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Abstract. How do space and time relate in rhythmical tasks that
require the limbs to move singly or together in various modes of
coordination? And what kind of minimal theoretical model could
account for the observed data? Earlier findings from human cyclical
movements were consistent with a nonlinear, limit cycle oscillator
model (Kelso, Holt, Rubin, & Kugler, 1981), although no detailed
modeling was performed at that time. In the present study, kinematic
data were sampled at 200 samples/second and a detailed analysis of
movement amplitude, frequency, peak velocity, and relative phase (for
the bimanual modes, in-phase, and anti-phase) performed. As frequency
was scaled from 1 to 6 Hz (in steps of 1 Hz) using a pacing metronome,
amplitude dropped inversely and peak velocity increased. Within a
frequency condition, the movement's amplitude scaled directly with its
peak velocity. These diverse kinematic behaviors were modeled
explicitly in terms of low-dimensional (nonlinear) dissipative
dynamics with linear stiffness as the only control parameter. Data
and model are shown to compare favorably-.---The abstract, dynamical
model offers a unified treatment of a number of fundamental aspects of
movement, including 1) the postural steady state (When the linear
damping coefficient, a, is positive); 2) the onset of movement (when
the sign of a becomes negative); 3) the persistence and stability of
rhythmic oscillation [guaranteed by a balance between excitation (via
ax, a < 0) and dissipation (as indexed by the nonlinear dissipative
terms, 8x 3 and YX 2 x. This balance determines the limit CYCle, a
periodic attractor to which all paths in the phase plane (x,x)
convergeJ; 4) frequency and phase-locking between the hands; and 5)
SWitching among coordinative modes (the latter properties due to a
nonlinear coupling structure, see Haken, Kelso, & Bunz, 1985). In
short, we show how a rather simple dynamical control structure
requiring variations in only one system parameter can describe the
spatiotemporal behavior of the limbs moving singly and together. The
model is open to further empirical tests, which are underway.
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1. Introduction

How do space and time relate in rhythmical tasks that require the hands
to move singly or together in various modes of coordination? And what kind of
minimal theoretical model could account for the observed data? The present
paper addresses these fundamental questions, which are of longstanding
interest to experimental psychology and movement science (e.g., von Holst,
1937/1973; Scripture, 1899; Stetson & Bouman, 1935). It is well known, for
example, that discrete and repetitive movements of different amplitude vary
systematically in movement duration (provided accuracy requirements are held
constant, e.g., Craik, 1947). This and related facts were later formalized
into Fitts's Law (1954), a relationship between movement time, movement
amplitude, and target accuracy whose underpinnings have been extensively
studied (and debated upon) quite recently (e.g., Meyer, Smith, & Wright, 1982;
Schmidt, Zelaznik, Hawkins, Frank, & Quinn, 1979).

In the present study, the accuracy of movement is neither fixed nor
manipulated as in many investigations of Fitts's Law: only frequency is
scaled systematically and amplitude allowed to vary in a natural way.
Surprisingly, there has been little research on movements performed under
these particular experimental conditions (see Freund, 1983). Fel'dman (1980)
reports data from a subject who attempted to keep a maximum amplitude (elbow
angular displacement) as frequency was gradually increased to a limiting value
(7.1 Hz). An inverse relationship was observed, accompanied by an increasing
tonic coactivation of antagonistic muscles. In addition, the slope of the
so-called "invariant characteristic" (see also Asatryan & Fel'dman, 1965;
Davis & Kelso, 1982)--a plot of joint torque versus joint angle--increased
with rhythmical rate, suggesting that natural frequency (or its dynamic
equivalent, stiffness) was a controllable parameter. Other studies have
scaled frequency, but fixed movement amplitude. Similar to Fel'dman's
conclusions, frequency changes over a range were accounted for by an increase
in system stiffness (e.g., Viviani, Soechting, & Terzuolo, 1976).

A rather different paradigm that has explored spatiotemporal
relationships in cyclic movement patterns has been employed by Brooks and
colleagues (e.g., Conrad & Brooks, 1974; see Brooks, 1979, for review). In
several studies, monkeys produced rapid elbow flexions/extensions as they
slammed a manipulandum back and forth between mechanical stops (thus allowing
no variation in amplitude). After a training period, the movement amplitudes
were shortened artificially by bringing the stops closer together. The
monkeys, however, continued to exert muscular control for the "same" length of
time, pressing the handle against the stops when they would normally have
produced larger amplitude movements. Since the original rhythm of rapid
alterations established during training was maintained in the closer-stop
condition, "the rhythm... or some correlate of it" (Brooks, 1979, p. 23) was
deemed to be centrally programmed. However, it is not at all clear how these
findings or conclusions relate to situations in which subjects are not
prevented from adjusting movement amplitude voluntarily in response to scalar
increases in rate (see Schmidt, 1985).

Turning to less confined experimental paradigms in which speech and
handwriting have been studied, several interesting results have come to light.
As speaking rate is increased, for example, the displacement of observed
articulator movements is reduced (e.g., Kelso, V.-Bateson, Saltzman, & Kay,
1985; Kent & Moll, 1972; Ostry & Munhall, 1985). The precise nature of the
1M
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function relating these variables, however, is not known because only a few
speaking rates have been employed in such experiments. In handwriting, it is
well known that when the amplitude of the produced letter is increased,
movement duration remains approximately constant (e.g., Hollerbach, 1981;
Katz, 1948; Viviani & Terzuolo, 1980). This handwriting result is
theoretically interesting in at least two respects. First, many interacting
degrees of freedom are involved in writing a letter, be it large or small, yet
quite simple kinematic relations are reproducibly observed at the end
effector. Second, because the anatomy and biomechanics are entirely different
between writing on notepaper and on a blackboard, a rather abstract control
structure is implicated.

In the present paper we offer a dynamical model that is entirely
consistent with such an abstract control structure and that is shown to
reproduce observed space-time relations of limbs operating singly or together
(in two specific modes of coordination) qUite nicely. Moreover, exactly the
same model can be applied to transitions among coordinative modes of hand
movement (see below). The present dynamical model is not tied locally and
concretely to the biomechanics of the musculoskeletal periphery. Rather, the
approach is consistent with an older view of dynamics, namely, that it is the
simplest and most abstract description of the motion of a system (Maxwell,
1877, p.~.----It is possible to use such abstract dynamics in complex
multidegree of freedom systems when structure or patterned forms of motion
arise (e.g., Haken, 1975, 1983). Such patterned regularities in space and
time are characterized by low-dimensional dynamics whose variables are called
order parameters. One can imagine, for example, the high dimensionality
involved in a simple finger movement were one to include a description of
participating neurons, muscles, vascular processes, etc., and their
interconnections. Yet in tasks such as pointing a finger, the whole ensemble
cooperates such that it can be described by a simple, damped mass-spring
dynamics for the end effector position. Thus, under the particular boundary
conditions set by the pointing task, end position and velocity are the order
parameters that fully specify the cooperative behavior of the ensemble. Such
"compression," from a microscopic basis of huge dimensionality to a
macroscopic, low-dimensional structure, is a general and predominant feature
of nonequilibrium, open systems (e.g., Haken, 1983). In the context of
movement, it is characteristic of a coordinative structure, viz., a functional
grouping of many neuromuscular components that is flexibly assembled as a
single, functional unit (e.g. Kelso, Tuller, V.-Bateson, & Fowler, 1984).

