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Abstract

The complex dynamics of the human hand/arm system need to be precisely controlled to

produce fine movements such as those found in handwriting. This study employs dynamical

systems analysis techniques to further understand how this system is controlled when it is func-

tioning well and when it is compromised through motor function degradation (e.g. from tre-

mor). Seven people with and 16 people without multiple sclerosis (MS) participated in this

study. Tremor was assessed using spirography with participants being separated into ‘‘tremor’’

(6 people with and 1 person without MS; 2 male, 5 female; age range 40–68) and control (1 per-

son with and 15 people without MS; 5 male, 11 female, age range 18–59) groups. Participants

wrote the pseudo-word ‘‘lanordam’’ six times on a digitizer, in a quiet as well as a noisy, mildly

stressful environment. Velocity profiles of the pen tip for the best four trials were concatenated

and analyzed to determine their dimensionality (a measure of the number of control variables)

and Lyapunov exponents (a measure of predictability). Results indicate that the velocity pro-

files for people with tremor were lower dimensional and had less predictable dynamics than for

controls, with no effect of sound condition. Interpreted in the context of related research, it was

speculated that the lower dimensionality reflected the loss of control of variables related to the

minimization of movement variability, resulting in less predictable movements.

� 2003 Elsevier Science B.V. All rights reserved.

PsycINFO classification: 2330

Keywords: Handwriting; Tremor; Dynamical systems analysis; Dimensionality; Fine motor control

* Corresponding author. Tel.: +1-480-965-9081; fax: +1-480-965-8108.

E-mail addresses: mitchell.longstaff@asu.edu (M.G. Longstaff), r.heath@kingston.ac.uk (R.A. Heath).

0167-9457/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0167-9457(03)00002-2

Human Movement Science 22 (2003) 91–110

www.elsevier.com/locate/humov

mail to: mitchell.longstaff@asu.edu


1. Introduction

The human arm is comprised of several joints that need to be precisely coordi-

nated in order to produce smooth, accurate movements. When one limb segment

moves, it creates nonlinear interactive torques within the other limb segments. These
movement induced interactions need to be accounted for when performing tasks that

appear to be simple, such as reaching for a cup of coffee, as well as more complex

tasks such as handwriting (Dounskaia, Van Gemmert, & Stelmach, 2000; Hollerbach

& Flash, 1982). Healthy people can control the biomechanics of the limb to produce

relatively accurate movements, whereas performance deteriorates when people suffer

from tremor or diseases such as multiple sclerosis (MS) or Parkinson�s disease. An
important question in the field of motor control is how the biomechanical system

is controlled to achieve the movement goal in healthy systems, and what character-
izes loss of control when people suffer motor system degradation. The present exper-

iment utilizes dynamical analysis techniques in order to provide a novel insight

into this question. The results are discussed with regards to past findings using more

traditional techniques.

1.1. Movement accuracy and motor function degradation

In order to understand motor function degradation, it is important to be cogni-
zant of the features of healthy motor control. Handwriting, for example, is a multi-

joint task that requires fine motor control in order to translate an abstract motor

memory into a series of muscular and limb movements with the ultimate goal of pro-

ducing an endpoint trajectory that results in a relatively invariant and recognizable

pattern. Past research has identified velocity as an important variable that can be in-

formative about how the CNS organizes and generates structured movements (Long-

staff & Heath, 1997; Mottet & Bootsma, 1999). In addition, the analysis of velocity

data is preferred over position data in handwriting studies due to the dependence of
position data on the exact pattern drawn. In a study of handwriting performance,

Longstaff and Heath (1997) found that higher levels of proficiency (e.g. in terms

of legibility) were associated with lower levels of inter-trial temporal variability (eval-

uated using coherency analysis, a measure of the temporal similarity of two time

series). This indicates that when performing a rhythmic movement such as handwrit-

ing, spatial variability in a stable physical environment is partly due to variability in

movement dynamics, with spatial accuracy depending on a minimization of un-

wanted dynamic noise.
Longstaff and Heath (2000) extended this research by investigating the ability of

people with motor function degradation (as evidenced by the presence of tremor) to

consistently produce handwriting movements both under normal conditions and un-

der conditions of mild stress. As predicted, people with tremor exhibited greater in-

ter-trial temporal variability of velocity and pressure profiles in all conditions. When

