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Abstract

Motor skills provide us with an almost in®nite variety of ways in which we can interact with

the world. This paper considers the problem of how the psychomotor system translates a

stable motor memory into an invariant spatial output within an in®nitely variable biome-

chanical and environmental context. Initially the validity of a novel methodology, based on

the concatenation of handwriting velocity data over several trials to form long time series,

combined with singular value decomposition to reduce noise, was con®rmed. The data ana-

lyzed were the horizontal and vertical velocity of the stylus as eight participants wrote the

pseudo-word madronal on a computer graphics tablet. Nonlinear dynamic analysis techniques

such as examination of delay portraits, as well as calculation of the correlation dimension and

Lyapunov spectra were applied to test the hypothesis that handwriting velocity pro®les are

chaotic. The ®ndings that the largest Lyapunov exponents were positive, the sums of

Lyapunov spectra components were negative and the correlation dimensions were low and

fractional supported this hypothesis. We conclude by proposing that the psychomotor actions

found in handwriting are a product of a chaotic dynamic process whose initial conditions

depend on the environmental and biomechanical context. Ó 1999 Elsevier Science B.V. All

rights reserved.

PsycINFO classi®cation: 2330

Human Movement Science 18 (1999) 485±524
www.elsevier.com/locate/humov

* Corresponding author. Tel.: +61-249215958; fax: +61-249216980; e-mail: mitchell@hiplab.newcas-

tle.edu.au
1 E-mail: rheath@hiplab.newcastle.edu.au

0167-9457/99/$ ± see front matter Ó 1999 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 9 4 5 7 ( 9 9 ) 0 0 0 2 8 - 7



Keywords: Coordinative structures; Degrees of freedom problem; Nonlinear dynamic analysis;

Rhythmic movement; Motor memory; Chaos theory

1. Introduction

Handwriting is a typical dynamic motor skill that requires the integration
of cognitive and biomechanical systems to produce an output that is stable
and reproducible. When we intend to write the letter a, the goal is that others
will recognize it as such. Once this skill is learnt it can be performed auto-
matically, with little need for active conscious control. Psychomotor skills
have been found to be controlled by quite complex dynamical systems whose
properties and structures are yet to be fully described and understood.

A key question within this ®eld is called ``The degrees of freedom prob-
lem''. The degrees of freedom of any system are equal to the minimum
number of variables needed to fully describe the state of that system. How-
ever, there are many more degrees of freedom available to the cognitive/
biomechanical system than are needed to produce a given output. Bernstein
(1967) discusses the idea that the coordination of motor movements involves
a reduction in the number of degrees of freedom. This is partly achieved by
combining functional groups of muscles that are constrained to act as a single
unit (Kay, 1988). These Ôfunctional synergiesÕ are controlled by the dynamical
system with subsequent movements being modi®ed using feedback if time
permits (Sheridan, 1984).

The problem is how does the psychomotor system translate the stable
motor memory into an invariant spatial output within an in®nitely variable
biomechanical and environmental context? We need to discover how the
psychomotor system picks and controls a particular set of degrees of freedom
to produce the letter a in a given environment, when it has an in®nite number
of degrees of freedom from which to choose from. A further goal of this
research is to ascertain how this information is represented in memory.

What is needed to solve this problem is a motor memory comprised of the
boundary conditions of a functionally speci®c coordinate structure (Kay,
1988; Mitra, Amazeen & Turvey, 1998; Mitra, Riley & Turvey, 1997) which
can generate in®nite complexity. Recently there has been a great deal of in-
terest in studying dynamical systems and whether it is possible to model real
world phenomena in terms of dynamic equations. Of particular interest are
those equations that display what is known as chaotic behavior. Chaotic
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processes are typically generated by simple low dimensional dynamical sys-
tems that are sensitively dependent on initial conditions. Slightly di�erent
initial values can lead to an in®nite number of vastly di�erent system outputs.
These processes can produce an in®nite range of characteristic outputs.

If handwriting was found to be chaotic then such a ®nding might solve the
degrees of freedom problem. Output that is of the order of complexity found
in skilled movement within a rapidly changing cognitive, environmental and
biomechanical context could be produced by the variation of a small number
of important parameters. As a result the seemingly in®nite degrees of free-
dom would then collapse to the few degrees of freedom actually observed
during movement.

2. Chaos in handwriting

Findings from several ®elds of research suggest that handwriting might
display chaotic dynamics. Over recent years there has been an increasing
interest in the application of dynamical analysis techniques to physiology and
neurology, with mixed results. Grassberger and Procaccia (1983) developed a
simple algorithm for the calculation of the number of dimensions needed to
explain the behavior of a system, based on earlier work by Packard,
Crutch®eld, Farmer and Shaw (1980) and Takens (1981). This D2 algorithm
has been used extensively, for example in the study of EEG activity during
sleep and while awake (Babloyantz, 1985) as well as during epileptic seizures
(Babloyantz & Destexhe, 1986). In these and later studies of EEG recordings
it was concluded that the dynamics underlying certain instances of brain
activity may be generated by low dimensional deterministic chaotic attractors
(Babloyantz, 1985, 1991; Babloyantz & Destexhe, 1986; Babloyantz &
Lourencßo, 1994). While some of the earlier ®ndings have been criticized for
their use of the Grassberger and Procaccia (1983) D2 algorithm when their
data was not adequately stationary (Mayer-Kress et al., 1988; Skinner,
Molnar & Tomberg, 1994), they do provide some evidence that the neuro-
logical and physiological processes may involve chaotic dynamics.

Dimensionality analysis has also been applied to the study of motor skills.
Kay (1988) for example, used dimensionality analysis in an attempt to
measure the number of degrees of freedom produced during a simple
rhythmic ®nger movement. Kay noted that while there are di�culties in-
volved in the computation of dimensionality estimates, this type of analysis
could produce useful information. It was concluded that the simple rhythmic
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®nger movement was at least low dimensional (mean correlation dimen-
sion� 1.165, SD� 0.068).

The number of dimensions calculated for a movement gives an insight to
the minimum number of dynamical degrees of freedom of the system. Kay
(1988) writes that since we assume that our systems are nonconservative, the
actual number of control parameters (degrees of freedom) will be the same or
greater than that found in dimensionality analysis. What we measure is
simply the end product of the process whereby the in®nite possible degrees of
freedom are constrained into a small number of functional synergies (Bern-
stein, 1967; Kay, 1988; Kugler, Kelso & Turvey, 1980; Kugler & Turvey,
1987; Mitra et al., 1998; Saltzman & Kelso, 1987).

A more recent study of simple rhythmic movements involved participants
manipulating a pendulum of varying rotational inertia, rotating about the
center of the wrist at a frequency they felt was natural (Mitra et al., 1997).
Large and small virtual limbs were simulated using this apparatus. Mitra et al.
note that simple rhythmic movements such as locomotion are usually mod-
eled as limit cycle oscillators and that deviations from a single curve in the
phase plane of position and velocity are assumed to be a result of stochastic
physiological noise. They propose as an alternative to this that the move-
ments are generated by higher dimensional nonlinear oscillators that are
potentially chaotic.

Analysis of the rhythmic movements found that low dimensional attrac-
tors could explain movement variability, rather than the high dimensional
attractors expected from stochastic noise. These attractors were found to
display a positive largest Lyapunov exponent, a negative sum of Lyapunov
exponents and low, fractional Lyapunov dimensions. These are necessary
conditions for chaotic dynamics, as will be discussed below. Mitra et al.
(1997) conclude that within the limits of current methods, the results provide
strong evidence that these simple rhythmic movements are produced by a
chaotic evolution on a strange attractor. As an extension of this work, Mitra
et al. (1998) discuss intermediate motor learning as decreasing (dynamical)
degrees of freedom. The utility of chaos analysis in movement research was
once again demonstrated with the ®nding that as a skill is learnt, the di-
mensionality of the movements gradually reduce to a point where the par-
ticipant becomes relatively pro®cient.

