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Abstract

For a segmentation and dynamic programming-based handwritten word recognition system, outlier rejection at the character
level can improve word recognition performance because it reduces the chances that erroneous combinations of segments
result in high word con1dence values. We studied the multilayer perceptron (MLP) and a variant of radial basis function
network (RBF) with the goal to use them as character level classi1ers that have enhanced outlier rejection ability. The variant
of the RBF uses principal component analysis (PCA) on the clusters de1ned by the nodes in the hidden layer. It was also
trained with and without a regularization term that was aimed at minimizing the variances of the nodes in the hidden layer. Our
experiments on handwritten word recognition showed: (1) In the case of MLPs, using more hidden nodes than that required
for classi1cation and including outliers in the training data can improve outlier rejection performance; (2) in the case of
PCA–RBFs, training with the regularization term and no outlier can achieve performance very close to training with outliers.
These results are both interesting. Result (1) is of interest because it is well known that minimizing the number of parameters,
and therefore keeping the number of hidden units low, should increase the generalization capability. On the other hand, using
more hidden units increases the chances of creating closed decision regions, as predicted by the theory in Gori and Scarselli
(IEEE Trans. PAMI 20 (11) (1998) 1121). Result (2) is a strong statement in support of the use of regularization terms for
the training of RBF-type neural networks in problems such as handwriting recognition for which outlier rejection is important.
Additional tests on combining MLPs and PCA-RBF networks showed the potential to improve word recognition performance
by exploiting the complementarity of these two kinds of neural networks. ? 2002 Pattern Recognition Society. Published by
Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Handwritten word recognition

Handwritten word recognition has many practical appli-
cations, such as reading handwriting in pen-input devices,
automated mail sorting, check reading, and form processing,
etc. This very challenging pattern recognition problem has
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two cases, which are distinguished as o'-line and on-line
handwriting recognition. In the on-line case, the input is in
the form of successive points of strokes collected in time
order, possibly with additional information about pen-down,
pen-up, or pen pressure, etc. during writing. In the o'-line
case, the kind we are concerned with here, the input is in
the form of a digital image of handwritten word. Plamondon
and Srihari [1] provided a recent survey of both on-line and
o'-line handwritten recognition.

Usually an o'-line handwritten word recognition sys-
tem takes two inputs: a word image and a list of strings
called a lexicon, representing candidate identities for the
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word image. The recognition process assigns a match score
to each candidate string and the highest score determines
the recognition result. The major diHculty of handwritten
word recognition is the wide variety of writing styles. Over
the years there have been chieCy four di'erent trends in
this research area: (1) Segmentation and dynamic program-
ming (DP)-based approaches, which split a word image into
characters or partial characters and use character classi1er
and DP to obtain the optimal segmentation and recognition
result [2–7]; (2) segmentation and hidden Markov model
(HMM)-based approaches, which split a word image into
characters or partial characters and generate the observation
sequence accordingly for the HMMs, which produce the
word recognition result [8–10]; (3) segmentation-free and
HMM-based approaches, which usually generate the obser-
vation sequence based on moving a window over a word
image for the HMMs, which produce the word recogni-
tion result [11–14]; (4) Holistic approaches, which do not
attempt to segment a word image but treat it as a whole
pattern and recognize it [15–18]. As we usually see in the
pattern recognition area, there have also been blends of those
di'erent trends [12,17,19].

Some of the most promising results have come from seg-
mentation and DP-based approaches. Our baseline system
is one of them, which is illustrated in Fig. 1. A word im-
age is segmented into sub-images called primitives, each of
which should be the image of a single character or a par-
tial character. A union is de1ned as either a primitive or
the combined image of some neighboring primitives. The
DP module uses character con1dence values of unions (as-
signed by a neural network character classi1er) and com-
patibility scores of pairs of neighboring unions (assigned
by a neural network to account for the spatial relationships
and relative sizes between neighboring unions) to group
the primitives of the word image into a sequence of unions
that best matches a given string. This system has been fully
described in [5,12,20].