writing in mildly stressful conditions (elicited by the presence of a loud, annoying

sound) the people with tremor maintained or decreased their coherency while the

control group increased their coherency. These changes in performance were associ-
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ated with appropriate and adaptive changes in pen pressure for the controls, but in-

appropriate and detrimental changes for the people with tremor. In the low stress

condition, the level of pressure was similar for both groups. However, in the mild

stress condition people without tremor increased pen pressure, while the people with

tremor tended to decrease their pen pressure. The results were interpreted as evidence
that people with motor function degradation are less skilled at modulating parame-

ters (such as muscle stiffness and pen pressure) that could adaptively reduce variabil-

ity in mildly stressful situations.

1.2. Dynamical systems analysis of graphic skills

The behavior of a dynamical system such as limb movements during handwriting

can be characterized by the patterns produced by key system variables as they
change over time. When there is a discernable pattern, the system is said to evolve

around an attractor. Contemporary research in the field of psychology has applied

dynamical systems analysis to a variety of paradigms, such as the study of the

space–time information processing capability of the cognitive system (Heath,

2000). For example, examination of response time data suggests that the cognitive

system may at times contain nonlinear dynamics (Kelly, Heathcote, Heath, & Long-

staff, 2001). Heath, Kelly, and Longstaff (2000) argue that modern nonlinear dynam-

ical analysis techniques allow researchers to determine the information complexity of
temporal data using physiological and psychological measurements. In studies of

psychomotor skills, these features can compliment traditional analysis techniques

such as analysis of the mean and variance of movement speed and provide unique

insights into how movements are controlled in healthy systems as well as control

problems associated with motor function degradation. This is illustrated in a review

article by Newell and Vaillancourt (2001) which discusses the utility of a particular

dynamical analysis tool (dimensional analysis) in the study of motor learning.

In an experimental situation, the nature of the system (i.e. its attractor) can be re-
constructed from a time series of observations (Packard, Crutchfield, Farmer, &

Shaw, 1980; Ruelle, 1981; Takens, 1981). A topological equivalent to the state vector

X ðtÞ of the system is generated by taking the observable xðtÞ as the first coordinate,
xðt þ sÞ as the second and xðt þ ðn� 1ÞsÞ as the last. s is known as the delay param-
eter and n is termed the embedding dimension. The delay is often chosen using
known properties of the system and the embedding lag chosen so that each successive

point is independent from previous points, for example by making sure they are dec-

orrelated (Takens, 1981; Tsonis, 1992). Once the dynamical system has been recon-
structed, its properties can be evaluated by examining features of the attractor. These

can include its dimensionality and its Lyapunov spectra. This reconstruction is the

necessary first step in the calculation of these indices, which are then used as quan-

titative measures of the behavior of the system.

The dimension of a time series is a measure of the minimum number of active

variables needed to describe how the system evolves locally around its attractor. It

can be thought of as a measure of the number of active degrees of freedom and is

a guide to the number of variables that are contributing to the observed behavior
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of the system. Dimensionality analysis can be applied to both linear and nonlinear

systems. In the present study the dimensional estimate used is the correlation dimen-

sion (see Appendix A). In terms of motor control research, active degrees of freedom

are distinct from biomechanical degrees of freedom. Biomechanical degrees of free-

dom are fixed by the nature of the limb system in a task specific context. However,
active degrees of freedom are those variables that are related to the control of the

system as its behavior evolves over time.

As noted by Newell and Vaillancourt (2001), several researchers have applied di-

mensionality analysis to a motor control context (Ganz, Ehrenstein, & Cavonius,

1996; Newell, Gao, & Sprague, 1995; Newell, van Emmerik, Lee, & Sprague,

1993). These include simple rhythmic finger movements (Kay, 1988; Kay, Saltzman,

& Kelso, 1991) and the manipulation of pendula under various conditions (Amaz-

een, 2002; Goodman, Riley, Mitra, & Turvey, 2000; Mitra, Amazeen, & Turvey,
1998; Mitra, Riley, & Turvey, 1997). These studies demonstrate that the dimension

of the system under study can change (e.g. during the learning of a skill), and can

vary depending on task constraints. Of more direct relevance is a study by Dooijes

and Struzik (1994) which applied dimensional analysis to the graphic skill of hand-

writing. The dimensionality of handwriting (calculated both in its static and dynamic

forms) was found to be low and fractional.

