). The vecto-
rial delta-lognormal model not only explains the origin
of the angular velocity signal, its shape and its proper-
ties, but also shows how this signal is not controlled
independently, but emerges from the vectorial summa-
tion process (Guerfali, 1996).

Fig. 2 shows a simulated case of a two-stroke move-
ment. The crosses in the space domain show the hidden
path of each single stroke as taken separately, and the
dots show the resulting path generated when the two
movements overlap in time. In the velocity domain, we
can see the bell-shaped velocity profiles for each single
stroke (dotted lines), both in the angular and in the
curvilinear domains, and then the result of the entire
movement (solid lines). As can be seen, the shape of the
angular velocity is influenced mainly by the angular
discontinuity between consecutive strokes (Guerfali,
1996) as well as the time-overlapping of their curvilin-
ear velocity (Plamondon and Guerfali, 1998). It can be
shown by computer simulation that the curvilinear and
the angular velocity are strongly linked, as observed in
real movements. One should also note that the shape of
the angular velocity is similar to that of the curvilinear
velocity for each individual stroke taken separately
(dotted lines). This similarity between the two signals is
due to the simple relationship that exists between curvi-
linear and angular velocities when curvature is constant
(see Eq. (6)). For real cases, this similarity is difficult to
observe due to the discontinuity of the angular velocity
at the starting and ending points where the curvilinear
velocity is near 0 and the curvature is infinite.

Vu(i)(t)=C0(i)×V(i)(t) (6)

ment time that is proportional to the ratio of the
agonist and antagonist commands, D1(i)/D2(i) (Plamon-
don, 1995a,b) (see Fig. 1).

2.2. Two-dimensional complex rapid mo6ements

As its name suggests, the vectorial delta-lognormal
model considers a single movement as a vector moving
along a circular path with a delta-lognormal velocity
profile. Complex movements are then the result of the
time-overlapping of two or more velocity vectors. The
resulting velocity vector can be characterised by its
instantaneous magnitude, which is the magnitude of the
sum of individual velocity vectors describing each
stroke (Eq. (4)) and its orientation (Eq. (5)).

V(t)= � %
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i=1
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Fig. 2. Simulated overlapping strokes: generated trajectory, curvilinear and angular velocities.
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This does explain, however, why the delta-lognormal
equation is also successful in describing angular velocity
data (Plamondon, 1995c, 1998) as collected in numer-
ous experiments dealing with simple rotation, like wrist
flexion or extension.

For complex movements (more than one stroke), the
relationship between angular and curvilinear velocities
becomes more complex, although the resulting curva-
ture is not necessarily constant along the trajectory, but
a function of time C(t). We can also see in Fig. 2 that
the maximum of the angular velocity corresponds to
the minimum of the curvilinear velocity, which explains
the phase shift observed in real movements between
these two signals.

3. Simple movement analysis

To understand, represent and reproduce human
movements, an analysis-by-synthesis approach is neces-
sary to extract the set of vectorial delta-lognormal
model parameters that best fit the movements under
study. The extracted parameters then reflect the com-
mand amplitude, the movement time and spatial preci-
sion, the temporal properties of the neuromuscular
networks involved and the geometric characteristics of
the movement analysed.

The extraction of the set of parameters that best fits
a simple movement i (or one stroke movement) can be
made in two steps: The first is to estimate the parame-
ters that describe the kinematics of that movement
D1(i), D2(i), m1(i), m2(i), s1(i), s2(i) and t0(i); and the second
is to estimate the static parameters C0(i) and u0(i) that
describe the geometric properties of the movement in
the 2D plane. With this set of nine parameters (and
knowing the starting point P0), a simple movement can
be completely characterised, represented and repro-
duced in both the kinematic and the spatial (or stroke)
domains.

Analysing the delta-lognormal velocity profile, seek-
ing the optimal set of parameters that best fits the
movement observed, requires the use of some robust
optimisation approaches that ensure algorithm conver-
gence. Knowing that the delta-lognormal function (as
well as the lognormal function) is nonlinear with re-
spect to most of its parameters, nonlinear regression
techniques are required to extract parameters from
velocity signals. Several methods exist to solve the
nonlinear regression problem (Bard, 1974), and only a
brief overview of one of the most robust techniques
used is presented here.