More speci®c to the study of graphic skills, the fractal nature of hand-
writing has been investigated by Dooijes and Struzik (1994). Fractional, or
fractal, dimensionality is a well-known property of chaotic systems. The di-
mensionality of handwriting was calculated in its static form using the box
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counting method and in its dynamic form using the divider algorithm. It was
tentatively concluded that the dimensionality of handwriting was fractional
(between 1 and 2), despite there being intrinsic di�culties in calculating its
exact value using these methods. It is important to note that it is the simple
loop-like rhythmic movement patterns that are thought to be fractal, not the
static letter pattern itself. This ®nding suggests that handwriting dynamics
may be produced by a low, fractionally dimensional system, but cautions the
experimenter from using these methods for the calculation of dimensionality
estimates.

Handwriting dynamics are in general thought to be produced by the
coupling of velocity (or force) generating oscillators (Dooijes, 1983; Holler-
bach, 1981; Maarse, van Galen & Thomassen, 1989; Plamondon & Clement,
1991; Wann & Nimmo-Smith, 1991). Hollerbach (1981), for example, has
proposed that the mechanism that produces the oscillation patterns in
handwriting is the spring muscle model, which is based on a simpli®cation of
the length±tension curves of muscles. This length±tension relationship is a
classical and robust ®nding in the biomechanical literature.

Biomechanical research has found that generally a muscle can only achieve
maximum tension if it is at its optimal length (Armstrong, Huxley & Julian,
1966; Luttgens & Wells, 1982). At lengths greater or less than this optimum
length, the tension generated will be lower. As a muscle contracts from its
greatest length, the possible tension increases until it reaches its maximum,
then drops again until the muscle is fully contracted. This relationship,
known as the length±tension curve, was discovered by measuring the varia-
tion in tension as the length of the muscle ®bers changed. Muscle ®bers
(sarcomeres) were stimulated to develop tension under constant contraction
while the muscle length was maintained (i.e. isometric contraction). These
length±tension curves have been used to investigate tremor oscillations pro-
duced in muscles under constant contraction (Akamatsu, Hannaford &
Stark, 1986).

Akamatsu et al. (1986) studied the stability properties of sustained muscle
contraction at the level of individual sarcomeres. Two components are in-
volved in the relationship between length and tension. The ®rst is a passive
elastic relation that acts instantaneously, while the second is an active rela-
tion that occurs after a short delay. This results in a pause between the time
at which a muscle changes its length and when it reaches its maximum ten-
sion at that length. A simulation model of this process leads to an inherent
tremor mechanism as follows. The simulation begins at a point on the passive
length±tension curve. When a constant contraction of the muscle occurs, the
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active component of the length±tension curve dominates the process. This
leads to a new level of tension that must be compensated by a change in the
length on the passive part of the curve. A change in the length of the muscle
leads to a reactivation of the active part of the curve and then the process
repeats.

This relationship leads to an iterative process that can be mathematically
evaluated. Akamatsu et al. (1986) found that by increasing the value of the
modelÕs parameter related to activation (i.e. contraction), the output gen-
erated changes from stable convergent behavior to limit cycle oscillation
and ®nally to chaos. These qualitative states were related to various types of
muscle tremor found in the literature, particularly in isometric mammalian
types of tremor and in some types of tremor corresponding to the open
stretch re¯ex loop. It is worth noting that Akamatsu et al. merely dem-
onstrated chaotic dynamics in a model of muscle tremor, not the muscle
itself.

There is evidence that muscle tremor is an inherent mechanism which is
®ltered by mechanical properties of the limb under inertial loads as well as
increasing joint sti�ness due to muscle co-contraction (Joyce & Rack, 1974;
Fox & Randell, 1970). Akamatsu et al. (1986) speculated that chaos serves
possibly as the noise source that is ®ltered by the limb during movement.

Support for the hypothesis that tremor is an inherent noise source within
the muscles has recently come from research into complex skills such as
handwriting. Van Galen, van Doorn and Schomaker (1990) compared pen
movements in line drawing and found that execution of more complex tasks
disinhibited physiological tremor. This tremor was regarded as a potential
measure of what they term neuromotor noise.

Van Gemmert and van Galen (1997) extended these ®ndings and theorized
that there is an intrinsic degree of random low level activation in the cog-
nitive/biomechanical system, likening it to the physical equivalent of waste
thermal warmth in a power plant. Cognitive noise can be raised, for example
by increasing mental load through a secondary distracter task or by elevating
processing demands by using more complex or di�cult tasks. Within the
biomechanical system this neuromotor noise may originate, at least in part,
from muscle tremor. During the performance of skilled movements the ac-
curacy of the output is a�ected by the signal level (the desired movement)
relative to the level of background noise (neuromotor noise). In other words,
performance accuracy is a function of the signal to noise ratio.

Van Galen, Portier, Smits-Englesman and Schomaker (1993) proposed
that the motor system ®lters out neuromotor noise to produce movements
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that are kinetically optimal and spatially predictable. The more e�cient the
motor system, the more the noise is ®ltered and the less variable is the
output. This ®ltering process is thought to be partly regulated by sti�ening
of the muscles and/or by an increase in friction, for example between the
pen tip and the writing surface. As the computational demand of the
motor task increases there is a decrease in the motor systemÕs ability to
®lter out muscle tremor. These researchers concluded that an ability to
minimize this inherent noisy variability is paramount for producing accu-
rate movements.

Longsta� and Heath (1997) found evidence supporting the important role
played by noise in motor performance by comparing the handwriting dy-
namics of people who were judged to be more pro®cient at the skill with
those who were less pro®cient. We found that those participants who dis-
played less inter-trial variability produced the more legible output. We
concluded that spatial variability in a stable physical environment is partly
due to dynamic variability, spatial accuracy depending on a minimization of
unwanted dynamic noise.

This evidence from the handwriting literature, when seen in the light of
®ndings from biomechanics, suggests that the psychomotor system functions
by minimizing the impact of muscular noise on movement outcomes. The
primary source of this noise is an innate muscular tremor that is ®ltered via
the limb mechanics during movement. The noise level can be modulated
using strategies such as increasing limb sti�ness or increasing friction. A
failure to e�ectively limit the amount of noise leads to a loss of performance
accuracy.

The question to be answered then is whether this noise is actually random
variation or results from deterministic chaos inherent in the systemÕs dy-
namics, as proposed by Akamatsu et al. (1986) and Mitra et al. (1997, 1998).
This paper gathers further evidence supporting the proposal that what ap-
pears to be random variation within the motor output is in fact chaotic
variability. The rest of this paper is organized as follows. A brief outline of
chaos theory will be introduced along with a general description of some
nonlinear data analysis techniques. A detailed explanation and justi®cation
of the methodology will then be presented, taking into account the problems
and assumptions associated with these techniques. After outlining the ex-
perimental methods used to collect handwriting data, we employ a novel
nonlinear procedure to analyze the data. In the discussion we outline the
signi®cance of this analysis for both model building and the individual as-
sessment of psychomotor skill.
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3. Nonlinear dynamic systems theory

Physical processes such as handwriting which are commonly dynamic, or
time dependent, are often modeled by systems of equations. In experimental
or real world situations it is almost always the case that we do not have access
to the actual equations governing a system. Instead we have a set of obser-
vations of the system as it changes over time. This set of observations is called
a time series. The goal of the researcher is to discover the set of equations that
completely describes the process generating the time series in order to control
the process and possibly predict future values of the system. Various time
series analysis techniques have been developed to achieve this goal in the
behavioral sciences (Gottman, 1981). However, there are some systems that
are so complex that all that can be achieved is a more general description of
some of the properties of the system under study.

The study of equations from known mathematical systems has shown that
when the parameters of the equations governing a system vary due to situ-
ational or environmental circumstances, changes in the qualitative structure
of the modelÕs solutions may occur. Changes over time in the state of the
system, represented by these solutions, can be represented graphically as a
plot of key variables such as velocity and position in multidimensional space.
The region of this space covered by all possible solutions is called the state, or
phase, space. Over time the solution of a dynamic process moves through this
state space along one of its trajectories.

An examination of the state space can inform us about the overall be-
havior of the system. For example the output of a process often contains
equilibrium regions to which solutions of the system converge or are at-
tracted. In these regions, no matter what the initial conditions are, the pro-
cess will return to the same set of values.

There are four basic attractors (Poincar�e, 1892, as cited in Shuster, 1988;
Tsonis, 1992). The ®rst is the ®xed-point attractor in which case the dynamic
process reaches a ®xed point in the phase space and stays there. Since the
state of the system at any time can be fully described by a single point, its
dimensionality equals zero. The second attractor is the limit cycle. In this
case, the solutions continually oscillate around the same set of values within
the phase space. As a result of this the dimensionality of the limit cycle equals
one.