While these studies demonstrate that dimensional analysis can be informative,

there is some debate about the ability to establish precise dimensional estimates
(Albano, Mees, de Guzman, & Rapp, 1987; Rapp, 1994). As an alternative to inter-

preting the raw values however, it has been argued that dimensional estimates can

legitimately be used as a measure of relative dimensionality (Newell & Vaillancourt,

2001; Rapp, 1993). As such, when analyzing these types of dynamical systems,

changes in dimensionality or differences between groups and conditions may be more

meaningful than the raw values themselves.

A further aspect of a dynamical system that can be studied is the spectrum of

Lyapunov exponents (see for example Heath, 2000; Tsonis, 1992; Wolf, Swift, Swin-
ney, & Vastano, 1985). A Lyapunov exponent is a measure of the speed at which ini-

tially similar values of a time series diverge over time (i.e. their trajectories diverge).

There is a Lyapunov exponent for each dimension of the process, which together

constitute the Lyapunov spectrum for the dynamical system. The Lyapunov expo-

nent is related to the unpredictability of the system. A stable system does not have

any positive Lyapunov exponents, while a chaotic system has at least one positive

Lyapunov exponent. The sum of all Lyapunov exponents of a chaotic system is neg-

ative, consistent with the idea that the chaotic attractor is globally stable. The larger
the magnitude of the most positive Lyapunov exponent, the more unpredictable the

system.

As an extension of research utilizing lower order statistics (e.g. means and stan-

dard deviations) and linear time series analysis techniques (Longstaff & Heath,

1997, 2000), Longstaff and Heath (1999) performed nonlinear dynamical analysis

on the velocity profiles of pseudo-words written by healthy young adults. They

found that handwriting velocity profiles were generated by low dimensional (between

2.5 and 4) systems with a positive maximum Lyapunov exponent and a negative sum
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of exponents (max ¼ 0:106–0.145, sum ¼ �0:621 to )1.557, expressed in log base-e
units). All these results were different to those found when examining several surro-

gate time series (Theiler, Eubank, Longtin, Galdrikian, & Farmer, 1992) indicating

that these results were not merely due to the system being a simple limit cycle with

superimposed stochastic physiological noise (consistent with the findings of Mitra
et al., 1997, for example). Although the motor output undoubtedly does contain

at least some noise (for example resulting from residual motor-unit firing impact

through motor unit twitches) in addition to these low dimensional nonlinear dynam-

ics. This finding was robust, with similar results being calculated for all participants,

for both horizontal and vertical velocity time series, for single trials and time series

created by the concatenation of several trials, using several different data analysis

techniques as well as various delay parameters.

It was argued that the velocity profiles of this complex rhythmic skill display non-
linear dynamics and that the characteristics of these dynamics are informative about

the cognitive parameters required to produce these movements. When performing

motor skills there are several parameters that can be controlled. These can include

the speed and size of the movements, the level of force used to perform the move-

ment and limb stiffness. When performing a movement across a surface the influence

of friction can also be altered by modulating the pressure we apply to the surface

with the limb or tool (e.g. Wann & Nimmo-Smith, 1991). Limb stiffness has been

found to be one parameter that can be used to reduce unwanted variability due to
physiological noise (van Galen & Schomaker, 1992; van Gemmert & van Galen,

1997). Some or all of these parameters are controlled by healthy motor systems when

performing actions in order to maintain accuracy. We argue that degraded motor

systems have a reduced ability to control these parameters.

A reduction in control of the motor system is consistent with evidence from stud-

ies using dimensional analysis. It has been demonstrated in a number of areas that

dimensionality often reduces in the presence of disease (Newell & Vaillancourt,

2001). These include tremor in Parkinson�s disease (Vaillancourt & Newell, 2000),
epileptic EEG fluctuations (Babloyantz & Destexhe, 1986; Lehnertz & Elger,

1998), as well as in heart rate and blood pressure regulation (Kaplan et al., 1991;

Skinner, Carpeggiani, Landisman, & Fulton, 1991). Newell and Vaillancourt

(2001) write that these findings imply that a loss of complexity ‘‘is reflective of poorer

performance and/or less effective (adaptive) system control. The experimental stud-

ies, therefore, provide evidence for the idea that reduced dimensionality is an unde-

sirable feature of system change’’ (p. 707).