3.1. Nonlinear regression technique

The regression problem can be summarised as fol-
lows: Suppose that we have n measures (y1, y2,…,yn) of

a dependent variable Y (the curvilinear velocity signal
in our case), which depends on k independent variables
(X1, X2,…,Xk) (the curvilinear velocity is only a func-
tion of the time t in our case). The relationship between
the variable Y and the independent variables Xi is
determined by a class of functions (a delta-lognormal
function in our case), which depends on p parameters
(D1, D2, m1, m2, s1, s2, t0, C0 and u0). Regression
techniques look for the set of function parameters that
best fits the measures according to some criteria (like
the least-squares fit, for example). If the class of func-
tions is nonlinear according to some of its parameters,
and no easy transformation is known to linearise the
function (which is the case for the delta-lognormal
function), nonlinear regression techniques have to be
used. In this case, no analytical solution is available,
and an iterative process is needed to optimise the search
for a better solution around a set of initial conditions
or a starting point of the parameter space. The choice
of this starting point becomes critical and determines
the region of the final solution. Assuming the derivabil-
ity of the function used with respect to all its parame-
ters, robust methods, such as the
Levenberg–Marquardt techniques, can be used (Mar-
quardt, 1963). An iterative process is then required
until the error becomes smaller than a certain
threshold, or a certain amount of computation time has
elapsed.

3.2. Estimation of the spatial parameters C0(i) and u0(i)

Curvature can be estimated by different methods.
One of the simplest, and one which can be used for
both simple and complex movements, is the ratio be-
tween the angular and the curvilinear velocities (Eq.
(7)).

C0(i):
Vu(tmax(i))
V(tmax(i))

(7)

Velocity values can be measured around the maxi-
mum values of the curvilinear velocity (at time tmax(i))
to reduce border and overlapping effects. Even if we
cannot guarantee that, at time tmax(i), the overlapping is
minimal, the relative influence of an error on the result
will be minimal for the higher magnitude region of the
curvilinear velocity. This simple relationship (Eq. (7))
can be very helpful, but must be taken with care if the
overlapping effect of adjacent strokes becomes signifi-
cant. For real signals, the value of the estimated curva-
ture will be quite different, depending on the time
chosen for the estimation (t= tmax(i)9Dt). In practical
situations, an average value between the curvatures
computed for a few points around tmax(i) constitutes a
better approximation than Eq. (7).

For an individual stroke i, the parameter u0(i) can
also be estimated, for the same reasons that are de-
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Fig. 3. One-stroke movement, original (solid lines) and generated
after extraction (squares).

4. Complex movement analysis

The analysis of complex movements (or multiple-
stroke movements) poses more difficulties than that
of simple movements. These problems are due to the
fact that complex movements are mainly composed of
time-overlapped strokes. The analysis of complex
movements first requires the estimation of the mini-
mal number of strokes that can generate the complex
movement observed (or the minimal number of delta-
lognormal curves that compose the curvilinear veloc-
ity signal). The second difficulty in analysing complex
movements is due to time-overlapping effects. A
simultaneous optimisation of all the parameters of the
n strokes is needed. Each stroke i is described by a
set of nine parameters (D1(i), D2(i), m1(i), m2(i), s1(i),
s2(i), t0(i), C0(i) and u0(i)), starting at point P0(i), where
P0(i) is assumed to be the target of stroke i−1, ex-
cept for the first stroke. The complexity of this prob-
lem increases rapidly with the number of strokes n,
and convergence problems often become serious.

Development of robust parameter extraction tech-
niques for the general problem of multiple-stroke ex-
traction presents several difficulties. One of the major
ones is the difficulty of developing approaches which
make it possible to ensure the convergence of numeri-
cal nonlinear regression techniques when there is a
large number of parameters to estimate. The numeri-
cal methods generally used for this type of problem
and described above require a judicious choice of ini-
tial conditions. This choice becomes critical as the
number of parameters increases. We present in the
following subsection a heuristic method which partly
solves these problems.

4.1. Localising partially hidden strokes

Estimating the number of partially hidden strokes
and localising them can be achieved by inspection of
the curvilinear velocity signal. First, each positive peak
is considered as a potential velocity maximum of a
hidden stroke. Second, in cases where more than one
inflection point is detected between two successive max-
ima, a second-level analysis is required to determine the
number of partially hidden strokes and approximate
their location. Fig. 4 shows a typical curvilinear veloc-
ity signal where none, one, two or three inflection
points are observed between two successive velocity
maxima. In the case where two or more inflection
points are detected in the velocity signal, one supple-
mentary stroke is assumed between the two velocity
maxima for further optimisation.