1.2. Outlier rejection for handwritten word recognition

There are some e'orts to enhance the performance of
the segmentation and DP-based systems. Kim and Govin-
daraju [4] used the distributions of the numbers of segments
(called “duration”) into which di'erent characters can be
split by the segmentor to reward the character con1dences.
Kimura et al. [2] used a splitting cost to punish the bad
cuts. Scagliola et al. [21] used a number of complementary
sources of information, including the split and joint cost, du-
ration cost, extra ink (stroke) processing, etc. Gader et al. [5]
used the inter-character spatial compatibility, as illustrated
in Fig. 1.

In our previous work [5–7], it was often observed that
some errors were caused by non-character images that were
assigned high character con1dence values. Our focus here
is to investigate assigning low character con1dence val-
ues to non-character images to improve word recognition
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Fig. 1. Diagram of our baseline handwritten word recognition
system.

performance. To assign low character con1dence values to
non-character images means to reject outliers.

There has been some practical work on outlier rejec-
tion for character or word recognition using neural network
classi1ers. Chiang and Gader [6] uses self-organizing fea-
ture maps (SOFM) to form a uniform representation of
non-characters. Chiang and Gader reported the use of SOFM
to augment a multilayer perceptron (MLP) on its digit recog-
nition reliability [22]. Kim et al. [23] used an additional
node for outliers in the output layer of their MLP. Fogelman
et al. [24] devised a hybrid network for digit recognition
consisting of a shared weight network for feature extrac-
tion followed by a radial basis function (RBF) network and
investigated its ability to reject white noise and alphabetic
characters.

HMMs have been used to model classes of garbage,
such as silence in speech and spaces in handwriting. How-
ever, modeling of garbage is diHcult since the class of
non-characters has no inherent structure, it consists of all
patterns that are not character patterns and there is no inher-
ent shape relationships between those shapes. In addition,
modeling garbage is di'erent than attempting to reject it by
building better models of characters, which is the focus of
the research presented here.
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There has also been some theoretical work of interest.
We know that what a classi1er essentially does is to sep-
arate the pattern space into di'erent regions, with each
region mapping to a speci1c class. Here, we refer the bound-
ing surface of each area as its corresponding separation
surface. When outlier rejection is desired, it is important for
a classi1er to have closed separation surfaces to enclose the
clusters in which valid patterns are distributed as close as
possible to exclude outliers. Gori and Scarselli investigated
the condition for MLPs to have closed separation surfaces
[25]. They proved that MLPs with sigmoid activation func-
tions and a number of hidden units (in the 1rst layer) less
than or equal to the number of inputs draw open separation
surfaces in the pattern space. When using more hidden units
than inputs, the separation surfaces can be closed, but there
is no guarantee of it. The results of our previous study [26]
con1rmed their conclusions regarding MLPs. In that study,
we investigated outlier rejection performance of MLP, RBF
network and a variant of RBF network, which precedes
an RBF with Principal Component decomposition, and is
therefore called PCA-RBF network (to be explained in Sec-
tion 2.2.1). Our experiments on two-dimensional arti1cial
data showed:

1. Including the outlier samples in the training data and using
more hidden nodes than that required for classi1cation can
improve the outlier rejection performance for the MLP
and RBF networks.

2. The PCA-RBF network can achieve as good an outlier
rejection performance as that of the MLP and RBF net-
works with the simplest structure (in terms of the number
of hidden units).

3. Adding a regularization term in the training of a
PCA-RBF network can achieve outlier rejection perfor-
mance equivalent to that of other networks without using
outliers in the training data.

In this paper, we describe an investigation into
whether or not the same conclusions hold for MLP and
PCA-RBF networks on real world handwriting data,
where the feature spaces are high dimensional (¿ 100).
The outlier rejection performance will be evaluated us-
ing our baseline system. The remainder of this paper is
organized as follows: Section 2 describes the structures
of the neural networks and the training algorithm for the
PCA-RBF; Section 3 reports the experimental results and
conclusions are drawn in Section 4.