The third attractor is produced when two or more oscillators are coupled
together. Diagrammatically, the trajectories generated by this system re-
semble a two (or greater) dimensional torus, its shape looking like a
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doughnut. The solution of the system will completely ®ll the torus if the ratio
between their frequencies is irrational (called quasi-periodic) and will merely
travel around the edges if it is rational (periodic). When the coupling is weak,
quasi-periodic solutions dominate, whereas when the coupling is strong,
periodic solutions occur which indicate phase locking.

These three attractors all occur in stable state systems. The fourth type of
attractor, called a chaotic or strange attractor, occurs in quasi-stable systems.
In this case, the phase trajectories are con®ned to a ®nite space, but local
points diverge. This is described as stretching and folding of trajectories.
Chaotic systems are characterized by complex solutions and dynamics but
are the result of simple deterministic equations. The output of a chaotic
system is so complex that it appears random but has some short term pre-
dictability (Ott, 1993).

There are several important techniques for determining which of these
attractors are characteristic of experimental time series. The techniques used
in this paper, such as the study of delay portraits, calculation of correlation
dimensions, calculation of Lyapunov exponents and examination of surro-
gate data will now be discussed.

3.1. State space diagrams and delay portraits

A plot of important system variables can tell us a lot about that systemÕs
dynamics. However, in experimental time series we do not have access to the
various variables we may wish to plot. What is needed is a way of recon-
structing the dynamics of the system from observables. One solution to this
dilemma, developed by Packard et al. (1980), Ruelle (1981) and Takens
(1981), is to generate a topological equivalent to the state vector X(t) by
taking the observable x(t) as the ®rst coordinate, x(t + s) as the second and
x(t + (nÿ 1)s) as the last. s is the delay parameter and n is the embedding
dimension. The lag is often chosen using known properties of the system, or
to maximize the structure in the resulting plot. The embedding lag should be
chosen so that each successive point is independent from previous points,
for example by making sure they are decorrelated (Takens, 1981; Tsonis,
1992).

The e�ect of this embedding technique is to transform the unidimensional
time series into a sequence of vectors in an n-dimensional space. To achieve
accurate results, the embedding dimension, n, needs to be chosen so that
n P 2m + 1, where m is the dimension of the underlying attractor. The result
of this method is known as a delay plot. It has been demonstrated that if
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suitable embedding dimensions and lags are used, this technique is mathe-
matically equivalent to what you would achieve if you had plotted the known
system variables (Takens, 1981; Tsonis, 1992).

An examination of the delay plot helps discriminate between the four
bounded attractors, as well as random variation. Given error free data, after
the solutions of the system stabilize, a point attractor will simply look like a
point, a limit cycle attractor will look like an ellipse in two dimensions and
coupled oscillators will look like a doughnut in three dimensions. A random
time series will not display any complex structure. Finally, a strange attractor
will produce a complex noncontinuous pattern, which we term fractal. In
experimental time series, which are undoubtedly contaminated with noise,
these plots will contain random variation that blurs the structure. However, if
the signal to noise ratio is large enough, these plots provide a very useful
qualitative method for discriminating between the various possible attrac-
tors.

3.2. Correlation dimension

A quantitative method for determining which attractor might be charac-
teristic of a given real world process involves computing the systemÕs di-
mension. The dimension of a system refers to the minimum number of scalar
variables needed to model the dynamic process, or contain the attractor and
hence provides a measure of the systemÕs complexity. A commonly employed
measure is the correlation dimension, D2, which is based on geometric
properties of the attractor in phase space.

D2 is de®ned by Eq. (1) (Grassberger & Procaccia, 1983).

D2 � lim
e!0

logC�e�
log�e� ; �1�

where the correlation integral, C(e), is de®ned by

C�e� � lim
N!1

1

N 2

XN

i;j�1

H e
ÿ ÿ xi

�� ÿ xj

���: �2�

In Eq. (2) N is the total number of points, the ith point being represented
by the m-dimensional vector, xi. H��� is the Heaviside function which equals 1
when its argument is greater or equal to 0, and is equal to 0 otherwise. Eq. (2)
counts the number of pairs of points that are no greater than e apart as a
proportion of the total number of pairs of points in the data set. In practice,
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for any ®xed value of embedding dimension, D2 is estimated as the average
slope in a plot of logC�e� against log�e� within a central almost linear scaling
region.

In stable systems, estimates of D2 will level o� at a particular value as the
embedding dimension increases. The correlation dimension for stable peri-
odic system will be a small integer, while the value for a chaotic process is a
small nonintegral fractional value, i.e. it quanti®es a fractal process. A
completely random process is in®nitely dimensional, the calculated dimen-
sion increasing as the attractor is embedded in increasingly larger dimen-
sions. In practice, since we are dealing with ®nite time series at low
embedding dimensions the asymptote value of D2 for a random time series
will be some ®nite number not much larger than 6 or 7.

3.3. Largest Lyapunov exponent

The second quantitative measure to be examined is the Lyapunov expo-
nent spectrum. In a given embedding dimension, the Lyapunov exponent is a
measure of the speeds at which initially nearby trajectories of the system
diverge. There is a Lyapunov exponent for each dimension of the process,
which together constitute the Lyapunov spectrum for the dynamical system.
The Lyapunov exponent is related to the predictability of the system. The
largest Lyapunov exponent of a stable system does not exceed zero, while a
chaotic system has at least one positive Lyapunov exponent. A random
system is completely unpredictable and therefore the largest Lyapunov ex-
ponent theoretically should be in®nitely positive. In practice the calculated
largest Lyapunov will be a large positive number for noisy processes.

A positive Lyapunov exponent implies that a chaotic process displays long
term unpredictability, with the output being sensitively dependent on the
initial conditions. Even slightly di�erent initial values can lead to vastly
di�erent system outputs. The sum of all Lyapunov exponents of a chaotic
system will be negative, consistent with the idea that the chaotic attractor is
globally stable. The more positive the largest Lyapunov exponent the more
unpredictable the system. When the equations governing a system are known,
the de®nitive test for chaos is one positive Lyapunov exponent with a neg-
ative sum of Lyapunov exponents. However due to the impact of noise within
experimental systems, this is not a reliable test for chaos unless some attempt
is made to minimise measurement noise. While a failure to satisfy this cri-
terion in an experimental time series is a good argument for it not being
chaotic, merely satisfying this criterion is not su�cient to determine that it is

M.G. Longsta�, R.A. Heath / Human Movement Science 18 (1999) 485±524 495



chaotic. A detailed description of the calculation of the Lyapunov spectrum
is beyond the scope of this paper and the reader should refer to Tsonis (1992)
or Wolf, Swift, Swinney and Vastano (1985), for example. It is worth noting
that Akamatsu et al. (1986) found a maximum Lyapunov exponent of
0.22719 bits per iteration (i.e. log base 2) for their muscle model while it was
within its chaotic state.

4. Description and justi®cation of methodology

4.1. Concatenation of data sets from individual trials

There are several problems associated with nonlinear dynamic analysis.
The accuracy of the results of these calculations usually depends on the
availability of large data sets. There is debate as to the minimum number of
data points necessary with some recommendations exceeding 10 000. Recent
research has found that accurate results can be achieved with as few as 1584
data points 2 when the dimension of the system (d ) is 3. Even this value is
thought to be an overestimate for some systems and in practice smaller sized
data sets might su�ce, particularly when rhythmic behavior is being studied
(Kay, 1988).

Unfortunately there is no standard method for determining the errors of
estimates of quantities such as D2 and the maximum Lyapunov exponent for
all types of systems. Although less than 1500 data points may be needed in
the present study, a typical handwriting trace sampled at a frequency of 100
Hz will only result in a time series containing between 300 and 500 data
points. Because of this concern with an adequate data sample for nonlinear
analysis, we examined the possibility of concatenating data obtained from
®ve successive handwriting trials. Typically this new time series will contain
more than 1500 data points. Our ®rst step is to determine whether this
technique will produce theoretically and mathematically valid results.