The present study elaborates the argument that people suffering from motor func-
tion degradation have diminished control over parameters that healthy people can

effectively modulate to minimize unwanted movement variability (Longstaff &

Heath, 2000). We propose that this reduction in control will be reflected in a psycho-

motor system that is lower dimensional and less predictable. In terms of the variables

analyzed, two specific hypotheses can be stated. If the motor system of people with

tremor is indeed more variable than for people without tremor, it would be expected

that motor movements would be less predictable than those for healthy people. This

reduction in predictability is directly linked to the increase in dynamical variability
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found in a sample from this population by Longstaff and Heath. Since the largest

Lyapunov exponent is a measure of the predictability of a nonlinear system, it is hy-

pothesized that the magnitude of the largest Lyapunov exponent will be greater for

people with tremor than for people without tremor. If people with tremor are less

able to modulate the control mechanisms that healthy people use to filter out un-
wanted variability, their handwriting movements are likely to be generated by a

lower dimensional process than for controls. It is therefore hypothesized that the di-

mensionality of the tangential velocity profiles of handwriting movements will be

smaller for people with tremor than for controls.

An additional aim of this study is to learn more about the nature and source of

the nonlinear dynamics identified in previous studies. If such dynamics represent

some stable property of the task related psychomotor/biomechanical system, such

as a general ability to accurately control the handwriting movement, then it would
be expected that there would be no change in the correlation dimension and Lyapu-

nov exponents when writing under mildly stressful conditions. If however, the dy-

namics represent a system property that alters due to an increase in neuromotor

noise, such as changes in muscle tone or speed of writing, the correlation dimension

and Lyapunov exponents should also change. The direction of this change will

depend on which system property is altered.

The nonlinear dynamical analysis of handwriting movements by Longstaff and

Heath (1999) indicated that each individual had a stable characteristic pattern, rep-
resenting motor memory for movement control. It is not unreasonable to suggest

that such a memory can be represented by dynamics. It is therefore hypothesized that

there will be no changes in either the largest Lyapunov exponent or the correlation

dimension when writing in a mildly stressful environment. Finally, it is hypothesized

that the correlation dimension would be low, the maximum Lyapunov exponent

would be positive, and the sum of exponents would be negative. This would provide

further evidence for the proposal that handwriting movement dynamics are pro-

duced by nonlinear oscillators, rather than limit cycle oscillators with superimposed
noise.

2. Method

2.1. Subjects

Seven people with MS and 17 people without MS volunteered to participate in
this study, however data from one healthy participant was not used as their writing

was considered to be closer to printing than cursive writing. The participants with

MS were recruited from the local MS community through contact with the Hunter

Council for People with MS. People with MS were recruited as they commonly dis-

play symptoms such as tremor (Alusi, Glickman, Aziz, & Bain, 1999; Alusi, Wor-

thington, Glickman, & Bain, 2001; Sandyk & Dann, 1994) that can lead to

disturbances in graphic skills such as handwriting and drawing, allowing these tasks

to be successfully used as assessment tools (Alusi, Worthington, Glickman, Findley,
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& Bain, 2000; Longstaff et al., 2003; Manikel & Girouard, 2000; Persaud, 2002). Mo-

tor function was assessed by spirography (Bain & Findley, 1993), a clinical tool for

evaluating the degree of tremor severity. Spirography essentially involves comparing

spirals drawn by subjects against a standard set of spirals for features that are char-

acteristic of different levels of tremor. Participants were rated as either displaying no
tremor (rating 0–1) or some degree of tremor (rating 2–10). As expected, not all MS

subjects displayed tremor and not all of the older subjects were tremor free (tremor is

not always observed in patients with MS and can occur in otherwise healthy older

adults e.g. Louis, Wendt, & Ford, 2000).