In earlier work (e.g., Kelso, Holt, Kugler, & Turvey, 1980; Kugler,
Kelso, & Turvey, 1980), we have identified such unitary ensembles--following
Fel'dman (1966)--with the qualitative behavior of a damped mass-spring system.
Such systems possess a point attractor, that is, all trajectories converge to
an asymptotic, static equilibrium state. Thus, the property of equifinality
is eXhibited, namely, a tendency to achieve an equilibrium state regardless of
initial conditions. The control structure for such motion can be
characterized by a set of time-independent dynamic parameters (e.g.,
stiffness, damping, equilibrium position) with kinematic variations (e.g.,
position, velocity, acceleration over time) emerging as a consequence. This
dynamical model has received a broad base of empirical support from studies of
single, discrete head (Bizzi, Polit, & Morasso, 1976), limb (e.g., Cooke,
1980; Polit & Bizzi, 1978; Schmidt & McGown, 1980) and finger movement
targeting tasks (Kelso, 1977; Kelso & Holt, 1980). In addition, point
attractor dynamics can be shown to apply not only to the muscle-joint level
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but to the abstract, task-level of description as well (see Saltzman & Kelso,
in press). That is, a dynamical description is appropriate at more· than one
"level." Striking support for this notion has been recently accumulated by
Hogan and colleagues (see Hogan, 1985). In their work on postural maintenance
of the upper extremity, the well known "spring-like" behavior of a single
muscle was shown to be a property of the entire neuromuscular system. As
Hogan (1985) notes " ... despite the evident complexity of the neuromuscular
system, coordinative structures •.• go to some length to preserve the simple
'spring-like' behavior of the single muscle at the level of the complete
neuromuscular system" (p. 166).

It is important to emphasize that point attractor dynamics provide a
single account of both posture and targeting movements. Hence, a shift in the
equilibrium position (corresponding to a given postural configuration) gives
rise to movement (see, e.g., Fel'dman, in press). What then of rhythmical
movement, our major concern here? It is easy to see, in principle, how a
dynamical description might be elaborated to include this case. For example,
a single movement to a target may be underdamped, overdamped, or critically
damped depending on the system's parameter values (for example, see Kelso &
Holt, 1980). A simple way to make the system oscillate would be to change the
sign of the damping coefficient to a negative value. This amounts to
inserting "energy"! into the system. However, for the motion to be bounded,
an additional dissipative mechanism must be present in order to balance the
energy input and produce stable limit cycle motion. This combination of
linear negative damping and nonlinear dissipative components comprise an
escapement function for the system that is autonomous in the conventional
mathematical sense of a time-independent forcing function.

In the present research we adopt this autonomous description of
rhythmical movement, though we do not exclude--on empirical grounds alone--the
possibility that forcing may occur in a time-dependent fashion. Oscillator
theory tells us that nonlinear autonomous systems can possess a so-called
periodic attractor or limit cycle, that is, all tr~jectories converge to a
single cyclic orbit in the phase plane (x,x). Thus, a non-trivial
correspondence between periodic attractor dynamics and rhythmical movement
(entirely analogous to the foregoing discussion of point attractor dynamics
and discrete movement) is stability in spite of perturbations and different
initial conditions.

In a set of experiments several years ago, we demonstrated such orbital
stability (along with other behaviors such as mutual and sub-harmonic
entrainment) in studies of human cyclical movements (Kelso, Holt, Rubin, &
Kugler, 1981). Although our data were consistent with a nonlinear limit cycle
oscillator model for both single and coupled rhythmic behavior, no explicit
attempt to model the results was made at that time. More recently, however,
Haken, Kelso, and Bunz (1985) have successfully modeled the circumstances
under which observed transitions occur between two modes of coupling the
hands, namely antiphase motion of relative phase ~ 180 degrees, that involves
nonhomologous muscle groups, and in-phase motion of relative phase ~ 0 deg, in
which homologous muscles are used. The Haken et al. (1985)
nonlinearly-coupled nonlinear oscillator model was able to reproduce the phase
transition, that is, the change in qualitative behavior from antiphase to
inphase coordination that occurs at a critical driving frequency, as the
driving frequency (w) was continuously scaled (see Kelso, 1981, 1984;
MacKenzie & Patla, 1983). This model has been further extended in a
146
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quantitative fashion to reveal the crucial role of phase fluctuations in
provoking observed changes in behavioral pattern between the hands and to
further identify the phenomenon as a nonequilibrium phase transition (Schaner,
Haken, & Kelso, 1986). Remarkably good agreement between Schaner et al. 's
(1986) stochastic theory and experiments conducted by Kelso and Scholz (1985)
has been found.

In the present work we provide quantitative experimental results
pertinent to the foregoing modeling work of Haken et al. (1985) and Schaner
et al. (1986). For example, although the Haken et al. (1985) model provided
a qualitative account of decreases in hand movement amplitudes with increasing
frequency, the actual function relating these variables was not empirically
measured in earlier experiments nor was any fit of parameters performed. A
goal of this research is to show how a rather simple dynamical model ("control
structure")--requiring variations in only one system parameter--can account
for the spatiotemporal behavior of the limbs acting singly and together. The
experimental strategy was to have subjects perform cyclical movements in
response to a metronome whose frequency was manipulated (in 1 Hz steps)
between 1 and 6 Hz. The data reveal a reciprocal relationship between cycling
frequency and amplitude for both single and bimanual movements that is stable
and reproducible. This constraint between the spatial and temporal aspects of
movement patterns invokes immediately a nonlinear dynamical model (linear
systems exhibit no such constraint), the particular parameters of which can be
specified according to kinematic observables (e.g., frequency, amplitude,
maximum velocity). Though we make no claims for the uniqueness of the present
model, we do show that other models can be excluded by the data as well as
suggest explicit ways in which uniqueness may be sought.

2. Methods

2.1 Subjects

The subjects were four right-handed male volunteers, none of whom were
paid for their services. They participated individually in two experimental
sessions, the sessions being separated by a week. Each session consisted of
approximately one hour of actual data collection.

2.2 Apparatus

The apparatus was a modification of one described in detail on previous
occasions (Kelso & Holt, 1980; Kelso et al., 1981). Essentially it consisted
of two freely rotating hand manipulanda, which allowed flexion and extension
about the wrist (radiocarpal) joint in the horizontal plane. Angular
displacement of the hands was measured by two DC potentiometers riding the
shafts of the wrist positioners. The outputs of the potentiometers and a
pacing metronome (see below) were recorded with a 16-track FM tape recorder
(EMI SE-7000).