2. Neural networks

The neural networks used here have class-coded output
nodes, i.e., they have the same number of outputs as the
number of character classes. With this kind of network struc-
ture, outlier rejection can be realized by having a valid pat-
tern only activate the output node corresponding to the class

which the pattern belongs to (output nodes of similar classes
also have some low activation when the fuzzy desired out-
put [27] is used), and having outliers not activate any output
node. Neural networks with closed separation surfaces in
the feature space are expected to have this kind of behavior.

2.1. MLP

MLPs demonstrate excellent performance in pattern clas-
si1cation tasks for which the input is known to be from a
1nite set of pattern classes. Unfortunately, they can also pro-
duce high outputs when a sample that is not from one of the
classes is presented as input.

The MLPs used in this study have one input layer, one
hidden layer, and one output layer. These networks are
fully connected, use the logistic activation function, and are
trained with standard back-propagation.

2.2. PCA-RBF network

2.2.1. The structure of the PCA-RBF network
RBF networks with localized basis functions have closed

response domains in feature space, making them good can-
didates for rejecting outliers. The structure of an RBF net-
work is illustrated in Fig. 2. It can be formulated as

ok = �(yk); (1)

yk =
m∑
j=1

wkj	j(X) + bk ; k = 1; : : : ; c; (2)

where c is the number of outputs, m is the number of radial
basis functions, �(·) is the activation function at the output
layer,X is an n-dimensional input feature vector, and usually
	j(·) is a Gaussian form radial basis function with Uj as its
center and �j as its covariance matrix:

	j(X) = exp(−1
2 (X−Uj)

T�−1
j (X−Uj)); j = 1; : : : ; m;

(3)

where

Uj = [uj1; : : : ; uji ; : : : ; ujn]
T;

�j = diag

(
1
�2j1
; : : : ;

1
�2ji
; : : : ;

1
�2jn

)
:

x1

xn

�1

�m

o1
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Fig. 2. The RBF network.
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(a) (b)

Fig. 3. The relation between the axis direction and outlier rejection performance of a radial basis function (dots and circles represent the
valid patterns and outliers, respectively): (a) the axes of the radial basis function are parallel to the axes of the feature space; (b) the axes
of the radial basis function are parallel to the principal components of the cluster of the valid patterns.

Note �j is a diagonal matrix, which is usually the case for
RBF networks, then only n parameters need to be estimated
instead of n(n+1)=2 parameters in the case of a full covari-
ance matrix.

However, using diagonal covariance matrices in RBF
networks constrains the axes of the hyper-ellipsoid of the
basis functions to be parallel to the feature space axes. The
weakness of these basis functions for outlier rejection is
illustrated in Fig. 3(a). In this example, the valid patterns
distribute in a cluster whose axes are not parallel to the axes
of the pattern space. The smallest separation surface pro-
duced by a radial basis function using diagonal covariance
matrix to enclose the cluster still includes some outliers.

To reject outliers better, it is desirable to make a radial
basis function 1t a cluster of patterns more closely. We con-
jecture that rotating the axes of the hyper-ellipsoid of the
basis function helps 1t a cluster of patterns more closely
(Fig. 3(b)). This can be achieved by using a full covariance
matrix in the basis function. However, covariance matrices
must be positive-de1nite, which is diHcult to enforce dur-
ing training. Furthermore, the training problem is diHcult
because there areO(n2) rather thanO(n) parameters to learn
for each covariance matrix.