The calculation of Lyapunov exponents and D2 requires assumptions that
the data points comprising the time series are temporally related and sam-
pled at equal time intervals. The question we answer in this section is
whether we obtain equivalent results by joining velocity pro®les to that

2 A recent estimate of the number of data points needed is N� 102 � 0:4 d i.e. 1584 for d� 3 and 3981 for

d� 4 (Nerenberg & Essex, 1990; Tsonis, 1992).
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which we would achieve by simply using each individual time series and
computing averages of D2 and the Lyapunov exponents. From an experi-
mental point of view, it would be di�cult at best for a participant to write
the same word ®ve times continuously and without pauses due to gross
movements of the arm and limitations on the size of the writing tablet.
Furthermore, this strategy would increase the likelihood of introducing
nonstationarity into the data due to some combination of fatigue and
pausing during a long arm motion. Nonstationarity in the time series would
further complicate the data analysis.

Combining the data from consecutive trials seems reasonable from a
theoretical point of view. We propose that writing the same word several
times can be likened to taking several samples from the same stable at-
tractor. Since the analysis techniques are designed to ®nd the properties of
this attractor, each of the time series should produce similar results. When
combined they should produce a more accurate portrait of this attractor. If
the samples are from a point attractor, or simple limit cycle periodic sys-
tem, the combined data will produce similar results to the original. If the
samples are chaotic, each trial is merely a sample from the same strange
attractor. If the original time series is ÔnoiseÕ, then the joined series will also
be noise. If the time series for each individual ÔchunkÕ is not a sample of the
same stable attractor then the results for each chunk will be substantially
di�erent from each other and presumably the concatenated time series will
be quite disordered. The consequence of having the ÔchunksÕ of data tem-
porally disjointed in any of these cases will be merely to introduce a trivial
number of short ÔnoisyÕ sections where the samples are joined. The con-
catenation of short sequences of data before data analysis is a commonly
used technique in EEG research (Barlow, Creutzfeldt, Michael, Houchin &
Epelbaum, 1981) as well as in the spectral analysis of handwriting dy-
namics.

One way to test the validity of this methodology experimentally is to
compare the dynamic characteristics of the ®ve original time series against
those of the ®ve concatenated time series. If there is no di�erence between
them in estimates of D2 and the maximum Lyapunov exponent, it is rea-
sonable to conclude that the methodology is valid.

4.2. Noise reduction using singular value decomposition

One overriding issue of concern in nonlinear dynamic analysis is the
e�ect of ÔnoiseÕ on the accuracy of the results. Chaos is related to noise in
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the sense that to a large extent chaotic data display many of the charac-
teristics of noise, such as a broad band power spectrum and a rapid decline
in the prediction accuracy over time. Experimental time series are typically
contaminated with noise. Since noise is in®nite dimensional, if a time series
is contaminated with even a small amount of noise, the data analysis can
produce correlation dimensions larger than that of the true attractor
(Tsonis, 1992). Noise will also tend to produce positive Lyapunov expo-
nents even when such values do not exist in the deterministic component of
the true series (Sprott & Rowlands, 1995). It is essential therefore to
eliminate, or at least minimize, the amount of noise within the experi-
mental data sets. A useful method of noise reduction is singular value
decomposition (SVD), a technique recommended and commonly used in
nonlinear data analysis (Aubry, Holmes & Lumley, 1988; Lumley, 1970;
Rapp, 1994; Rowlands & Sprott, 1992; Sauer, 1992; Sprott & Rowlands,
1995).

SVD derives orthogonal eigenfunctions from the original time series, each
of which corresponds to one of a sequence of decreasing eigenvalues. Each
eigenvalue represents the relative contribution of the corresponding eigen-
function towards ®tting the original time series. A new time series based on
the ®rst few eigenfunctions weighted by their respective eigenvalues is com-
puted. Since the additive noise is distributed evenly across the eigenfunctions
the SVD method serves to increase the signal±noise ratio without altering the
basic properties of the attractor.

5. Using surrogate data to con®rm that handwriting velocity pro®les are
di�erent to noise

Since chaos has similar properties to noise we need to test that the time
series is not simply a random process. We do this by ®rstly generating sur-
rogate time series from the original data and then comparing the results of
the chaos analysis of the surrogates with those obtained from the original
time series analysis (Theiler, Eubank, Longtin, Galdrikian & Farmer, 1992).
These surrogate time series contain the same numerical values as the original
time series but they have been randomly mixed in one of several ways in
order to remove their deterministic recursive structure. If the results are
similar for the original and surrogate series, then the original time series is
most likely noise, or heavily contaminated with noise. If the nonlinear dy-
namic analysis produces di�erent results for the two types of time series then
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it is likely that the original time series was nonlinear and deterministic, i.e.
chaotic or possibly periodic.

There are three main types of surrogate data sets (Rapp, 1994; Theiler
et al., 1992). The ®rst is simply a random shu�e of the data and tests the null
hypothesis that the original time series is no di�erent from uncorrelated
noise. Applying a Fourier transform to the data, randomizing the phases and
then applying the inverse Fourier transform produces the second surrogate.
This process removes temporal dependencies in the data while maintaining its
spectrum. This is a test of the null hypothesis that the original experimental
time series is the same as linearly autocorrelated Gaussian noise. The third
surrogate is a generalization of the second surrogate to non-Gaussian noise.
The time-order of the series is shu�ed while maintaining the linear correla-
tions of the original time series. This procedure tests the hypothesis that the
original time series is no di�erent from a static nonlinear transform of linear
Gaussian noise.

The aim of this study was to demonstrate the validity of the preprocessing
techniques of data concatenation and noise reduction and then to gather
evidence for the proposal that handwriting dynamics are chaotic. The present
study initially compares the results of a nonlinear dynamic analysis of time
series both in their original form and after they have been chunked to sim-
ulate ®ve temporally disjointed samples of an attractor which have been
concatenated. The time series used are two known chaotic series and one
random series. It is hypothesized that the chunking and concatenation of the
time series will not substantially alter the calculated dynamic parameters of
these systems. For the known chaotic systems, this procedure will not destroy
the structure of the attractors and for the random time series no structure will
be introduced.

The results of the nonlinear dynamic analysis of velocity pro®les for ®ve
handwriting samples will be compared with those for time series generated by
the concatenation of these ®ve samples for two participants. It is hypothe-
sized that the attractors for each of the ®ve trials of handwriting will be
fundamentally similar to each other and to the ®ve trials concatenated, both
visually and in terms of the correlation dimension.

It is hypothesized that a chaos analysis of the concatenated velocity pro-
®les will generate signi®cantly di�erent results for surrogate data sets based
on these original time series. In particular, the phase portraits will show less
structure and the correlation dimension estimates will be higher. Finally, it is
hypothesized that the correlation dimensions will be small (i.e. between 0 and
5), that there will be at least one positive Lyapunov exponent and that the
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sum of Lyapunov exponents will be negative, providing evidence for the
proposal that handwriting velocity pro®les are chaotic.

6. Method

6.1. Participants

Eight participants aged between 19 and 41 voluntarily consented to par-
ticipate in this study. All participants were recruited from the general uni-
versity population. No special criteria were used to select participants,
however all participants wrote naturally with their right hand and had nor-
mal or corrected-to-normal vision. This experiment was carried out accord-
ing to the ethical guidelines laid down by the University of NewcastleÕs
Human Research Ethics Committee.

6.2. Apparatus

The data were collected using a Wacom 1212-R graphics tablet connected
to a Macintosh IIci personal computer. This setup recorded the X and Y co-
ordinates of the tip of the stylus as it moved across the tablet surface. The co-
ordinate data were sampled at a frequency of 100 Hz, and at a spatial
resolution of 0.02 cm. The stylus used was similar in size and weight to a
normal ballpoint pen. A piece of plain white paper was secured onto the face
of the tablet to provide a more natural writing surface. A single horizontal
line on the page was the only directional guide provided.

6.3. Procedure

The participants were seated at a desk of typical height (60 cm) which
contained both the computer and the graphics tablet. The participants were
asked to write the pseudo-word ÔmadronalÕ in their normal cursive script.
This pronounceable pseudo-word created by the experimenter satis®ed the
criteria that the pen does not need to leave the page during writing, that
successive letters were not too similar in form and that the resulting pen trace
contained at least 300 samples.

The participants were allowed to practice the task until they felt com-
fortable with what was required. The participants were then asked to write
the pseudo-word ten times in their normal cursive handwriting on the
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graphics tablet using the stylus. There was no immediate visual feedback to
the participants of their pen trace.