4.2. Choice of initial conditions

Estimating the initial conditions for the optimisation

scribed above, around the point where the borders and
the overlapping effects are minimised (tmax(i)). Knowing
the instantaneous angle u(t) at time tmax(i), the previous
estimation of the global curvature C0(i) and the initial
estimation of the parameters (D1(i), D2(i), m1(i), m2(i), s1(i),
s2(i) and t0(i)), the initial orientation of each stroke can
be evaluated by Eq. (8).

u0(i):u(tm(i))−C0(i)
& tm (i )

t 0(i )

V(i)(t) dt (8)

Fig. 3 shows a one-stroke movement (solid line) as
reproduced by the vectorial delta-lognormal model
(squares) after parameter estimation. The curvilinear
velocity has been signed here (positive and negative
parts) to highlight the turned-up portion of the stroke
(or overshoot) at the end of the movement. This figure
provides a typical example of a single movement,
within multiple-peak velocity (2 here), which can be
reproduced with a single set of parameters. Many of the
models published so far (see Plamondon et al., 1993
and Alimi and Plamondon, 1993 for comparative re-
views) would require a new set of parameters to repro-
duce the second peak.



W. Guerfali, R. Plamondon / Journal of Neuroscience Methods 82 (1998) 35–4540

Fig. 4. Locating partially hidden strokes by inflection point analysis.

method is a critical step, and a description of a heuristic
iterative approach for this particular problem is pre-
sented here. First, the parameters of each delta-lognor-
mal curve are roughly estimated by a heuristic or a
local regression analysis. Second, the estimated strokes
are iteratively extracted from the global velocity signal
to eliminate, as much as possible, the effect of strokes
overlapping within the rest of the signal. This step is
repeated until the deviation between the old and the
new estimates for each stroke taken individually is
below a certain threshold. In practice, two to three
iterations often prove to be sufficient. The algorithm
used for this step of the processing can be summarised
as follows:

/* Estimate the vectorial delta-lognormal parameters
*/
Initialise all the n delta-lognormal parameters to
unknown
REPEAT the process X times (between 1 to 5)

Initialise: Working Signal=Original−Estimations
FOR each stroke i DO

Add the estimation of the i th stroke
Estimate the i th stroke within the region [a,b ]n
(see Fig. 5)
Subtract the new estimation from the i th stroke

END (FOR)
END (REPEAT)
Fig. 5 illustrates how superimposition effects can be

reduced using this algorithm for the first estimation
step of the second stroke (i=2). This figure shows how
we can isolate the second stroke from the entire signal
for the optimisation process (in this case estimating the

parameters of the second delta-lognormal curve V2),
knowing roughly the parameters of the adjacent
strokes.

The first iteration that leads to a rough estimation of
the parameters of each delta-lognormal curve uses a
heuristic approach. A graphical method, described pre-
viously by Wise (1966) and adapted by Guerfali and
Plamondon (1994), which enables estimation of the
parameters of a lognormal curve, is applied. The
parameters m1(i), m2(i), s1(i) and s2(i) are first assumed to
be equal for the agonist and antagonist systems (m1(i)=
m2(i) and s1(i)=s2(i)), except that the area under the
curve D(i) is divided between them in such a way that
D1(i)\D2(i) and D(i)=D1(i)−D2(i). During the second
iteration, the parameters of each delta-lognormal curve
taken separately are evaluated with a greater accuracy
(using the nonlinear regression technique described
above), since the adjacency effect can be subtracted
from the rest of the signal. The second pass, which
makes a better evaluation of the parameters, is more
accurate if all the parameters are now set free to vary
(s1(i)"s2(i) and m1(i)"m2(i), which was not the case at
the first step). The regression technique used is still the
Levenberg–Marquardt nonlinear regression method
(Marquardt, 1963). The entire process is repeated for
the desired number of iterations. Usually, two to three
iterations are sufficient.