We propose a variant of RBF network to solve the above
problems. This new network is constructed using PCA on
the clusters found in the training data, and is therefore called
PCA-RBF network. After projecting an input from the origi-
nal feature space into the new space spanned by the principal
components of a cluster, a diagonal covariance matrix can
be used in the radial basis function for that cluster. There-
fore, the radial basis functions for a PCA-RBF network can
be computed as

Pj(X) = exp(− 1
2Z

T
j �

−1
j Zj);

Zj =�
T
j (X − Uj); j = 1; : : : ; m; (4)

where Uj is the center of the jth cluster, �j is the n × nj
matrix with columns equal to the nj normalized eigenvectors
of the jth cluster corresponding to the nj largest eigenvalues,
Zj is the projection of the input vectorX (shifted with regard
to the center Uj) in the new space, and �j is the diagonal
covariance matrix for the jth cluster in the new space. The
dimensionalities of �j , Zj and �j depend on the number
of the principal components used. Supposing that nj is the
number of principal components used for the jth radial basis
function, �j , Zj and �j can be expressed as

�j = [tji′ ; j′ ]n×nj ;

Zj = [zj1; : : : ; zji ; : : : ; zjnj ]
T;

�j = diag

(
1
�2j1
; : : : ;

1
�2ji
; : : : ;

1
�2jnj

)
:

Then the PCA-RBF network can be formulated almost
the same way as Eqs. (1) and (2) by just substituting
Pj(·) for 	j(·) in Eq. (2). Because �j is diagonal, now
we can avoid adjusting full covariance matrices in the
training.

2.2.2. The training algorithm without the regularization
term

We derived a backpropagation-style training algorithm for
the PCA-RBF network. Suppose that the lth training sample
is X(l)=[x1(l); : : : ; xi(l); : : : ; xn(l)]T and its desired outputs
are d1(l); : : : ; dk(l); : : : ; dc(l). The error function is de1ned
as

E(l) =
1
2

c∑
k=1

(ok(l)− dk(l))2: (5)
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Let

�k(l) =
9E(l)
9yk(l)

=
9E(l)
9ok(l)

9ok(l)
9yk(l)

= (ok(l)− dk(l)) 9ok(l)9yk(l)
; k = 1; : : : ; c: (6)

The following partial derivatives can be obtained:

9E(l)
9bk

= �k(l);
9E(l)
9wkj

= �k(l)Pj(X(l));

9E(l)
9uji

=

(
c∑
k=1

�k(l)wkj

)( nj∑
k′=1

Pj(X(l))

×
(
− zjk′(l)
�jk′

)(
1
�jk′

)
(−t ji; k′)

)
;

9E(l)
9�ji

=

(
c∑
k=1

�k(l)wkj

)
Pj(X(l))

(
− zji(l)
�ji

)(
− zji(l)
�2ji

)
:

During the training, bk , wkj , uji and �ji can be updated
using the gradient descent technique. For example, bk is
updated using

Obk =−�9E(l)9bk
;

where � is the learning rate.

2.2.3. The training algorithm with the regularization term
For PCA-RBF networks the expansion parameter (�ji)

of the radial basis functions seems to have a major role in
outlier rejection. So, we tried to use a regularization term
instead of the outlier data for training. The regularization
term is a term added to the error function that aims to
limit �ji during training. We modi1ed the error function
as

E(l) =
1
2

c∑
k=1

(ok(l)− dk(l))2 + 1
2

�∑m
j=1 nj

m∑
j=1

nj∑
i=1

�2ji ;

(7)

where the second term is for regularization and � is called
the regularization coeHcient. The training algorithm uses
almost the same partial derivatives as those in the preceding
section, except

9E(l)
9�ji

=

(
c∑
k=1

�k(l)wkj

)
· Pj(X(l))

×
(
− zji(l)
�ji

)(
− zji(l)
�2ji

)
+

�∑m
j=1 nj

�ji:

3. Experimental results and discussions

3.1. Evaluating networks in the base-line system

3.1.1. Features and data sets
Two sets of features were used for character classi1cation.

One is called bar feature, which has 120 dimensions. The
other is called transition feature, which has 100 dimensions.
Detailed description of these features can be found in [5,28].

Because the word images used for tests can be strings
in upper case or mixed case (the 1rst character is in upper
case), separate neural networks are used for upper and lower
case character recognition. So, there may be four neural net-
works involved in our following experiments for each type
of neural networks: two of them using bar feature inputs for
lower and upper case classi1cation, respectively; the other
two using transition feature inputs for lower and upper case
classi1cation, respectively.