2.3 Procedure

Subjects were placed in a dentist's chair, their forearms rigidly placed in
the wrist-positioning device such that the wrist joint axes were directly in
line with the positioners' vertical axes. Motion of the two hands was thus
solely in the horizontal plane. Vision of the hands was not excluded.
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Each experimental session was divided into two sub-sessions. In the first
session, single-handed movements were recorded, followed by two-handed
movements; this was reversed for the second session. Within each sub-session,
preferred movements were recorded, followed by metronome-paced movements. For
the preferred trials, subjects were told to move their wrists cyclically "at a
comfortable rate." On the paced trials, subjects were told to follow the
"beeps" of an audio metronome to produce one full cycle of motion for each
beep. Pacing was provided for six different frequencies, 1, 2, 3, 4, 5, and 6
Hz, presented in random order. For both the preferred and paced conditions,
subjects were not explicitly instructed concerning the amplitude of movement,
e.g., were not told to move their wrists maximally.

For the single-hand subsession there were, therefore, 14 conditions, one
preferred and six paced data sets being collected for each hand. For the
two-handed trials, there were also 14 conditions, one preferred and six paced
data sets being collected for each of two different movement patterns. These
bimanual patterns consisted of a mirror, symmetric mode that involved the
simultaneous activation of homologous muscles and a parallel, asymmetric mode
that involved simultaneous activation of nonhomologous muscle groups (see,
e.g., Kelso, 1984). Two trials of data were collected for each condition in
each session. For the preferred trials, 30 seconds of data were collected,
while 20 seconds were collected at the pacing frequencies of one to four Hz,
and six to eight seconds at five and six Hz, to minimize fatigue effects.

2.4 Data Reduction and Dependent Measures

Following the experimental sessions, the movement signals were digitized at
200 samples/second and smoothed with a 35 ms triangular window. Instantaneous
angular velocity was computed from the smoothed displacement data via the
two-point central difference algorithm, and smoothed with the same triangular
window (see Kay, Munhall, V.-Bateson, & Kelso, 1985, for details of the signal
processing steps involved). A cycle was defined by the occurrence of two
(adjacent) peak extension events, which, along with peak flexions, were
identified by a peak-picking algorithm. Peak velocity was measured using the
same peak-picker on the velocity data; the values reported here are summaries
across both positive and negative velocity peaks. Cycle frequency (in Hz) was
defined as the inverse of the time between two peak extensions, and cycle
amplitude (peak-to-peak, in deg) as the average of the extension-flexion,
flexion-extension half-cycle excursions. For the two-handed trials, the
relative phase (or phase difference) between the two hands was also computed
on a cycle-by-cycle basis, using Yamanishi, Kawato, and Suzuki's (1979)
definition. This is a purely temporal measure, and is not computed from a
motion's phase plane trajectory (Kelso & Tuller, 1985). The measurement is
based on the temporal location of a left peak extension within a cycle of
right hand movement as defined above. In our convention, for the mirror mode,
phase differences less than zero deg indicate that the left hand leads the
right, and vice versa for positive values. For the parallel, asymmetric mode,
values less than 180 deg indicate that the left hand leads the right (i.e.,
the left peak extension event is reached prior to exactly 180 deg); values
greater than 180 deg indicate that the right hand leads. For qualitative
comparisons between model-generated simulations and data, phase plane
trajectories were also examined. These were created by simultaneously
plotting transduced angular position against the derived instantaneous
velocity.
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After obtaining these measures for each cycle, measures of central tendency
(means) and variability across all cycles of each trial were obtained.
Coefficients of variation (CVs) were used as variability measures for
frequency, amplitude, and peak velocity, in order to remove the effects of the
frequency scaling on the mean data and to compare variability data validly
across the observed frequency range. The standard deviation was used as the
phase variability measure, because coefficients of variation would be clearly
inappropriate in comparing the two patterns of movement, whose mean phase
differences were always around zero and 180 deg. These within-trial summary
data are reported in the following results section because of the large number
of cycles collected. In under 1 percent of the trials, a trial was lost due
to experimenter error. Thus, for statistical purposes, means across trials
within each experimental condition were used.

3. Results

The means and variability measures of frequency (in Hz), amplitude (in
deg), peak velocity (in deg!sec) and relative phase (for the two-handed
conditions) are presented in Tables 1 to 4, collapsed across trials, sessions,
and subjects. Both preferred and paced data are included in these tables.

Table

Mean frequency, amplitude, and peak velocity for single-handed trials,
collapsed across tri al, sessions, and subjects. Average within-trial,
cross-cycle coefficients of variation (in percent).

Frequency Amplitude Peak Velocity
(Hz) (Degrees) (Degs!sec)

L R L R L R
Preferred: 2.04 2.04 46.87 46.88 311.91 307.08

3.8 3.3 7.2 6.4 6.5 6. 1

Paced:

Hz 1. 00 1.00 51.17 53.54 194 . 04 187 . 40
6.9 4.9 5.8 7.0 8.5 8.7

2 Hz 2.00 2.00 43.11 46.01 291 .19 298.62
3.7 3.3 7.6 7.7 8.2 7.8

3 Hz 3.00 3.00 37.64 40.50 358.17 380.45
4.7 4.0 10.7 8.1 9.4 7.0

4 Hz 4.02 4.04 38.64 33.54 463.31 416.85
6.5 4.8 10.7 10.7 9.0 8.6

5 Hz 5.19 5. 14 32.82 33.35 540.37 522.10
7.8 4.9 13.7 9.6 9.8 7.6

6 Hz 6.33 6.01 26.81 27.83 516.89 499.33
6.9 6.6 21.8 12.9 10.9 10.7
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Table 2

Mean frequency, amplitude, and peak velocity for homologous (mirror) two hand
trials, collapsed across trial, sessions, and subjects, for the stable data
only. Average within-trial, cross-cycle coefficients of variation (in
percent).

Frequency Amplitude Peak Velocity
(Hz) (Degrees) (Degs!sec)

L R L R L R
Preferred: 1. 90 1. 90 41 .49 47.05 252.93 280.72

7.3 6.6 4.0 3.7 7.3 6.6

Paced:

Hz 1.00 1.00 52.71 56.85 188.30 196.60
3.9 4.0 6.2 6.0 8.6 8.2

2 Hz 2.00 2.00 38.80 42.20 260.85 280.91
3.5 3.3 9.6 8.1 9.4 7.5

3 Hz 3.01 3.00 33.15 35.85 318.45 345.51
5.3 4.0 11.0 9.6 9.4 8.1

4 Hz 4.08 4.08 30.50 32.95 387.18 415.44
8.1 5.7 14.1 11.6 9.5 9.0

5 Hz 5.29 5.25 26.12 29.64 430.64 474.90
9.7 5.5 17.6 13.5 12.4 11.2

Table 3

Mean frequency, amplitude, and peak velocity for nonhomologous (parallel) two
hand trials, collapsed across trials, sessions, and subjects, for the stable
data only. Average within-trial, cross-cycle coefficients of variation (in
percent) •

Frequency Amplitude Peak Velocity
(Hz) (Degrees) (Degs!sec)

L R L R L R
Preferred: 1. 56 1.56 52.30 57.50 288.57 314.39

3.8 4. 1 5.7 4.7 6.8 4.9
Paced:

Hz 1. 01 1. 01 53.22 54.79 196.21 201 .96
4.2 3.9 6.5 5.7 9.3 7.7

2 Hz 2.02 2.00 46.41 48.21 316.15 325.46
4.4 3.8 9.3 7.7 7.8 7.3
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Table 4

Mean phase for homologous (mirror) and nonhomologous (parallel)
trials, collapsed across trials, sessions, and subjects.
within-trial, cross-cycle standard deviations, in parentheses.