7. Results

7.1. Preprocessing

Of the ten trials, the ®rst trial was generally discarded as a practice trial
and of the remaining nine trials only the best ®ve were used for further
analysis. The best trials were chosen on the basis of their being the ®rst ®ve
trials not interrupted by mistakes or pauses uncharacteristic of the partici-
pantÕs general writing style. The data from the ®ve handwriting trials were
split into time series for the horizontal (X ) and vertical (Y ) directions. The
basic velocity pro®les were calculated by taking the ®rst di�erence of the
positional data.

For each participant the ®ve velocity pro®les were concatenated for both X
and Y velocities. SVD was then applied to all velocity time series to reduce
noise. Chaos data analyzer (CDA): The professional version (Sprott &
Rowlands, 1995) was used for the calculation of the SVD, correlation di-
mensions and calculation of the largest Lyapunov exponent. Lyapunov
spectra were calculated using the NETLE software (Gencßay & Dechert, 1992;
Kuan & Tung, 1995)

7.2. A comparison of the chaotic and random time series in their original and
chunked forms

Whenever a new analysis technique is proposed, the usual procedure is to
compare the results of the new analysis with those of previously used tech-
niques. In the present case, two time series known to be chaotic and one
representing noise were analyzed both in their original form and after they
have been ÔchunkedÕ to simulate ®ve temporally disjointed samples of the
chaotic attractor. This procedure involved inputting the time series into a text
editor and manually removing 4, 20±25 point sections quasi-randomly from
approximately equally spaced intervals along the series. The two chaotic time
series used are 2000 points sampled at time delays, Dt� 0.05, of the variable
X �t� of the Lorenz system Eqs. (3)±(5) and 2000 iterations of the variable Xn

of the H�enon attractor (Eqs. (6) and (7)). The noise time series used was 2000
random data points with a Gaussian distribution which had a mean of zero
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and a standard deviation of one. These series were provided by the CDA
computer program.

Lorenz: a� 10, b� 28, c� 8/3,

dX
dt
� a Y� ÿ X �; �3�

dY
dt
� bX ÿ Y ÿ XZ; �4�

dZ
dt
� XY ÿ cZ: �5�

H�enon: a� 1.4, b� 0.3,

Xn�1 � 1ÿ a X 2
n � Yn; �6�

Yn�1 � b Xn: �7�
A comparison of the properties of the original and chunked time series will

tell us if this procedure alters the dynamics dramatically. Two methods will
be used to assess the dynamics, the ®rst being a qualitative examination of the
delay plots, the second being a quantitative examination of the correlation
dimensions. Figs. 1(a) and (b) show the delay plots for the original and
chunked Lorenz series. A lag of 2 is used to best display the system dynamics.
These plots show that, apart from a few ÔnoisyÕ points, the two delay portraits
are identical. These noisy points arise from those few points in the time series
that are temporally disjointed where the time series are concatenated.

Similarly, Figs. 2(a) and (b) show that for the H�enon time series, the only
di�erence between the original and concatenated series is a few noisy points.
A lag of 1 was chosen to display the dynamics in their traditional form.
Finally, Figs. 3(a) and (b) show that after chunking the random (noise) time
series remains completely unstructured. A lag of 1 was arbitrarily chosen for
this plot. Since it is a random time series, the delay plot would produce a
similar shape irrespective of the lag chosen.

Table 1 provides a comparison between the correlation dimension and
largest Lyapunov exponent for the Lorenz, H�enon and random (noise) time
series in both the original and chunked forms. The expected values of these
parameters from the literature are also presented. As can be seen, there is
little change in these important properties of the time series after chunking.
In particular, correlation dimensions remain fractional and the largest
Lyapunov exponent remains positive for the known chaotic time series. The
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correlation dimension remains substantially larger than 5 for the random
(noise) time series. Note that there are too few data points to calculate ac-
curate largest Lyapunov exponents for the Lorenz attractor.

7.3. Comparison of nonlinear dynamic analyses for ®ve handwriting trials and
for the ®ve trials concatenated

The nonlinear dynamic characteristics of each individual handwriting trial
were compared to the characteristics of the time series generated by con-
catenating ®ve trials. The results for both the X and Y velocity pro®les for
two participants are presented below. No special criteria were used to select
these participants for detailed study. As their results are typical of that found
for all eight participants, it was not thought necessary to present the
remaining six sets of results. Delay portraits are ®rst examined to pro-
vide qualitative evidence, then the correlation dimensions are calculated to

Fig. 1. (a) A delay plot of the variable X(t) of the Lorenz attractor; (b) A delay plot of the chunked version

of the variable X(t) of the Lorenz attractor. The chunked time series was created by removing 4, 20±25

point sections quasi-randomly from approximately equally spaced intervals along the original time series.

In both plots a lag of 2 provided the most structured attractor for the system.
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provide a quantitative comparison. There were too few data points in indi-
vidual trials to calculate accurate Lyapunov exponents.

Figs. 4 and 5 display delay portraits of the X velocity for each handwriting
trial as well as for the ®ve trials concatenated for participants 1 and 8, re-
spectively. Note that for both participants the individual attractors are
similar for each trial as well as for the concatenated trials.

Table 2 contains the correlation dimension for the X velocity for each of
®ve handwriting trials and for data obtained when observations from the ®ve
trials are concatenated for both participants 1 and 8. A two-tailed t-test was
performed to con®rm that the correlation dimension for the concatenated
series was not signi®cantly di�erent from the correlation dimension of the
constituent time series. The null hypothesis value for the population mean is
assumed to be the D2 estimate for the concatenated sample. A nonsigni®cant
di�erence was veri®ed for both participant 1 (t(3)�ÿ0.52, p� 0.63), and

Fig. 2. (a) A delay plot of the H�enon chaotic time series; (b) A delay plot of the chunked version of the

H�enon chaotic time series. The chunked time series was created by removing 4, 20±25 point sections quasi-

randomly from approximately equally spaced intervals along the original time series. A lag of 1 was chosen

for both plots to display the dynamics in their traditional form.
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participant 8 (t(3)�ÿ0.68, p� 0.53). Table 2 shows that both the individual
time series and the concatenated time series display similar nonlinear dy-
namic characteristics.

Figs. 6 and 7 show delay portraits of the Y velocity for each handwriting
trial as well as for the ®ve trials concatenated for participants 1 and 8, re-
spectively. Note that each individual attractor is similar for each trial as well
as when the trials have been concatenated.

Table 3 contains the correlation dimension of the Y velocity for each of
®ve handwriting trials as well as for the ®ve trials after they have been
concatenated. A two-tailed t-test was performed to check that the correlation
dimension for the concatenated series was not signi®cantly di�erent from the
correlation dimension of the constituent time series. This result was veri®ed
for both participant 1 (t(3)� 0.20, p� 0.85), and participant 8 (t(3)�ÿ0.97,

Fig. 3. (a) A delay plot of the random (noise) time series; (b) Delay plot of the chunked version of the

random (noise) time series. The chunked time series was created by removing 4, 20±25 point sections quasi-

randomly from approximately equally spaced intervals along the original time series. Since the time series

is random, the delay plot would produce a similar shape irrespective of the lag chosen. For both plots a lag

of 1 was arbitrarily chosen.
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p� 0.39). This result shows that both individual trials and the ®ve trials
concatenated display similar nonlinear dynamic characteristics, as was the
case for the X velocity time series.

One crucial step in the calculation of nonlinear properties of a time series is
the selection of the time delay. Before a result can be accepted, the analysis
should be performed on the time series using a number of di�erent delays in
order to determine the sensitivity of the original results to this parameter. To
investigate the validity of the results for the concatenated time series,
the correlation dimensions were recalculated using delays of 2, 4, 8 and 16.
The correlation dimensions calculated using these delays were comparable to
the original results both for participant 1 (X velocity: mean� 3.843,
SD� 0.060; Y velocity: mean� 3.340, SD� 0.104) and participant 8 (X ve-
locity: mean� 3.340, SD� 0.158; Y velocity: mean� 3.822, SD� 0.395).
Though these results were slightly higher than the original values, they
con®rm that the time series are low dimensional.