The image data used for training came from images of
addresses from the USPS mail [5]. There are three data
sets consisting of isolated character or non-character images.
Data set 1 is referred to as Char250, which has 250 sam-
ples per category for lower and upper cases, respectively;
data set 2 is referred to as Char1000, which has 1000 sam-
ples per category for lower and upper cases, respectively.
Char250 is a subset of Char1000; data set 3 is referred to
as Garbage8310, which has 8310 non-character samples.
Garbage8310 consists of 3587 sub-garbage samples that are
images of partial characters and 4723 super-garbage samples
that are images of concatenated characters or concatenated
partial characters.

The test data is a set of 317 word images (bd-317) from
the CEDAR CD-ROM image database [29], which is re-
ferred to as BD317. No image in the training sets comes
from BD317. The CEDAR CD-ROM set came with three
lexicon sets generated to emulate mail-sorting applications.
Two of them were used for testing using our base-line
system, which performs lexicon-driven word recognition
[5]. In both lexicon sets, there is one lexicon for each
word image in BD317. The lexicons may be of di'erent
lengths. The lexicon sets are referred to as lex100 and
lex1000 and have lexicons of average length 100 and 1000,
respectively.

3.1.2. Training and test
We used a fuzzy k-nearest neighbor algorithm [27] to

generate the desired outputs for valid character patterns. The
e'ectiveness of fuzzy desired outputs for word level recog-
nition was supported by the experiments reported in [28].
The values for desired outputs are in interval [0:1; 0:9]. All
desired outputs are set to 0.1 for outlier training samples.

The learning rate was set to 0.02 for all neural networks.
The training is completed when the error function con-
verges and the classi1cation performance on the validation
set reaches its peak. The character recognition rate is the
percentage of characters for which the highest neural net-
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Table 1
Training (outliers included in the training data) and test results for bar feature MLPs

Network structure Character level Word level (BD317)

Character case Char250 (%) lex100 (%) lex1000 (%)

120× 65× 39× 26 Upper case 94.40 79.81 63.41
Lower case 89.11

120× 150× 26 Upper case 93.65 84.23 72.56
Lower case 88.10

Table 2
Training (outliers included in the training data) and test results for transition feature MLPs

Network structure Character level Word level (BD317)

Character case Char250 (%) lex100 (%) lex1000 (%)

100× 65× 39× 26 Upper case 88.32 76.66 57.10
Lower case 78.43

100× 150× 26 Upper case 91.00 82.97 65.93
Lower case 80.34

work output was associated with the true class. No garbage
samples were used in the character classi1cation test.

Word recognition was performed using the base-line sys-
tem introduced in Section 1.1. The word recognition rate is
the percentage of word images for which the truth string in
the lexicon gets the highest match score. By substituting dif-
ferent neural networks in the system, we can compare their
e'ects on word recognition.

3.1.3. MLPs with di?erent number of hidden units
We believe that including outliers in the training data

is important to encourage MLPs to form closed separation
space. This was supported by our previous study [26]. So
outlier data were included for MLP training, i.e., the training
data consist of Char250 and Garbage8310. For bar feature
MLPs, two structures are compared: 120 × 65 × 39 × 26
and 120 × 150 × 26. The former demonstrated very good
classi1cation performance if no outlier is given as an input
and was used historically. In fact, networks with these fea-
ture sets and architectures performed in the top 5 in an NIST
sponsored OCR competition test included over 38 classi1ers
from 26 companies and academic groups [30]. The latter
has more nodes in the hidden layer than that in the input
layer, which is the requirement to form closed separation
space as stated in [25]. Similarly, two structures are also
compared for transition feature MLPs: 100× 65× 39× 26
and 100×150×26. All network parameters were randomly
initialized for training.