Phase
(Degrees)

Homologous Nonhomologous
Preferred: 6.46 185.28

( 11 .36) (11.09)
Paced:

Hz 3.60 177.75
(6.75) (9.54)

2 Hz 10.44 185.99
(10.84) (16.65)

3 Hz 6.19 188.82
(1 8.00) (52.49)

4 Hz 4.00 193.64
(26.36) (93.46)

5 Hz -5.81 181 .68
(42.53) (104.02)

6 Hz 5.33 168.88
(51.91) (110.38)

3.1 Preferred Conditions

3.1.1 Frequency, Amplitude, and Peak Velocity

two hand
Average

151

For both single and bimanual preferred movements, repeated-measures ANOVAs
were performed on the within-trial means and variability measures obtained for
frequency, amplitude, and peak velocity. The design was a 2x3x2 factorial,
with hand (left, right), movement condition (single, mirror, and parallel),
and session as factors.

Mean data: Looking first at frequency means, the only effect found was for
movement--COndition, F(2,6) = 9.14, p < .05. Post-hoc Scheffe tests show that
the single (2.04 Hz) and mirror (1.90 Hz) mode preferred frequencies were
similar to each other but higher than the parallel mode frequency (1.56 Hz).
The two hands did not differ in preferred frequency in any of the three
movement conditions. Turning to amplitude means, a main effect for hand,
f(1,3) = 14.16, E. < .05, and a hand by mode interaction, f(2,6) = 5.81, E. <
.05, occurred. There was no significant movement condition effect, suggesting
that the three movement conditions assumed the same amplitude in the preferred
case. However, the interaction indicated that the amplitude means for the
single conditions were identical for the two hands, but differed in both
bimanual conditions, the left hand assuming a lower amplitude than the right
in each case. No significant main effects or interactions were found for the
preferred peak velocity data.



Kay et al.: Single and Bimanual Rhythmic Movements

Variability data: ANOVAs performed on the frequency and peak velocity
within-trial coefficients of variation revealed no effects. For the amplitude
CVs, however, there was a significant effect for movement condition, f(2,6)
5.17, E < .05. Post-hoc tests showed that single hand amplitudes were more
variable than parallel amplitudes, which were more variable than those for
mirror movements.

3.1.2 Relative Phase

For the bimanual movement conditions, repeated-measures ANOVAs were
performed on the within-trial means and standard deviations of the relative
phase between the two hands. The design was a 2x2 factorial, coordinative
mode (mirror and parallel) by session. The only effect observed for phase was
mode, f(1,3) = 13756.6, E < .0001, showing that the subjects were indeed
performing the task properly, producing two distinct phase relations between
the hands. The 95 percent confidence interval for the mirror mode was 6.56 ±
11.34 deg, and for the parallel mode, 185.28 ± 9.93 deg; the intervals overlap
with the "pure" modes of zero and 180 deg, respectively (although in both
modes the right hand tends to lead the left). There were no effects or
interactions for phase variability in the preferred conditions.

3.2 Metronome-paced Conditions

As can be seen in Tables 1-4, the manipulation of movement frequency had a
profound effect on almost all the measured observables. With increasing
frequency, amplitude decreased, while peak velocity and all variability
measures appeared to increase. There were some apparent differences among the
three movement conditions as well, although the two hands behaved quite
similarly. Valid comparisons among the experimental conditions on the
kinematic variables of frequency, amplitude, and peak velocity can only be
made, however, when it is established that subjects are actually performing
the bimanual tasks in a stable fashion. Looking at Table 4, one can see that
the phase variability of the two modes increased quite rapidly with increasing
frequency.

In a 6x2x2 factorial design, with pacing frequency (1-6 Hz in one Hz
steps), coordinative mode (mirror and parallel), and session as factors, the
only effect observed on the mean relative phase data was mode, ~(1,3)

233.01, E < .001, and the means observed across all pacing frequencies were
4.21 and 182.93 deg in the mirror and parallel modes, respectively.
Apparently the two criterion phase angles are approximated, on the average,
within trials. However, effects for pacing frequency, f(5,15) :-124.91, E <
.0001, mode, F(1,3) 265.75, P < .001, and their interaction, F(5,15) =
18.24, E < .001~ were found on the within-trial relative phase -standard
deviations. The interaction was consistent with both main effects:
variability in phase increased with increasing frequency for both modes, but
the parallel mode's variability increased much faster than the mirror mode's.
Note, in Table 4, the order of magnitude increase in phase variability in the
parallel mode between two Hz and three Hz. A comparable degree of phase
variability in the mirror mode is not evident until the six Hz pacing
condition. This result is consistent with other findings (e.g., Kelso, 1984;
Kelso & Scholz, 1985) that the parallel mode is highly unstable between two
and three Hz for similar movements, and a transition to the mirror mode is
frequently observed above that frequency.
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The foregoing pattern of phase variability suggests, therefore, that we
perform two separate analyses on the remainder of the paced data, in order to
make comparisons only within the stable regions of behavior. A reasonable
criterion for phase stability is ±45 deg. Thus, we now report a) the analyses
comparing mirror mode and single hand behavior from one to five Hz and b) the
analyses on all three movement conditions for one and two Hz.

3.2.1 Single Hand Versus Mirror Mode Movements,One to Five Hz

For single hand and mirror mode paced movements, repeated-measures ANOVAs
were performed on the within-trial means and variability measures obtained for
frequency, amplitude, and peak velocity. The design was a 5x2x2x2 factorial,
with pacing frequency (1 to 5 Hz in one Hz steps), hand (left, right),
movement condition (single and mirror) and session as factors.

Mean data: Looking at the observed frequency means, the pacing frequency
was, as expected, a highly significant effect, K(4,12) = 1117.76 £ < .0001.
The only other effect present was a weak three-way interaction, session by
hand by pacing frequency, K(4,12) = 4.51 £ < .05, indicating some very minor
fluctuations in observed frequency. The main feature of this interaction is a
simple effect for mode at the three Hz pacing frequency, F(2,6) = 9.02, p <
.02, which was observed for none of the other pacing frequencies. -

For the amplitude means, the main effect of pacing frequency, K(4,12)
9.51, £ < .005, shows that amplitude decreased with increasing frequency.
Three of the four subjects' linear correlations between amplitude and
frequency were significant, (Pearson £s = -.50, -.86, and -.87, £s < .001),
while the fourth subject's amplitude trend, although decreasing, failed to
reach significance (r = -.18, P = .12). The only other effect on amplitude
was a weak three-way interaction,-mode by hand by pacing frequency, F(4,12)
3.30, £ < .05, chiefly the result of the left hand amplitude in the single
case at 5 Hz being slightly higher than the rest of the data at that
frequency. Otherwise no differences were found, the two movement conditions
exhibiting much the same amplitude across the entire frequency range. Pacing
frequency, K(4,12) 8.26, £ < .005, was the only significant effect on the
peak velocity means; the latter increased with increasing frequency for both
movement conditions.