Table 1

The correlation dimension and largest Lyapunov exponent of the Lorenz, H�enon and Noise data in their

original and chunked forms

n Correlation dimension Largest Lyapunov exponent a

Lorenz (expected) Approx. 2.05 b 1.31 c

Lorenz (calculated) 2000 2.050 � 0.112 N/A d

Chunked e Lorenz 1898 2.043 � 0.117 N/A d

H�enon (expected) 1.21 f 0.602 g

H�enon (calculated) 2000 1.222 � 0.056 0.597 � 0.033

Chunked e Henon 1898 1.219 � 0.069 0.613 � 0.037

Noise (expected) Greater than 5 h +1 i

Noise (calculated) 2000 6.642 � 6.642 j 0.780 � 0.034

Chunked e Noise 1898 6.604 � 6.604 j 0.787 � 0.034

a Bits (factors of 2) per data sample (unit time) i.e. log base 2.
b Sprott and Rowlands (1995).
c Sprott.physics.wisc.edu/chaos/lorenzle.htm. The natural log for the Lyapunov exponent is 0.906.
d Too few data points were used to calculate accurate largest Lyapunov exponents for the Lorenz attractor

(Sprott and Rowlands, 1995).
e The chunked data was produced by removing small sections from the original data to split it into

temporally disjointed segments. These were then concatenated into one time series. This simulates ®ve

temporally disjointed samples of an attractor.
f Grassberger and Proccaccia (1983).
g Wolf et al. (1985).
h Sprott and Rowlands (1995).
i Sprott and Rowlands (1995).
j This error term means that D2 is essentially unbounded.
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One ®nal concern with using D2 was that potential nonstationary sections
in the data may have led to erroneous results. Nonstationarity is a well-
known problem with physiological data (Mayer-Kress et al., 1988; Skinner
et al., 1994). An alternative method of calculating dimensionality, called
PD2i

3, was developed by Skinner et al. (Skinner et al., 1994; Skinner,
Carpeggiani, Landisman & Fulton, 1991; Skinner, Goldberger, Mayer-Kress
& Ideker, 1990; Skinner et al., 1990). This method is less sensitive to non-
stationary sections within a time series. In order to ensure that this alterna-
tive method did not result in vastly di�erent dimension estimates, it was
applied to the concatenated time series for all eight participants. Once again
the results were comparable for both X velocity (mean� 4.004, SD� 0.274)

3 The PD2i software was used under license from Totts Gap Software, 1430 Totts Gap Rd Bangor, PA

18013, USA.

Fig. 4. A delay plot of X velocity for each handwriting trial (a±e) and the ®ve trials concatenated (f) for

participant 1. A lag of 5 was chosen to best display the dynamics of the system.
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and Y velocity (mean� 3.961, SD� 0.255) time series. These values are also
slightly higher than the original values, but further con®rm that the hand-
writing velocity time series are low dimensional. Fluctuations in dimensional
estimates within each time series were relatively small. There were no trends

Fig. 5. A delay plot of X velocity for each handwriting trial (a±e) and the ®ve trials concatenated (f) for

participant 8. A lag of 5 was chosen to best display the dynamics of the system.

Table 2

The correlation dimension of the X velocity for ®ve handwriting trials and the ®ve trials concatenated for

participants 1 and 8

X velocity Participant 1 Participant 8

n Correlation dimension n Correlation dimension

Trial 1 360 3.533 � 0.614 465 3.339 � 0.519

Trial 2 231 3.499 � 0.273 339 2.660 � 0.390

Trial 3 234 3.479 � 0.691 339 2.621 � 0.236

Trial 4 237 2.654 � 0.054 360 2.352 � 0.671

Trial 5 360 3.257 � 0.579 339 2.727 � 0.352

Mean 3.284 2.940

5 Trials concatenated 1711 3.370 � 0.506 2364 2.851 � 0.374
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except for some local increases in the estimated dimension due to noise
transients at the concatenation points. Since the results calculated for the
dimensional estimates are similar when using di�erent time delays as well as
using di�erent techniques, it was decided to remain with the original method
of analysis.

7.4. Comparison of correlation dimension and largest Lyapunov exponent of X
and Y handwriting velocity from ®ve concatenated trials and their respective
surrogates

Three surrogate data sets were generated from the concatenated hand-
writing velocity time series using the computer program MTRChaos
(Rosenstein, Collins & DeLuca, 1993, 1994). These surrogate series are se-
quence randomized, phase randomized and Gaussian scaled versions of the

Fig. 6. A delay plot of the Y velocity for each handwriting trial (a±e) and the ®ve trials concatenated (f) for

participant 1. A lag of 5 was chosen to best display the dynamics of the system.
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original data. This comparative data analysis was performed to test whether
the time series are actually uncorrelated noise, linearly autocorrelated
Gaussian noise or a static linear transform of linear Gaussian noise. The

Fig. 7. A delay plot of Y velocity for each handwriting trial (a±e) and the ®ve trials concatenated (f) for

participant 8. A lag of 5 was chosen to best display the dynamics of the system.

Table 3

The correlation dimension of the Y velocity for ®ve handwriting trials and the ®ve trials concatenated for

participants 1 and 8

Y velocity Participant 1 Participant 8

n Correlation dimension n Correlation dimension

Trial 1 234 3.369 � 0.315 342 2.692 � 0.518

Trial 2 360 3.609 � 0.659 387 2.537 � 0.255

Trial 3 234 2.664 � 0.083 366 2.820 � 0.503

Trial 4 240 2.409 � 0.247 360 2.611 � 0.160

Trial 5 336 2.618 � 0.108 339 2.578 � 0.392

Mean 2.933 2.648

5 Trials concatenated 1714 2.886 � 0.268 2308 2.696 � 0.385

510 M.G. Longsta�, R.A. Heath / Human Movement Science 18 (1999) 485±524



delay portraits and correlation dimensions are expected to be substantially
di�erent for the surrogates compared to the original.

Figs. 8 and 9 are delay portraits of the X and Y velocities and their re-
spective surrogate time series for participant 1. Figs. 10 and 11 are delay
portraits of the X and Y velocities and their respective surrogate time series
for participant 8. In all cases it is apparent that the original time seriesÕ
structure has been substantially altered when surrogate series are computed.

Figs. 8(b), 9(b), 10(b) and 11(b) show that the ®rst surrogate, a sequence
randomized version of the original time series, appears quite random (com-
pare with Fig. 3). This indicates that the original time series was not merely
an uncorrelated random time series. The phase portrait of the second sur-
rogate can be seen in Figs. 8(c), 9(c), 10(c) and 11(c). This surrogate, which

Fig. 8. Delay portraits of the X handwriting velocity (a) and its surrogate time series for participant 1.

Surrogates (b), (c) and (d) are sequence-randomised, phase-randomised and Gaussian scaled versions,

respectively. A lag of 5 was chosen to best display the dynamics of the system.
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retains the same frequency spectrum as the original time series but has had its
phase randomized, demonstrates the persistence of the dominant frequency
with the characteristic pattern being substantially altered.

The third surrogate, which can be seen in Figs. 8(d), 9(d), 10(d) and 11(d)
is a generalization of the second surrogate to non-Gaussian noise and pro-
duces phase portraits with structure that is relatively dissimilar to that con-
tained in the original series. When examining Figs. 8±11 it is apparent that
each surrogate is more similar to other surrogates of the same type than to its
base time series.

Table 4 shows that all surrogates display distinctly di�erent properties to
the original time series. The larger dimension values displayed by the sur-
rogate time series indicate that they are not the same as the original. In the
estimation of the correlation dimension, the surrogates did not appear to

Fig. 9. Delay portraits of the Y handwriting velocity (a) and its surrogate time series for participant 1.

Surrogates (b), (c) and (d) are sequence-randomised, phase-randomised and Gaussian scaled versions,

respectively. A lag of 5 was chosen to best display the dynamics of the system.
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stabilize in less than ten embedding dimensions in the way that the original
time series did. This further indicates a di�erence between the original time
series and its surrogates.