Tables 1 and 2 show signi1cant improvement on word
recognition rates when more nodes are used in the hid-
den layer than the input layer. After checking word im-
ages in BD317, we found that the MLPs with the structure
120 × 150 × 26 corrected some errors made by the MLPs

with the structure 120×65×39×26 and introduced few new
errors. We show two examples here. One example (Fig. 4)
illustrates how an error was corrected after using the MLPs
with structure 120×150×26, which not only decreases the
con1dence values for outliers, but also decreases con1dence
values for non-perfect valid patterns (Fig. 4(c)). In this case,
the word “Louisville” was mistakenly read as “Roundstone”
by the MLPs with the structure 120× 65× 39× 26. In the
other example (Fig. 5), the error made by the MLPs with
the structure 120× 65× 39× 26 was apparently caused by
assigning a high con1dence value as “k” for union 10–12
(Fig. 5(c)). The MLP with structure 120×150×26 signi1-
cantly decreased this union’s con1dence value as “k”, but it
also made a (favorable) mistake by assigning a high con1-
dence for union 8–8 as ‘r’, which probably means that there
is still some open separation surfaces after training. These
results support the assertion that including the outlier sam-
ples in the training data and using more hidden nodes than
required for classi1cation can improve the outlier rejection
performance for MLPs.

3.1.4. PCA-RBF trained with and without the
regularization term

The initial centers for PCA-RBF networks were estab-
lished based on k-means clustering on data set Char1000
with 11 clusters per class on average. Char1000 was
used here in order to obtain a better representation of the
feature distribution, which is important for principal com-
ponent analysis for each cluster. With 98% of the total
component energy retained after principal component anal-
ysis, each cluster retains 22 and 27 principal components on
average for the bar and transition features, respectively. The
initial expansion (�ji) was set as 2.0 times the square root
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Fig. 4. Word recognition (lex100) using the bar feature MLPs. The truth string for this word image is “Louisville”: (a) the word image; (b)
the primitive sequence generated by the segmentation module; (c) the optimal segmentation obtained by the base-line system using the MLPs
with the structure 120 × 65 × 39 × 26; (d) the optimal segmentation obtained by the base-line system using the MLPs with the structure
120× 150× 26. The “digit–digit”s under union images in (c) and (d) indicate the primitives from which the union images are formed.

of the corresponding eigenvalue. The weights and biases
were randomly initialized. During training, the centers of
basis functions were 1xed.

For PCA-RBF networks trained without the regularization
term, Char1000 and Garbage8310 were used in training. The
latter was used for the same reason as in MLP training, but
the goal here is more intuitive, i.e., to limit the expansion
of basis functions, which is controlled by �ji.
When PCA-RBF networks were trained with the regular-

ization term, only Char1000 was used in training. The reg-
ularization term is supposed to limit the expansion of ba-
sis functions (Eq. (7)) during training. The regularization
coeHcient � was empirically set as 0.02.
Tables 3 and 4 suggest that the regularization term can

achieve outlier rejection e'ect close to that achieved using
outlier data for PCA-RBF training. This means that by us-
ing the regularization term, the tedious and time-consuming
work of collecting outlier data can be avoided and the CPU
and memory resources for training can be reduced.

According to Tables 1–4, it seems that MLPs per-
form better on word recognition than PCA-RBFs do, be-
cause even though their performances are close to MLPs,
PCA-RBF networks have more parameters and used more
samples in training. We think the reason is that the classi1-

cation ability of PCA-RBF networks is not as good as that
of MLPs.

3.2. Combining neural networks for word recognition

We known that MLPs are good at pattern classi1cation
tasks for which the input is known to be from a 1nite set of
pattern classes. Usually, their outlier rejection performance
is not so good because the separation surfaces are not closed.
Even though we can increase the number of units in the
hidden layer to improve their outlier rejection performance,
there may still be open separation surfaces if the outlier
samples that can lead to shrinking openness are not presented
in training.

On the contrary, PCA-RBF networks with localized basis
functions inherently have closed separation surfaces. Gen-
erally, they are not so good at pattern classi1cation tasks as
MLPs are.