Six people with MS and one without MS were rated as displaying some degree

of tremor (2 Male, 5 Female, age range 40–68; mean age ¼ 53; mean tremor
rating ¼ 3:3, SE ¼ 0:4). The person without MS whose spiral displayed tremor
was 63 years old and had noted on a demographic questionnaire that she suffered
from tremor. Sixteen people without MS and one with MS were rated as not display-

ing tremor (5 Male, 12 Female; age range 18–59, mean age ¼ 30; mean tremor
rating ¼ 0:8, SE ¼ 0:1). The person with MS whose spiral did not display tremor
was 44 years old and had noted on a demographic questionnaire that she did not suf-

fer from tremor. Therefore there were two groups of participants, seven people with

tremor and sixteen people without tremor. A t-test determined that the people in the
tremor group were rated as displaying significantly more tremor than the people in

the nontremor group tð6Þ ¼ 5:83, p < 0:01. Since there is a difference in mean age
between the groups, linear regression analysis was used to determine if there were

significant relationships between the age of the participants and the dependent vari-

ables. When there was a significant relationship, age was used as a covariate in the

following analysis. This experiment was carried out according to the ethical guide-

lines laid down by the University of Newcastle�s Human Research Ethics Committee.

2.2. Apparatus

An IBM compatible computer and a WACOM 1212-R graphics tablet were used

to record the horizontal and vertical position of a stylus as the participants wrote the

pseudo-word ‘‘lanordam’’. The data were collected at a frequency of 206 Hz with a

spatial resolution of 0.02 cm. The data collection and control program was written

using the programming language OASIS (de Jong, Hulstijn, Kosterman, & Smits-

Engelsman, 1996). The stylus was a modified WACOM inking pen, similar to a con-

ventional ballpoint pen. The mono sound was generated through TEAC HF-11TV

headphones attached to a soundblaster sound card controlled by the OASIS pro-
gram. A data collection template consisting of a sheet of paper containing two

columns of six horizontal lines was attached to the surface of the graphics tablet.

2.3. Procedure

The apparatus and methodology are similar to that used by Longstaff and Heath

(2000). The participants practiced writing the pseudo-word lanordam several times

to familiarize themselves with both the task and apparatus. The task was to write
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lanordam six times on a sheet of paper attached to the graphics tablet, under condi-

tions of low and mild physical stress. The only guides the participants had for writing

were two columns of six horizontal lines. In the low physical stress condition there

was minimal additional sound. In the mild physical stress condition the participants

wrote the words while listening to an annoying 65-dB, two-tone sound. The two
tones (880, 1760 Hz) alternated at a rate of approximately 5 Hz. This level of sound

is of similar intensity to a busy street. A mild intensity sound was chosen to ensure

that the task was not unnecessarily stressful for the participants. The mono sound

was presented through a set of headphones.

2.4. Preprocessing

The data were preprocessed and analyzed using the techniques reported in Long-
staff and Heath (1999) (also used in Heath (2000) and Longstaff (2000)). These anal-

ysis techniques have been successfully used in several studies and have been shown to

produce reliable results when applied to handwriting velocity profiles. The procedure

(detailed below) involves taking the central stationary section of the velocity profiles

from each word, concatenating them to produce long time series and finally, reduc-

ing the noise in the time series by using singular value decomposition.

An important concern when performing dynamical analyses of experimental time

series is that they contain both a sufficiently large number of observations and min-
imum noise. It has been maintained that if the dimension of the system is 3, at least

1584 data points are needed (Nerenberg & Essex, 1990; Tsonis, 1992). The mean di-

mension estimates obtained by Longstaff and Heath (1999) were 3.24 for the hori-

zontal velocity and 2.70 for the vertical velocity using a mean of 1920 data points.

It was therefore concluded that 2000 data points would be adequate for the present

study. In order to achieve time series of this length, several trials are concatenated.

Horizontal and vertical velocity time series were calculated using OASIS (de Jong

et al., 1996) by dividing the pen movement distance by the time delay between two
successive samples (in this case 1/206 s). To reduce variability due to measurement

error the raw velocity signals were filtered using a seven point median filter (i.e. each

point is replaced by the median out of a window of raw velocity values surrounding

the current velocity sample). The tangential velocity used in the following analyses

was calculated by using a Pythagorean transformation of the velocity in the horizon-

tal and vertical directions.