The main effect of pacing frequency found for both amplitude and peak
velocity indicates that each covaries with frequency of movement, but an
interesting relationship exists between the two: looking at the means across
each pacing frequency, amplitude and peak velocity exhibited an inverse
relation (see Figure 1) for both the single hand and mirror movements (r
-.986 for the single hands, r = -.958 for the mirror movements, on the overall
means; N = 5 and £ < .01 for-both correlations). At first blush, this result
seems to contradict the wealth of findings on this relationship that showed
that peak velocity scales directly with movement amplitude (see Kelso & Kay,
in press, for a review). However, an analysis of the individual trial data
within a given pacing frequency condition indicates that peak velocity and
amplitude do indeed scale directly with each other (see Figure 1). Pearson £
correlations for each of the movement frequencies are listed in Table 5, and
range from .772 to .997 (£ < .01 in all cases). Slopes of the lines of best
fit for peak velocity as a function of amplitude are also reported; none of
the intercepts were significantly different from zero.
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Figure 1. Amplitude (in deg) and peak-velocity (in deg/sec) individual trial
data for the 1 to 5 Hz pacing frequencies, and means within each
frequency. I. Single hand movements. II. Mirror mode movements.

Table 5

Correlations of amplitude and peak velocity, within each pacing frequency, for
stable frequencies. Pearson r, slope (m) of the line of best fit (peak
velocity as a function of amplitude) , and number of trials for each
correlation are presented.

Single Mirror Parallel
r m N r m N r m N

3-:44 3-:98
-

4-:62 261 Hz .772 32 .903 30 .733
2 Hz .970 6.08 32 .972 6. 19 32 .967 6.58 32
3 Hz .995 9.09 32 .992 9.15 32
4 Hz .997 11 .77 33 .996 12.82 36
5 Hz .991 15.94 34 .975 16.86 28

Variability data: The within-trial coefficients of variation (CVs) for
observed frequency showed significant effects of pacing frequency, F(4,12) =

13.68, p < .0005, hand, F(1,3) = 12.59, p < .05, and the pacing frequency by
mode interaction, F(4,12) 5.92, p <-.01. Overall, the left hand was more
variable in frequency than the right (CVs of 6.0% and 4.4%, respectively).
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Analysis of simple main effects showed that pacing frequency was a significant
effect for both single hand and mirror movements, F(4,12) = 3.989, £ < .05,
and £(4,12) 33.24, £ < .0001, respectively, but that the only difference
between the two movement conditions occurred at three Hz, F(1,3) = 20.18, p <
.05. At that pacing frequency, the mirror mode was slightly more variable
than the single hand movements.

The only significant effect on amplitude CVs was pacing frequency, F(4,12)
29.10, Q < .0001. Amplitude variability increased very consistently with

increasing movement frequency (see also Figure 1, which shows the cross-trial
variability in amplitude as well as in peak velocity). For the peak velocity
CVs, session, £(1,3) = 13.10, £ < .05, and pacing frequency, £(4,12) = 3.51, £
< .05, were significant effects; the second session's variability was lower
than the first's (the only clear-cut practice effect in the experiment), and
higher frequency movements were consistently more variable on this measure.

3.2.2 Comparison of All Three Movement Conditions at One and Two Hz

For all three movement conditions, repeated measures ANOVAs were performed
on the within-trial means and variability measures obtained for frequency,
amplitude, and peak velocity. The design was a 2x2x3x2 factorial, with pacing
frequency (one and two Hz), hand (left, right), movement condition (single,
mirror, parallel), and session as factors.

Mean data: For the observed frequency, pacing frequency, F(l,3) = 32708.6,
p ~OOOl, and mode, F(l,3) = 6.64, p < .05, were significant effects, with
the parallel mode being slightly faster-than the other two movement conditions
overall. The difference, however, was less than one percent of the pacing
frequency. For amplitude, no main effects or interactions were found; the
three movement conditions assumed a single overall amplitude, and amplitude
differences were not apparent across the two observed frequencies. For peak
velocity, pacing frequency, F(l,3) = 19.32, p < .05, and its interactions with
movement condition, £(2,6) =-5.92, £ < .05, and hand, £(1,3) = 15.18, £ < .05,
were significant. A simple main effects analysis for the first of these
interactions indicated that the pacing frequency effect was significant for
the single and parallel movements, but not for the mirror mode. In addition,
the movement conditions differed at two Hz (order from least to greatest peak
velocity: mirror, single, parallel) but not at one Hz. The second
interaction was consistent with the associated main effects--the pacing
frequency effect was significant for both hands, and no simple effects for
hand appeared. However, at two Hz the right hand showed slightly greater peak
velocities than the left. As observed for single hand and mirror movements
(see above), amplitude and peak velocity covaried directly in the parallel
movements, within each pacing frequency (see Table 5).

Variability data: For observed frequency, no main effects or interactions
were found for the within-trial coefficients of variation (CVs). For
amplitude CVs, the movement condition by hand interaction was significant,
£(2,6) = 13.51, £ < .05, yet no simple main effects were found at any level of
the two independent variables. However, for the left hand, both bimanual
conditions were more variable than single hand movements, while the reverse
was true for the right. For peak velocity CVs, the only effect was a weak
three-way interaction of movement condition, hand, and frequency, £(2,6) =
7.87, £ < .05. 155
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Phase plane trajectories from 1 to 6 Hz. Left: representative
examples from the collected data set of one subject. Right:
trajectories of the hybrid model (Eq. 4.5), simulated on digital
computer.
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3.3 Qualitative Results--Examples of Phase Portraits

The shapes of the limit cycle trajectories can be very informative of the
underlying dynamics. Figure 2 shows typical phase plane trajectories for
single hand movements; a section of one trial is displayed for each of the
pacing frequencies from one to six Hz, along with the trajectories of the
model (see Section 4) at the same frequencies. As shown in the figure,
trajectory shape varies with movement frequency: higher frequency movements
appear to be somewhat more sinusoidal (i.e., more elliptical on the phase
plane) than lower frequency ones. This was especially apparent in going from
one to two Hz. Some subjects showed this tendency less than others, but the
shapes of the trajectories did not appear to differ among the three movement
conditions. Note also that the velocity profiles are unimodal in these
rhythmical movements, a result also observed in recent speech (Kelso et al.,
1985) and discrete arm movements (e.g., Bizzi & Abend, 1982; Cooke, 1980;
Viviani & McCollum, 1983).

4. Limit cycle models

In this section we first present a limit cycle model that accounts for a
number of observed kinematic characteristics of rhythmical hand movements,
including the observed amplitude-frequency and peak velocity-frequency
relations across conditions, as well as the peak velocity-amplitude
relationship within a given pacing condition. In addition, an adequate
generalization of the limit cycle model to coordinated rhythmic hand movements
is presented (Haken et al., 1985), and conclusions drawn from comparisons with
the experimental data. A discussion of the assumptions that are implicit in
our modeling strategy is deferred to the General Discussion.

Velocity Limit
Cycle

Position

Figure 3. Examples of phase plane trajectories for a limit cycle
for details).