Using weighted average over character level con1dences
assigned by di'erent neural networks, we hope the com-
plement between MLPs and PCA-RBF networks can be
exploited to improve the word recognition performance. In
our test, four weights w1–w4 were applied to four neural
networks, i.e., bar feature MLP, transition feature MLP,
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Fig. 5. Word recognition (lex100) using the bar feature MLPs. The truth string for this word image is “Charles”: (a) the word image; (b)
the primitive sequence generated by the segmentation module; (c) the optimal segmentation corresponding to string “Cook” obtained by the
base-line system using the MLPs with the structure 120 × 65 × 39 × 26; (d) the optimal segmentation corresponding to string “Charles”
obtained by the base-line system using the MLPs with the structure 120× 150× 26. The “digit–digit”s under union images in (c) and (d)
indicate the primitives from which the union images are formed.

Table 3
Training and test results for bar feature PCA-RBF neural networks

Training method Character level Word level (BD317)

Character case Char1000 (%) lex100 (%) lex1000 (%)

Outliers are used Upper case 87.20 82.65 70.03
Regularization term is not used Lower case 73.29
Outliers are not used Upper case 88.76 82.96 67.82
Regularization term is used Lower case 74.77

Table 4
Training and test results for transition feature PCA-RBF neural networks

Training method Character level Word level (BD317)

Character case Char1000 (%) lex100 (%) lex1000 (%)

Outliers are used Upper case 89.43 82.65 64.67
Regularization term is not used Lower case 74.45
Outliers are not used Upper case 90.26 81.07 64.35
Regularization term is used Lower case 75.64
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Table 5
Word recognition results by neural network combination on data set BD317

w1 w2 w3 w4 lex100 lex1000
(bar=MLP) (tsn=MLP) (bar=PCA-RBF) (tsn=PCA-RBF) (%) (%)

Average all networks 0.25 0.25 0.25 0.25 88.01 74.76
Average bar feature networks 0.5 0 0.5 0 85.80 75.08
Best weighted average 0.45 0.1 0.45 0 87.38 77.60
SOFM=MLP 87.70 76.03

bar feature PCA-RBF network (trained with the regulariza-
tion term) and transition feature PCA-RBF network (trained
with the regularization term), respectively, with the weights
satisfying
4∑
i=1

wi = 1; wi¿ 0:

The best results obtained by exhaustive search of weights
on BD317 with step 0.05 is shown in Table 5. Compared
to the results in Tables 1–4, this result shows the poten-
tial of combining MLPs and PCA-RBF networks. The
SOFM=MLP approach proposed by Chiang and Gader [6]
uses SOFM to achieve the clustering e'ect and form uniform
representation for outliers. In addition, the SOFM=MLP
approach also combines the bar feature and transition fea-
ture. Thus, the SOFM=MLP has similar conceptual goals
to those of the networks in this paper and they use the
same features and dynamic programming algorithm. The
SOFM=MLP used human selection of initial prototypes in
the training of the SOFM, whereas the networks in this paper
did not require human intervention. Therefore, training of the
networks in this paper is more automated. The comparative
results are presented in Table 5.

4. Conclusions and future work

This study investigated the method to enhance the outlier
rejection ability of MLPs and PCA-RBF networks for hand-
written word recognition. The experimental results support
the following conclusions:

1. Using more hidden nodes than required for classi1cation
for MLPs and including outliers in the training data can
improve outlier rejection performance.

2. Training the PCA-RBF network with the regularization
term and no outlier can achieve as good a performance as
training with outliers.

The open question is what the optimal number of hidden
unit is for MLPs and PCA-RBF networks for speci1c ap-
plications that require outlier rejection ability, such as our
handwritten word recognition system. Currently, it is very
diHcult to obtain analytical solutions for neural networks

working in high dimensional feature spaces. “Trial and
error” approaches are usually limited by computing re-
sources for real world problems where high dimensional
features are to be handled.

Our test on combining MLPs and PCA-RBF networks
just showed the potential to improve word recognition per-
formance by exploiting the complement of these two kinds
of neural networks. Objective experiments should be car-
ried out to obtain the weights on independent training data.
Other classi1er combination schemes should also be pur-
sued [31,32].
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