The accuracy of the nonlinear dynamical analysis also depends on the data being

stationary (i.e. the parameters of the time series, such as mean, variance etc., do not
change over time). Particular care must be taken when several trials are concatenated

to form larger files that this does not result in a nonstationary time series. This prob-

lem is minimized if these trials are samples from the same attractor. If nonstationa-

rity is introduced when the data is chunked, the trials are most likely not from the

same attractor, or some important parameter has changed. Longstaff and Heath

(1999) demonstrated that properties of the attractor that generates handwriting (cor-

relation dimension and Lyapunov exponents) are not significantly different when cal-

culated from individual trials or concatenated trials from the same subject.
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Additionally, these properties did not significantly change when either chunks or sev-

eral concatenated chunks of standard nonlinear time series (e.g. Lorenz, Henon)

were analyzed, further confirming the reliability and validity of this technique. In

the present study, each raw data file contained many more than 500 data points.

Variability at the beginning and end of a word is unrelated to the processes of inter-
est. For example, this variability could include pauses when beginning to write the

word and movements of the pen when the word has been completed but the pen

is still on the page. In order to remove these sources of error and nonstationarity,

only the middle 500 data points sampled on a trial were used in data analysis.

The static pen traces as well as the velocity time series were visually inspected for

errors in the intended movements. Trials were rejected when the pseudo-word was

not spelled correctly, when there were uncharacteristic pauses, incomplete words

or any gross deviations from the general pattern used to write the pseudo-word. Tri-
als were also rejected if they were written uncharacteristically fast or slow. This can

be determined, for example, by noting the typical length of the resulting time series.

If the trials are typically 1000 points long a trial with 500 or 2000 points will be re-

jected. While few trials needed to be rejected, two trials of the original six for each

condition were discarded to ensure consistency. This resulted in four characteristic

trials being analyzed for each participant in each condition. The data from these four

trials were concatenated without further manipulation, resulting in time series that

were 2000 data points in length. Finally, singular value decomposition (SVD) (see
Appendix A) was applied to each concatenated time series to minimize experimental

noise (Aubry, Holmes, & Lumley, 1988; Heath, 2000; Longstaff & Heath, 1999;

Rapp, 1994; Sauer, 1992; Sprott & Rowlands, 1995). A typical example of a concat-

enated velocity time series can be seen in Fig. 1. Visual inspection suggests that the

movement is stable over several trials, as was previously demonstrated by Longstaff

and Heath (1999).

Since it had previously produced reliable results with this type of data (Heath,

2000; Longstaff, 2000; Longstaff & Heath, 1999), chaos data analyzer (CDA): the
professional version (Sprott & Rowlands, 1995) was used to implement SVD and

calculate the correlation dimensions (see Appendix A). Longstaff and Heath

(1999) found that these dimensionality estimates were similar to those determined

by other techniques such as the pointwise correlation dimension (PD2i)
1 developed

by Skinner and associates (Skinner, Goldberger, Mayer-Kress, & Ideker, 1990; Skin-

ner et al., 1990; Skinner, Molnar, & Tomberg, 1994). PD2i is an alternative designed

to be less sensitive to nonstationary sections within a time series.

A key step in the calculation of properties of a time series is the selection of the
time delay. It is advisable that before a result is accepted, the analysis is performed

on the time series using a number of different delays in order to determine the sen-

sitivity of the original results to variations in this parameter. Longstaff and Heath

(1999) found that the correlation dimensions calculated using several different delays

1 The PD2i software was used under license from Totts Gap Software, 1430 Totts Gap Rd, Bangor, PA

18013, USA.
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were comparable to the original results. Since the results calculated for the dimen-

sional estimates were similar when using different time delays as well as using differ-
ent techniques, the method of analysis used by Longstaff and Heath was employed in

this study. Finally, as in the study by Longstaff and Heath, the NETLE analysis pro-

gram was used to calculate the Lyapunov Spectra 2 (Genc�ay & Dechert, 1992; Kuan
& Tung, 1995).

3. Results

3.1. Summary results of the dynamical analysis

Mean results of the dynamical analysis were first examined to confirm that the

values were consistent with those found by Longstaff and Heath (1999), and there-

fore that the techniques and parameters used were appropriate. The correlation di-

mension was calculated for the concatenated tangential velocity time series of the

participants� handwriting. The mean correlation dimension while writing in a rela-
tively quiet environment was found to be 3.2 (SE ¼ 0:31). When writing in a noisy
environment the mean correlation dimension was found to be 3.38 (SE ¼ 0:30).
The mean dimensional estimates found by Longstaff and Heath ranged from 2.5

to 4.