It might happen that parameter estimation for a
particular stroke cannot be performed, particularly dur-
ing the first iteration, because of extensive superimposi-
tion involving two or more adjacent strokes. In this



W. Guerfali, R. Plamondon / Journal of Neuroscience Methods 82 (1998) 35–45 41

Fig. 5. Extraction of a partially hidden stroke from a complex movement.

case, the estimation of the delta-lognormal parameters
is set aside and the next strokes are estimated. Estima-
tion of the preceding strokes becomes possible once
their immediate left and right neighbours have been
estimated.

Fig. 6 shows a multiple-stroke movement (solid line)
as reproduced by the vectorial delta-lognormal model
(square dots) with the parameter estimation technique
described above. As one can see, the parameters ex-
tracted enable a good reconstruction of the movement
in both kinematic (curvilinear and angular velocities)
and static (displacement path) domains.

As can be seen, the optimisation of the parameters
that best fit both the kinematic and static domains is far
from obvious, and the approach proposed here pro-
vides one possible way of doing it. Fig. 6 reveals that
the results are very good, but still not perfect. However,
it should be noted that, to our knowledge, this is the
first time that a movement generation model has been
used to fit experimental results in both the kinematic
and static domains with such a good performance.

5. Application: Analysis of handwriting movements

Traditionally, handwriting analysis has been limited
to direct measurements (X and Y sampled at a fixed
frequency) from digitising tablets (Marquardt and Mai,
1994) from which velocity and acceleration signals were
computed. Handwriting analysis was mainly limited by
the fact that stroke-overlapping effects hide large parts
of individual movements that compose a fluent complex
path. Problems such as segmentation, movement time
and movement composition cannot be analysed if we
do not take into consideration the overlapping effects

of single movement units. The overlapping effect of
strokes is observed each time a particular movement (i )
starts before that movement (i−1) hits its final target.
As can be seen in Fig. 7, the starting time of the second
stroke plays a determinant role in the final shape of
complex movements. Very different shapes can be gen-
erated with the same basic movements by changing
only the starting time of the second stroke. If we
consider each basic movement individually, or if we
choose starting times in a way that minimises the
overlapping effect (Fig. 7a), each stroke (i ) will hit a
target at a distance D(i) along its trajectory (where
D(i)=D1(i)−D2(i)), with spatial precision proportional
to the ratio of D1(i)/D2(i) (Plamondon, 1993a, 1995a).
Fig. 7b,c shows simulated samples of the effect of
varying the starting time of the second stroke t0(2) on
the resulting movement. Small crosses show the under-
lying single movements, while the solid line shows the
resulting trajectory. Analysis of the parameters ex-
tracted from the model can show, in those cases, the
underlying strokes that would not otherwise be ob-
served if only the resulting trajectory was studied.

With the overlapping of more than two simple move-
ments, the relative starting time of each stroke (except
for the first movement) will have an important influence
on the shape of the resulting trajectory and will pro-
duce almost fluent movements. Fig. 8 shows two exam-
ples of the effect of the time-overlapping of
multiple-stroke movements on the resulting path. Here
again, the small crosses show the path of each individ-
ual stroke if no superimposition was observed, while
the solid line shows the resulting path with stroke
overlap. Another important property of the vectorial
delta-lognormal model can be mentioned here: the final
target for a complex movement is reached indepen-
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Fig. 6. Five-stroke movement, original (solid lines) and generated after extraction (squares).

dently of the resulting trajectory, and the resulting
movement will reach the same final point with the
desired spatial precision whatever the starting times of
the individual movements are. This property of vecto-
rial algebra enables us to say that the activation time of
single strokes (in complex movements) will have an
influence on the length and shape of the resulting path,
but will not necessarily affect the final target.

This important property of the vectorial delta-log-

normal model can explain some phenomena reported in
psychophysics, where human behaviour in the control
of perturbed planar movements was studied. A typical
experiment requires asking a subject to make a simple
movement from a point A to a target point B, and,
while the movement is being executed, changing the
target B to a point C. Goodale et al. (1986), Pelisson et
al. (1986) and Martin and Prablanc (1992) have re-
ported that in such an experiment the subject does not
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Fig. 7. Effect of stroke overlap on the resulting movement: (a) no overlap; (b) moderate overlap; (c) significant overlap.