The error term in Table 4 is a rough guide based on the way the correlation
dimension is estimated (Sprott & Rowlands, 1995). Since the error term in the
calculation for the X velocity for participant 1 is mildly large, there was some
doubt that there was a signi®cant di�erence between the value for this series
and its surrogates. A more accurate method of testing if the original and
surrogate time series are signi®cantly di�erent at an alpha level of 0.05 is to
compute 19 surrogates and then show that the original time series value lies
outside the con®dence interval. For the X velocity of participant 1, a one-
tailed t-test was performed comparing the correlation dimension for 19
versions of each surrogate with the correlation dimension of the original. In

Fig. 10. Delay portraits of the X handwriting velocity (a) and its surrogate time series for participant 8.

Surrogates (b), (c) and (d) are sequence-randomised, phase-randomised and Gaussian scaled versions,

respectively. A lag of 5 was chosen to best display the dynamics of the system.
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Fig. 11. Delay portraits of the Y handwriting velocity (a) and its surrogate time series for participant 8.

Surrogates (a), (b) and (c) are sequence-randomised, phase-randomised and Gaussian scaled versions,

respectively. A lag of 5 was chosen to best display the dynamics of the system.

Table 4

The correlation dimension of the concatenated X velocity and concatenated Y velocity and their respective

surrogate data sets

n Correlation dimen-

sion, participant 1

n Correlation dimen-

sion, participant 8

X velocity 1711 3.370 � 0.506 2364 2.851 � 0.374

X surrogate 1 1711 6.450 � 6.450 2364 6.443 � 6.443

X surrogate 2 1711 4.086 � 0.318 2364 3.775 � 0.631

X surrogate 3 1711 4.307 � 0.098 2364 3.975 � 0.347

Y velocity 1714 2.886 � 0.268 2308 2.696 � 0.385

Y surrogate 1 1714 6.438 � 6.438 2308 6.451 � 6.451

Y surrogate 2 1714 3.660 � 0.378 2308 3.887 � 0.775

Y surrogate 3 1714 4.213 � 0.342 2308 4.028 � 0.268
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each case there was a highly signi®cant di�erence (surrogate 1, t(18)� 126.62,
p < 0.0001; surrogate 2, t(18)� 9.25, p < 0.0001; surrogate 3, t(18)� 12.66,
p < 0.0001).

7.5. A summary of the nonlinear dynamic analysis for eight participants

Tables 5±7 contain a summary of the results of a nonlinear dynamic
analysis of handwriting for eight participants. Table 5 shows correlation

Table 5

The correlation dimension of the concatenated X handwriting velocity and concatenated Y handwriting

velocity for eight adult participants

n X velocity correlation

dimension

n Y velocity correlation

dimension

Participant 1 1711 3.370 � 0.506 1714 2.886 � 0.268

Participant 2 1840 3.322 � 0.304 1840 2.990 � 0.152

Participant 3 1974 3.308 � 0.251 1974 2.879 � 0.398

Participant 4 1454 2.828 � 0.308 1454 2.886 � 0.142

Participant 5 2240 3.584 � 0.205 2238 3.444 � 0.297

Participant 6 2000 3.008 � 0.251 2000 3.009 � 0.134

Participant 7 1784 3.677 � 0.283 1784 3.130 � 0.264

Participant 8 2364 2.851 � 0.374 2308 2.696 � 0.385

Average 1920 3.244 1920 2.990

Table 6

The largest Lyapunov exponent and the sum of Lyapunov exponents for X handwriting velocity of eight

participants

X velocity Estimated largest Lyapunov

exponent, embedded in seven

dimensions a

Sum of Lyapunov exponents

Participant 1 0.145 ÿ1.154

Participant 2 0.119 ÿ1.447

Participant 3 0.106 ÿ1.557

Participant 4 0.122 ÿ0.881

Participant 5 0.115 ÿ1.029

Participant 6 0.106 ÿ1.330

Participant 7 0.090 ÿ0.731

Participant 8 0.106 ÿ0.621

Average 0.114 ÿ1.094

a The velocity time series were embedded in seven dimensions and the neural network model used seven

input units, 1±14 hidden units and one output unit. The Lyapunov exponents are expressed in log base-e.
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dimensions ranging between 2.7 and 3.7, suggesting that the correlation di-
mension of handwriting velocity pro®les is small and fractional, but with
substantial individual variability.

Lyapunov spectra were calculated using the program NETLE (Gencßay &
Dechert, 1992; Kuan & Tung, 1995). This procedure uses a multilayer feed
forward neural network to generate a nonlinear model of the experimental
time series that is then used to estimate the Lyapunov spectrum. By de®ni-
tion, the Lyapunov exponents for a dynamical system measure the average
rate of divergence or convergence of a typical trajectory (Gencßay & Dechert,
1992). There are n Lyapunov exponents for an n dimensional system. Using
the de®nition of Lyapunov exponents, Gencßay and Dechert state that all the
Lyapunov exponents can be calculated using the Jacobian of the nonlinear
function g along a trajectory {xt}. This function is estimated by the neural
network and derives from di�erentiating the original nonlinear mapping in
the embedding space. As noted earlier, by using the method of delays the
dynamics of a system can be reconstructed from its observables. The tech-
nique used in NETLE involves estimating the nonlinear function g, which
relates the next time series value to its previous values based on the recon-
struction and then calculating the Lyapunov exponents of g using the de®-
nition in terms of the Jacobean functions.

Multilayer feedforward neural networks can asymptotically approximate a
(di�erentiable) function and its derivatives to any degree of accuracy and
with as few as a hundred observables. For the handwriting data, since the D2

Table 7

The largest Lyapunov exponent and the sum of Lyapunov exponents for the Y handwriting velocity of

eight participants

Y velocity Estimated largest Lyapunov

exponent, embedded in seven

dimensions a

Sum of Lyapunov exponents

Participant 1 0.132 ÿ1.094

Participant 2 0.130 ÿ1.157

Participant 3 0.118 ÿ1.138

Participant 4 0.105 ÿ1.218

Participant 5 0.131 ÿ0.831

Participant 6 0.111 ÿ1.082

Participant 7 0.113 ÿ1.060

Participant 8 0.106 ÿ1.037

Average 0.118 ÿ1.077

a The velocity time series were embedded in seven dimensions and the neural network model used seven

input units, 1±14 hidden units and one output unit. The Lyapunov exponents are expressed in log base-e.
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estimate was approximately 3, the embedding dimension chosen for NETLE
was 7 (i.e. 2 ´ D2+1). Lyapunov exponents were calculated using seven input
units with hidden units ranging from 1 to 14. The model that produced stable
Lyapunov exponents was chosen and the largest Lyapunov exponent and the
sum of all Lyapunov exponents was calculated. Tables 6 and 7 show that in
all cases the largest Lyapunov exponents were positive and that the sum of
Lyapunov exponents was negative.

8. Discussion

If handwriting involves nonlinear information processing mechanisms then
it is reasonable to assume that each time a participant writes a particular
word they are in fact taking a sample from the attractor for that movement.
This proposition breaks down if errors or uncharacteristic pauses disturb the
handwriting trace during a long writing period. It was hypothesized that the
dynamic analysis results achieved for the concatenated time series would be
equivalent to those obtained for the time series for each sample, with the
advantage of producing more accurate results. In this study support for this
proposition was obtained by examining ®ve temporally disjointed samples of
the known attractors. These samples were created by using a ÔnoiseÕ time
series and two known chaotic time series and removing short chunks from
the data every few hundred data points.

As hypothesized, qualitatively in terms of the delay portraits and quanti-
tatively in terms of correlation dimension, the chunked time series displayed
compatible characteristics to the original time series. This means that by
concatenating ®ve samples of the same attractor we are not substantially
altering the time series dynamics. It is particularly noteworthy that the
structure in structured time series is not destroyed and conversely no struc-
ture is introduced into noisy, unstructured time series.

When the dynamic characteristics of the ®ve handwriting trials and the ®ve
concatenated trials were examined, each of the ®ve trials was very similar to
each other both qualitatively in terms of the delay portraits and quantita-
tively in terms of the correlation dimension. The trials displayed compatible
characteristics to those evident when the ®ve trials were concatenated. This
was true for both the X and Y handwriting velocity pro®les for the two
participants whose data were analyzed in detail.

When we are dealing with a stable attractor, these results con®rm the
validity of the pre-processing technique of concatenation of trials to form
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larger data sets. For handwriting velocity attractors, concatenation of ®ve
trials sampled at 100 Hz provides time series long enough for the calculation
of stable and reliable results. Furthermore, since relatively stable results
could be obtained for the dynamic analysis, SVD appears to have reduced the
noisy random variation within the data to an acceptable level. This provides
us with a useful technique for nonlinear analysis of short multiple samples of
handwriting attractors, so obviating a requirement for long time series with
minimum noise in order to obtain accurate results.