(see text
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As noted earlier by Haken et al. (1985), a combination of two well-known
limit cycle oscillators is a strong candidate to model the observed monotonous
decrease of amplitude as a function of frequency. These two oscillators are
the van der Pol (van der Pol, 1927) and the Rayleigh oscillator (Rayleigh,
1894). The first is described by an equation of motion of the form:

( 4. 1)

where a, Y and w2 are constants. For a < 0 and Y > 0 this equation has a
limit cycle attractor. In a phase portrait in the (x,x)-plane this means that
there is a closed curve, on which the system rotates (the limit cycle) and to
which all trajectories are attracted after a sufficiently long transient time.
For lal « w the frequency of oscillation on and near the limit cycle is, to a
good approximation, just w (see Minorsky, 1962, Sect. 10.6). Figure 3
illustrates this situation schematically. An analytic description of the
limit cycle can be given if the slowly varying amplitude and rotating wave
approximations are used (Haken et al., 1985; see Appendix 1 for a brief
summary of the methods and the results). The amplitude of the limit CYCle,
which in this approximation is a harmonic oscillation, is found to be:

A=2/~ ( 4.2)

and is independent of the frequency w. Thus the van der Pol oscillator can
account for the intercept of the amplitude-frequency relation but not for its
monotonic decrease. The Rayleigh oscillator has the equation of motion

x + aX + (3X 3 + W 2 X = 0 ( 4.3)

and possesses a limi t cycle attractor for a < 0, (3 > 0, again wi th an
oscillation frequency w as long as lal « w. Using again the two
above-mentioned approximations we obtain the amplitude of this limit cycle as
(see Haken et al., 1985):

A = (2/w)~ ( 4. 4)

The decrease of amplitude with frequency observed in the data is captured by
this expression, although the divergence of (4.4) at small frequency is
clearly non-physical.

It is easy to imagine that a combination of both types of oscillators may
provide a more accurate account of the experimental results. Therefore, let
us consider the following model:

( 4.5)

which we refer to from now on as the "hybrid" oscillator. For S, Y > 0, a < 0
this yields again a limit cycle attractor of frequency w (for lal « w) with
amplitude (again in the approximations of Appendix 1):

A = 2/jal / C3Sw 2 + y)
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This function exhibits both a hyperbolic decrease in amplitude as well as a
finite intercept at zero frequency and accounts qualitatively for the
experimental data. In Figure 4 we have plotted the amplitude A of the hybrid
model together with the experimental data as a function of frequency. The two
parameters Sand Y were fitted (using a least squares fit, see Footnote 2)
while a was chosen as a = -O.05*wpreferred ( = .641 Hz) without a further
attempt to minimize deviations from the data. (The values for Sand Y were:
S .007095 Hz 3

, Y = 12.457 Hz, where A was taken to be of the same scale as
the experimental degree values.) The choice of a is consistent with the slowly
varying amplitude approximation (for which we need lal « 00; see Appendix 1)
and amounts to assuming that the nonlinearity is weak (see Appendix 2 and
General Discussion below). For illustrative purposes the corresponding
least-squares fits for the van der Pol and the Rayleigh oscillators are also
shown in Figure 4.

.•. -Observed
-0- - Hybrid osc

- van der Pol
.... - Rayleigh

\.

~\\
V~"~,'-

\.~.... \«.o~ ...
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Figure 4. Frequency (in Hz) versus amplitude (in deg) for the single hand
data and the curves of best fit for the van der Pol, Rayleigh, and
hybrid oscillators (see text). The observed data are the mean
values at each pacing frequency.

Note that only one fit parameter, S or Y respectively, was used for these
fits. It is obvious how the two foregoing models each account for only one
aspect of the experimental observations, and the hybrid accounts for both. In
summary, the model parameters were determined by: a) identifying the pacing
frequency with 00 (which is a good approximation for lal « 00); b) choosing a =

-0.05*wpreferred; and c) finding Band Y by a least squares fit of the
amplitude-frequency relation. A more stringent evaluation of the parameters
is possible if more experimental information is available (see the discussion
of the assumptions in General Discussion below). Note, however, that even on
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this level of sophistication the model accommodates several further features
of the data. For example the peak velocity-amplitude relation given by the
limit cycle model is the simple relation:

v
p wA (4.7)

This relation holds whenever the trajectory is close to the limit cycle. Thus
if trajectories fluctuate around the limit cycle (due to ever-present small
perturbations), we expect the scatter of the peak velocity-amplitude data to
lie on a straight line of slope w. Moreover, this same relation is shown to
hold in the situation where amplitude varies across trials (see Figure 1 and
Table 5). Note that peak-to-peak amplitude equals 2A so that the slopes
reported in Table 5 are w/2 n*frequency. An additional piece of
experimental information concerns the peak velocity-frequency relation (see
Table 1 and Figure 5), the theoretical prediction for which results if we
insert (4.6) into (4.7) as follows:

v
p 2wl laj / (38w 2 + y) (4.8)

This theoretical curve is also included in Figure 5. It
emphasize that all parameters have been fixed previously.
between model and experiment is quite close.

is important to
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Figure 5. Frequency (in Hz) versus peak velocity (in deg/sec) for the single
hand data and the corresponding function for the hybrid model (see
Eq. 4.8), as derived from the amplitude-frequency data. The
observed data are the mean values at each pacing frequency.
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We now turn to the modeling of the two-handed movements. The essential
idea is to couple two single hand oscillators of type (4.5) together.
Assuming symmetry of the two hands, Haken et al. (1985) have established a
coupling structure that accounts for both the in-phase (symmetric/mirror) and
the anti-phase (asymmetric/parallel) coordinati ve modes as well as the
transition from an asymmetric to symmetric organization as frequency is scaled
(see Introduction). This coupling structure has the following explicit form:

Xl + g(X I ,Xl) (X 1 X2 )[a + b(X I - X2 )2J

X2 + g(X 2 ,X 2 ) (x 2 Xl )[a + b(X 2 - Xl )2 J

where

g(x,x)
. Sx 3 + Yx 2 x w2xax + +

( 4.9)

(4.10)

(4.11)

and a and b
Appendix 1.
amplitudes

are
(see

coupling constants. Using again the apprOXimations of
Haken et al., 1985, for the calculations), one obtains the

/
lUI + a ( 1 - cos <jJ )

A
2

- 2 3Sw 2 + Y _ 3b + 4bcos<jJ - bcos2<jJ
(4.12)

In this expression <jJ = <1>2 - <1>1 is the relative phase of the two oscillators,
which is <I> ±180 deg for the asymmetric motion and <I> = 0 deg for the
symmetric motion. Note that for a = b = 0 we recover the amplitude of the
single hybrid oscillator (see equation (4.6). Indeed, the experimental
observation that the amplitudes of the two-handed modes of movement did not
differ significantly from the single hand amplitudes (see Sect. 2.1.1) leads
us to the conclusion that the coupling is weak in the sense that a « a and b
«Y. This is an interesting result in that it shows that even when the
coupling is much weaker than the corresponding dissipative terms of the single
hand oscillators (which guarantee a stable amplitude-frequency relation),
phase locking and transi tions within phase locking can occur. This may
rationalize, to some degree, the ubiquity of phase locking in the rhythmical
movements of animals and people and is worthy of much more investigation.