use any visual retroaction to see the position of his
hand, to correct the trajectory already being executed.
Pelisson et al. (1986) reported some unconscious pro-
cess that enables the subject to correct the hand trajec-
tory to the final target. What we claim here with the
vectorial delta-lognormal model is that, in fact, there is
no need for the subject to know where the hand is,
when he or she starts the second movement. In this
case, the subject only needs to evaluate the distance
between the previous and the new target and the spatial
precision needed to reach this new target. Once the
subject has evaluated the distance between the two
targets and the spatial precision needed, the new set of
commands is specified and it is independent of the
position of the hand at that time. The vectorial proper-
ties of movement generation are sufficient to explain
why the adjustment of the trajectory is independent of
the vision and the instantaneous position of the hand.
This idea of not aborting the first movement and
generating a second independent movement vectorially
added to the first to correct the trajectory in perturbed
movements is also supported by Flash and Henis
(1991). What we argue here is that all the movements in
this case obey the delta-lognormal law (Eqs. (1) and
(2)). Experiments will have to be conducted to confirm
this hypothesis, using the method described in this
paper.

Fig. 8 also suggests that the vectorial delta-lognormal
model can be used to recover and analyse a representa-
tion of an action plan from a given signal. Indeed, the
model assumes that, at some level of representation, a
movement is represented with a topology-preserving
map as a sequence of strokes to virtual targets. This
map can be simulated, for example, using a grid of
leaky integrators (Privitera and Plamondon, 1995).
Taking the virtual targets as input, the global activation
of the map, as described by competitive population
coding, will be strictly correlated with the kinematic
state of the ongoing external movement. In this context,

synchronisation instants between consecutive motor
strokes can be detected; that is, the temporal synchroni-
sation of a stroke is partly determined by the shape
itself. We have shown, among other things, that such a
model could be used to control both the generation and
the learning of target-directed movements (Plamondon
and Privitera, 1996).

6. Conclusion

In this paper, a new method based on the kinematic
theory of rapid human movement has been proposed to
represent, generate and analyse simple and complex
planar movements. The vectorial delta-lognormal
model involved provides a representation of an action
plan that can be used to reproduce movements in both
the kinematic and the static domains. To represent a
basic movement (a single stroke), the model requires a
set of nine parameters (plus the starting point of the
first stroke) that totally describes the movement in both
domains. Complex movements are described by the
model as a vectorial summation of time-overlapped
single strokes. It is shown that the relationship and the
shape of curvilinear and angular velocities are the resul-
tant of the vectorial summation of single vectors, and
can be very well approximated by the model.

A method for parameter estimation and optimisation
is proposed in this paper. A two-step approach is
proposed, one step to approximate the parameters and
a second to optimise the solution by means of a robust
technique for nonlinear regression analysis. The opti-
mality of the solution of a nonlinear regression tech-
nique applied to a multi-domain problem is not
guaranteed, but a realistic solution can be obtained for
the movement representation problem, kinematic analy-
sis and movement control. Even if the solution found is
not necessarily either unique or optimal, one might
assume that the repetition of the same estimation
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Fig. 8. Effect of starting time on complex movements: (a) moderate stroke overlap; (b) significant stroke overlap.

method over a large set of individual data will lead to
a set of parameter classes that describes typical experi-
mental conditions. Intraclass and interclass statistics
will then be useful to provide a new method for
analysing and characterising changes that occur be-
tween these experimental conditions.

Parameter extraction can be used in various applica-
tions and domains, especially in neuroscience, to study
simple movement representation and control, oscilla-
tory movement analysis and complex movement plan-
ning and representation (Plamondon, 1998).
Experiments on perturbed movements, as shown briefly
in this paper, can also be explained by the model and
new ways to analyse and understand the effects of
partially hidden movements, trajectory correction
strategies and retroaction can also be explored.

All these analyses can be conducted because the
delta-lognormal model theoretically provides some cues
to distinguish between single ballistic strokes (with up
to three velocity peaks) and complex disturbed move-
ments that also encompass multiple velocity peaks (see
Fig. 4). Indeed, a principle of stroke minimisation can
be assumed that will favour the reconstruction of a

signal using the minimum number of strokes. Using this
approach, it is found that optimal reconstruction of
multi-stroke movements is generally characterised by
the fact that successive strokes are generated in differ-
ent (and mostly nearly opposite) directions. If an analy-
sis-by-synthesis leads to successive movements with
almost the same direction, a multi-peak stroke can be
assumed to be hidden in the signal, instead of a se-
quence of two or three single-peak strokes.
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