We argued that the results of a dynamical analysis of the concatenated
time series would be substantially di�erent to those gained from an analysis
of surrogate data sets based on the original data. In particular, it was hy-
pothesized that the phase portraits for the surrogate time series would display
less structure and that the correlation dimensions would be signi®cantly
larger. This hypothesis was supported by the results for both the X and Y
handwriting velocity pro®les for the two participants. The concatenated time
series were found to be substantially dissimilar to the surrogate time series
and therefore di�erent from uncorrelated noise, linearly autocorrelated noise
as well as a static linear transform of Gaussian noise.

The use of SVD on data which has been calculated by taking the ®rst
di�erence of a position time series could be criticized since this method im-
plies a strong correlation at lag 1. It can perhaps be argued that this may
explain the di�erences between the original time series and the uncorrelated
surrogates (i.e. the sequence-randomized surrogate). However it does not
explain the di�erences between the original and the two surrogates which
maintain the original autocorrelation structure (i.e. the phase-randomized
surrogate and the generalization of this to non-Gaussian noise). This point
emphasizes the need to use several di�erent surrogates to con®rm the validity
of the nonlinear dynamic analysis.

As was hypothesized, the correlation dimensions of the X and Y hand-
writing velocity time series for each of the eight experimental participants
were less than ®ve and fractional. This tells us that the attractor generating
the handwriting studied in this experiment appears to be low dimensional.
This ®nding was robust, similar results being calculated for all eight partic-
ipants, for both X and Y velocity time series, using several techniques as well
as various delay parameters. The hypothesis that the largest Lyapunov ex-
ponent for each concatenated time series would be positive while the sum of
the Lyapunov exponents was negative was also supported by the results.
While these ®ndings need to be treated with some caution, the discovery that
reliable, consistent and stable results were established for each participant for
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individual trials as well as for the concatenated time series argues strongly for
their validity. This is further supported by the ®nding that these results were
substantially di�erent from those found for the surrogate data sets. Our
analysis provides strong evidence for the proposal that handwriting dynamics
are chaotic.

The low fractional correlation dimension found for handwriting velocity
pro®les supports the ®ndings of Dooijes and Struzik (1994). These re-
searchers calculated the handwriting dimensionality using both the static
output as well as the dynamics. While commenting on the inherent di�culties
in calculating precise dimensional estimates, they concluded that handwriting
has a fractal dimension approximately between 1 and 2. The present study
found fractional correlation dimensions between 2 and 4. It is possible that
the techniques used by Dooijes and Struzik underestimated the fractal di-
mension for handwriting since they analyzed static data either as a series of
co-ordinates, or simply as a word on a page. In the current study we ex-
amined dynamic velocity data so it is reasonable to expect a more complex
(i.e. higher dimension) time series.

These results support the ®ndings of Akamatsu et al. (1986) who found
that a muscle model based on the classic length tension curves could produce
an inherent chaotic oscillation during contraction. The particular model
developed by these researchers displayed a largest Lyapunov exponent of
0.157 log base-e (i.e. 0.227 bits per iteration), while in the present study the
average largest Lyapunov exponent was found to be 0.114 and 0.118 log
base-e for the X and Y velocities, respectively. While these results di�er
slightly, it is worth noting that the largest Lyapunov exponent for the muscle
model depends on changes in the parameter related to muscle activation.
Since Akamatsu et al. used an arbitrary value of this parameter so that the
model displayed an example of chaotic characteristics, perhaps a slight
change in this parameter could lead to the largest Lyapunov exponents of the
order found for handwriting velocity pro®les. In any case, there is no guar-
antee that the scaling of Lyapunov exponents should be similar for these
rather di�erent motor time series.

These results are consistent with those found by Kay (1988) who con-
cluded that simple rhythmic ®nger movements are low dimensional. Finally,
the present ®ndings support those of Mitra et al. (1997, 1998) who found
simple rhythmic motor movements can be characterized as chaotic evolutions
on a strange attractor.

The ®nding that handwriting velocity pro®les are chaotic, if con®rmed, has
important implications for theories of skilled performance. A recent
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comprehensive theory of human performance supposes that the psychomotor
system contains background neuromotor noise so that the attainment of
skilled performance is partly due to noise minimization (van Galen et al.,
1993; van Gemmert & van Galen, 1997). Van Gemmert and van Galen (1997)
propose initially that the psychomotor system is noisy. Part of this neuro-
motor noise originates centrally resulting in interference with concurrent
tasks, distractions and e�ects of task complexity. Within the biomechanical
system it is thought that neuromotor noise results from spontaneous ne-
uromotor tremors and motor recruitment noise.

The theory also proposes that noise propagates within the information
processing system on a time- and space-related basis, and that a noisy system
does not necessarily imply performance deterioration. Noise activates and
alerts the systemÕs processing capability, however as the noise level increases
it decreases the signal to noise ratio leading to an increase in errors. This
result is similar to the classic Yerkes±Dodson law for human performance
under stress. A key di�erence between this theory and the neuromotor noise
theory is the ®nding that the psychomotor system can modulate parameters
related to muscle sti�ness and friction to alter the signal to noise ratio. When
these parameters increase, there is a compensatory increase in movement
speed that leads to more noise. After an optimal level of movement speed,
errors rapidly increase to a point where accurate performance is impossible.
According to this theory, accurate skilled performance requires the psycho-
motor system to operate with an optimum signal-to-noise ratio.

In neuromotor noise theory, the noise is thought of as random background
variation produced in part by physiological tremor within the muscles.
However, the present study, along with other recent work on movement
dynamics, postulates that the neuromotor noise, rather than being random
variation, is in fact the output of a chaotic tremor process (Babloyantz &
Lorencßo, 1994; Mitra et al., 1997, 1998). If this is true then it implies that the
task of the motor system is not simply to minimize random variation, but to
minimize chaotic variation. While not altering the basic neuromotor noise
theory, when stated in these terms the task of the psychomotor system could
be thought of as an exercise in the reduction of dynamical degrees of freedom
to produce movements that are optimally stable.

This paper has demonstrated that each handwriting trial is a sample of the
same strange attractor. This attractor appears characteristic for a participant
writing a particular word and so may re¯ect a unique dynamic motor
memory for that movement. If the handwriting dynamics are chaotic, then we
may have solved the degrees of freedom problem. A chaotic oscillator can
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reduce the seemingly in®nite degrees of freedom to the few actually observed
when a movement is produced. With slight variations of the strange attrac-
torÕs few parameters, an in®nite variety of desired movements could be
produced. This variety of movement results in a consistent product that has
been generated in a large number of di�erent environmental contexts. While
this theory is still speculative, it is consistent with the evidence presented
above.

The goal of further research will be to identify the exact source of the
chaos. It could merely be an uncontrollable artifact of the biomechanical
system, or re¯ect some important aspect of the cognitive system. Future work
will be aimed at con®rming that the chaotic dynamics form an important
aspect of motor memory.

Our next stage of research will be aimed at using chaos analysis techniques
to examine individual di�erences between healthy participants and those who
su�er motor skill degradation due to multiple sclerosis. It is hoped that
characteristic di�erences will be found that can be used in a clinical setting for
the early detection of this disease, as well as for monitoring the treatment of
this disease.

This paper has demonstrated the validity and reliability of concatenation
of handwriting velocity time series as well as the use of SVD to provide long
time series with minimum noise. It has con®rmed the utility of delay portraits
in the analysis of dynamical systems as well as nonlinear dynamic analysis as
a novel approach for the analysis of handwriting. We have provided strong
evidence for the proposal that a chaotic process generates handwriting dy-
namics. Finally we have speculated about possible implications this ®nding
has for theories of motor memory. It is our belief that for handwriting, the
motor production involves a chaotic oscillator whose parameters change due
to the given environmental and biomechanical context. This motor memory
consists of the boundary conditions of a functionally speci®c coordinate
structure that allows the chaotic attractor for handwriting to unfold. Due to
its chaotic nature, this attractor is able to generate the in®nite variety of
movements found in this complex psychomotor skill.
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