A final remark concerns the preferred frequencies chosen by subjects in the
single hand condi tion compared with the two coordinati ve modes. The
observation was that the preferred frequency was always lower in the
asymmetric mode than in either the symmetric mode or the single hand movement
conditions, which were roughly equal (see Sect. 2.1.1). As mentioned before,
a transition takes place from the asymmetric mode to the symmetric mode as
frequency is scaled beyond a certain critical value. The coupled oscillator
model accounts for that transition in the sense that the stationary state <I> =
±180 deg for the relative phase becomes unstable (Haken et al., 1985). In
fact, the stability of that state decreases when frequency increases, as
exhibited by the relaxation rate of this state (see Schaner et al., 1986, and
General Discussion). A simple analysis reveals that the preferred frequency
in the asymmetric mode is shifted such that the stability of the relative
phase is larger than it would be if the preferred frequency of the single hand
oscillation was maintained. This observation may well be important for a
fuller understanding of the preferred frequencies, in terms, perhaps, of
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variational principles such as minimization of energy (see Hoyt & Taylor,
1981 ; Kelso, 1984).

5. General Discussion

In this paper we have shown how a low-dimensional description in terms of
dissipative dynamics can account--in a unified manner--for a number of
observed facts. First, the present "hybrid" model includes the well-known
mass-spring characteristic of postural tasks (see Introduction). That is,
when the linear damping coefficient, a, is positive, the model exhibits a
stable equilibrium position in the resting state (x = 0, x = 0 is a point
attractor). Second, when the sign of the linear damping coefficient is
negative, this equilibrium point is unstable, and an oscillatory solution with
a frequency determined by the linear restoring force, w2 x, is stable and
attracting. The persistence of the oscillation and its stability is
guaranteed by a balance between excitation (via aX with negative damping
coefficient, a < 0), and dissipation (as indexed by the nonlinear dissipative
terms, Bx 3 and Yx 2 x). This balance determines the limit cycle, a periodic
attractor to which all paths in the phase plane (x,x) converge from both the
inside and the outside. For example, if x or x are large, corresponding to a
condition outside the limit cycle, the dissipative terms dominate and
amplitude will decrease. If, on the other hand, x and x are small, the linear
excitation term dominates and amplitude will increase (see Figure 3). Third,
oscillatory behavior is systematically modified by specific parameterizations,
such as those created by a pacing manipulation. The model accounts for the
amplitude-frequency and peak velocity-frequency relations with a simple change
in one parameter, the linear stiffness w2 (for unit mass). Further support
for the latter control parameter comes from the direct scaling relation
(observed within a pacing condition) of peak velocity and amplitude--a
relationship that is now well-established in a variety of tasks (e.g., Cooke,
1980; Jeannerod, 1984; Kelso, Southard, & Goodman, 1979; Kelso et al., 1985;
Ostry & Munhall, 1985; Viviani & McCollum, 1983). Thus, a number of kinematic
characteristics and their relations emerge from the model's dynamic structure
and parameterization. Fourth, and we believe importantly, the same oscillator
model for the individual limb behavior can be generalized to the case of
coordinated rhythmic action. A suitable coupling of limit cycle (hybrid)
oscillators gives rise to transitions among modes of coordination when the
pacing frequency reaches a critical value (Haken et al., 1985; Kelso & Scholz,
1985; Schaner et al., 1986).

In summary, the model offers a synthesis of a variety of quite different
movement behaviors that we have simulated explicitly on a digital computer
(see Figure 2). That is, a successful implementation of the model has been
effected that is now subject to further controlled experimentation. One
appealing aspect of the model is that it formalizes and extends some of
Fel'dman's (1966) early but influential work (see, e.g., Bizzi et al., 1976;
Cooke, 1980; Kelso, 1977; Ostry & Munhall, 1985; Schmidt & McGown, 1980).
Fel'dman (1966) presented observations on the execution of rhythmic movement
that strongly suggested that the nervous system was capable of controlling the
natural frequency of the joint using the so-called invariant
characteristics--a plot of joint angle versus torque (see also Berkenblit,
Fel'dman, & Fukson, in press; Davis & Kelso, 1982). But Fel'dman also
recognized that " ... a certain mechanism to counteract damping in the muscles
and the joint •.. " must be brought into play, in order to " ... make good the
energy losses from friction in the system" (1966, p. 774). Our model
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shows--in an abstract sense--how excitation and dissipation balance each other
so that stable rhythmic oscillations may be produced.

of low-dimensional,
tha t wi 11 now be

For reasons of

On the other hand, in modeling movement in terms
nonlinear dynamics, we have made certain assumptions
addressed, as they require additional experimental test.
clarity we list these modeling assumptions systematically:

1) Equifinality. This is a pivotal issue of the entire approach. The very
fact that the oscillatory movement pattern can be reached reproducibly from
uncontrolled ini tial condi tions indicates--as far as the theory is
concerned--that (a) a description of the system dynamics in terms of a single
variable (a displacement angle about a single rotation axis) and its
derivative is sufficient, that is, there are no hidden dynamical variables
that influence the movement outcome and (b) the modeling in terms of a low
dimensional description must be dissipative in nature (allowing for attractor
sets that are reached independent of initial conditions). An experimental
test of the equifinality property consists of studying the stability of the
movement pattern under perturbations. Although such stability was observed in
earlier studies (Kelso et al., 1981), a much more systematic investigation is
now requ ired.

2) Autonomy. A further reduction in the number of relevant variables is
possible through the assumption of autonomous dynamics. Nonautonomous
forcing--as mentioned in the introduction--essentially represents one
addi tional variable, namely time itself. Apart from the conceptual advantages
discussed in the introduction there are experimental ways to test this
assumption. One such method consists of studying phase resetting curves, in
perturbation experiments (Winfree, 1980). For example, in a system driven by
a time-dependent forcing function (e.g., a dri ven damped harmonic oscillator),
perturbations will not introduce a permanent phase shift. On the other hand,
if consistent phase shifts are observed in the data, the rhythm cannot be due
fundamentally to a nonautonomous driving element.

A strong line of empirical support for the autonomy assumption comes from
the transition behavior in the bimanual case, as frequency is scaled (Kelso,
1981, 1984; Kelso & ScholZ, 1985). Here autonomous dynamics were able to
account for the transition behavior in some detail (Haken et al., 1985;
Schaner et al., 1986). Note also that during the transition one or both of
the hands must make a shift in phase, a result that would require a not easily
understood change in the periodic forcing function(s). That is, one or both
"timing programs" would have to alter in unknown ways to accomplish the
transi tion.

3) Minimality. The effective number of system degrees of freedom can be
further limited by the reqUirement that the model be minimal in the following
sense: the attractor layout (i.e., the attractors possi ble for varying model
parameters) should include only attractors of the observed type. In the
present single hand case, for example, the model should not contain more than
a (mono-stable) limit cycle and a single fixed point (corresponding to
posture). This limits the dynamics to those of second order: Higher orders
would allow, for example, quasiperiodic or chaotic solutions, (e.g., Haken,
1983), which have not been observed thus far.
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The above considerations (equifinality, autonomy,
constrain the number of possible models considerably.
general form of the model given these constraints is:

x + f(x,x) = 0

minimality) thus
Explicitly, the most

(5. 1 )

We can illustrate the relation of the hybrid model to the general case (5.1)
by expanding f in a Taylor series (assuming symmetry under the operation x ~

-x, as inferred to be a good approximation from the phase portraits (Figure
2», as follows:

The hybrid model (4.5) then results from putting 0 = £ = o.

Our discussion of modeling assumptions can be drawn to a close by remarking
that more detailed information about the system dynamics can now be gained by
asking experimental questions that are motivated by the theory. For example,
in the model the system's relaxation time (i.e., the time taken to return to
the limit cycle after a perturbation) is approximately the inverse of a (see
Appendix 1), which a simple dimensional analysis reveals to be related to the
strength of the nonlinearity (see Appendix 2). Thus, relaxation time
measurements can give important information about how and by how much the
system supplies and dissipates "energy" in its oscillatory behavior (where
energy is to be understood as the integral along x of the right hand side of
equation 5.2, see Jordan & Smith, 1977, and Footnote 1). In another vein, it
should be recognized that the model's dynamics are entirely deterministic in
their present form. Stochastic processes, which have been shown quite
recently to play a crucial role in effecting movement transitions (Kelso &
Scholz, 1985: Schaner et al., 1986), have not been considered. However,
these processes are probably present, as evidenced, for example, in the
scatter of amplitudes at a given oscillation frequency. Stochastic properties
of rhythmic movement patterns may be explored independent of perturbation
experiments by appropriate spectral analysis of the time-series data (see,
e.g., Kelso & Scholz, 1985). Elaboration of the model to incorporate
stochastic aspects is warranted and is a goal of further research.

A final comment concerns the physiological underpinnings of our behavioral
results. With respect to the present model such underpinnings are obscure at
the moment. Just as there are many mechanisms that can achieve macroscopic
ends, so too there are many mechanisms that can instantiate limit cycle
behavior (for a brief discussion, see Kelso & Tuller, 1984, pp. 334-338). The
aim here has been to create a model that can realize the stability and
reproducibility of certain so-called "simple" movement behaviors. Whatever
the physiological bases of the latter our argument is that they must be
consistent with low-dimensional dissipative dynamics. There is not
necessarily a dichotomy between the present macroscopic account that stresses
kinematic properties as emergent consequences of dynamics, and a more
reductionistic approach that seeks to explain macrophenomena on the basis of
microscopic properties. The basis for explanation of a complex phenomenon
like movement may be the same (i.e., dynamical) at all levels within the
system, operative, perhaps, at different time scales.
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Footnotes

lIt is important to emphasize here that we use terms
"dissipation" in the abstract sense of dynamical systems
Smi th, 1977; Minorsky, 1962). These need not correspond
biomechanical quantities.

like "energy" and
theory (cf. Jordan &
to any observable

2The parameters 8 and Y were found via a pseudo Gauss-Newton search for the
parameters, using the single hand observed frequency and amplitude trial data
(N=192). The least-squares cri terion was the minimization of squared
residuals from the model amplitude-frequency function stated in Equation 3.6.
The overall fit was found to be significant, F(2,190) = 35.314, p < .0001, and
the overall R-squared was .2748; standard deviations for 8 and Ywere .001025
Hz 3 and 1.0129 Hz, respectively.
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Appendix 1..

In this appendix we illustrate some of the basic tools employed in the
model calculations in terms of the van der Pol oscillator. For an
introduction to such techniques see, e.g., Haken, 1983; Jordan & Smith, 1977;
Minorsky, 1962.

The equation of motion of the van der Pol oscillator is again

(A1. 1)

For small nonlinearity this is very close to a simple harmonic oscillator of
frequency w. The idea here is that the nonlineari ty stabilizes the
oscillation at a frequency not too different from w. This suggests a
transformation from x(t) and x(t) to new variables, namely, an amplitude ret)
and phase <p(t) (x(t) = 2r(t)cos(wt<p(t»). For ease of computation, we adopt
complex notation:

x = B(t)e iwt + B*(t)e- iwt (Al.2)

where B is a complex time dependent amplitude, and B* is its complex
conjugate. In this new coordinate system we can define two important
approximations to the exact solution (which is unobtainable analytically).
The slowly varying amplitude approximation amounts to assuming IBI « wB and
is used in a self-consistent manner (see below). The rotating wave
approximation (RWA) consists of neglecting terms higher in frequency than the
fundamental, such as e3iwt , e-3iwt , etc. This means that the anharmonicity of
the solution is neglected (this is why the RWA is sometimes also called the
harmonic balance approximation). See, for example, Haken (1985) for a
physical interpretation of these approximations. Using (Al.2) and these two
approximations we obtain for (Al.l):

.
B

aB

2 2

(Al.3)

Introducing polar coordinates in the complex plane,

B(t) = r(t)eiep(t)

and separating real and imaginary parts we find:

ar Yr 3

r =

(A1.4)

(Al.5)

~ = 0

2 2

(Al.6)

Equation (Al.5) for the radius r of the limit cycle (Which here is a limit
circle in the complex plane due to the RWA) has a form that makes
visuali zation of its sol utions very simple, namely, it corresponds to the
overdamped movement of a particle in the potential:
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ar 2 Yr"
+ --VCr)

4 8
(Al .7)

This potential is illustrated in Figure 6 for a > 0 and for a < 0, while Y > 0
in both cases.

V(r)

-3

1.5

1.0

.5

I
loc ) 0 I

loc < 0 I

3
r

Figure 6. Amplitude potential V as a function of the amplitude, r, for the
van der Pol oscillator, when a is less than and greater than zero.
Units are arbitrary (see Appendix 1).

Obviously for Y > 0, the limit cycle of finite amplitude

(Al.8)

is a stable, stationary solution. A movement with an amplitude close to r o
relaxes to the limit cycle according to:

r (t) = ( r (t 0) - r 0 ) e-a t + r 0 (Al.9)

(as can be seen by linearization of (A1.5) around r r o ). Thus this
amplitude varies slowly, as long as lal «w. This is the above-mentioned
self-consistency condition. The time (1/lal) is called the relaxation time of
the amplitude. The equation (A1.6) of the relative phase shows that phase is
marginally stable, i.e., does not return to an initial value if perturbed.
This can be tested in phase resetting experiments as explained in the General
Discussion.
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Appendix ~

Here we perform a dimensional analysis to compare different contributions to
the oscillator dynamics. To that end we estimate the different forces in the
equation of motion (4.5) by their amplitudes when the system is on the limit
cycle. The linear restoring force behaves as:

(A2.1 )

where r o is the radius of the limit cycle. The linear (negative) damping is:

.
aX • awr o (A2.2)

The van der Pol nonlinearity is

(A2.3)

while the Rayleigh nonlinearity scales as:

(A2.4)

Using equation (4.6)

(4.6)

as the radius of the hybrid limit cycle, the strength of the nonlinear
dissipative terms relative to the linear restoring term is:

(A2.5)

For either of the simple oscillators this reduces to a/we

171