Fig. 1. Example of a tangential velocity time series created by concatenating data from four trials.

2 A detailed description of the theoretical basis and calculation of the Lyapunov spectrum is beyond the

scope of this paper, although a basic description is contained in Appendix A. The reader should refer to

Tsonis (1992), Wolf et al. (1985) or Genc�ay and Dechert (1992), for example.
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The maximum Lyapunov exponent of the velocity time series was calculated

for each participant. The mean of the maximum Lyapunov exponent (0.1293,

SE ¼ 0:0104, expressed in log base-e units) for the no additional sound condition
was significantly positive, tð21Þ ¼ 12:40, p < 0:0001. The mean sum of exponents

(�0:9920, SE ¼ 0:0567) was significantly negative, tð22Þ ¼ �17:23, p < 0:0001. Sim-
ilarly, the mean of the maximum Lyapunov exponent (0.11557, SE ¼ 0:00881) for
the additional sound condition was significantly positive, tð22Þ ¼ 13:12, p < 0:0001
and the mean sum of exponents (�0:9691, SE ¼ 0:0608) was significantly negative,
tð22Þ ¼ �15:93, p < 0:0001. In fact, the maximum Lyapunov exponent was positive
and the sum of exponents was negative for all participants in both conditions. The

mean maximum Lyapunov exponents found by Longstaff and Heath ranged from

0.106 to 0.145 and the mean sum of exponents ranged from )0.621 to )1.557. Since
the values calculated are comparable to those found by Longstaff and Heath, it was
concluded that the preprocessing techniques and analysis parameters were valid.

With the reliability of these techniques confirmed, a more detailed analysis of the

results was performed.

3.2. Analysis of the correlation dimension

The correlation dimension was calculated for the concatenated tangential velocity

time series. Linear regression analysis was initially performed to determine if there
was any relationship between the participants� age and the mean correlation dimen-
sion of their movement speed while writing. Since there was a relationship between

these two variables, R2 � adj ¼ 17:0%, F ð1; 21Þ ¼ 5:5, p ¼ 0:029, age was used as a
covariate in an analysis of variance, resulting in a nonsignificant main effect for

age, F ð1; 20Þ ¼ 0:050, p ¼ 0:826, and a nonsignificant interaction between age and
sound condition. The mean correlation dimension for people with and without

tremor writing the pseudo-word lanordam is shown in Fig. 2.

Fig. 2 indicates that the movements used by people with tremor to write words are
generated by a lower dimensional process (mean ¼ 1:9, SE ¼ 0:4) than that used by
people without tremor (mean ¼ 3:9, SE ¼ 0:2), F ð1; 20Þ ¼ 14:577, p ¼ 0:001. There
was no significant difference between groups for the sound condition (sound: 3.2

SE ¼ 0:3; no sound: 3.4, SE ¼ 0:3), F ð1; 20Þ ¼ 0:108, p ¼ 0:566, nor was there any sig-
nificant interaction of tremor group and noise condition on the correlation dimension.

3.3. Analysis of the largest Lyapunov exponents

The maximum Lyapunov exponent was calculated for the concatenated tangential

velocity profiles. Linear regression analysis revealed no significant relationship be-

tween the age of the participant and the mean maximum Lyapunov exponent of their

movement speed, R2ðadjÞ ¼ 6:8%, F ð1; 21Þ ¼ 2:62, p ¼ 0:121. Age was therefore not
used as a covariate in the analysis of variance. The main effect of tremor group on

the largest Lyapunov exponent, displayed in Fig. 3, shows that the tangential velo-

city is generated by a process with a larger maximum Lyapunov exponent for people
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Fig. 2. Mean correlation dimension for people with and without tremor (vertical lines indicate standard

errors).

Fig. 3. Maximum Lyapunov exponent for the tangential velocity of handwriting movements for people

with and without tremor (vertical lines indicate standard errors).
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with tremor (mean ¼ 0:158, SE ¼ 0:014) than for people without tremor (mean ¼
0:107, SE ¼ 0:006). There was no significant difference for the main effect of sound
condition (sound: 1.116 SE ¼ 0:009; no sound: 0.129, SE ¼ 0:010), nor was there any
significant interaction of tremor group and sound condition.

4. Discussion

The hypothesis that the correlation dimension of the tangential velocity of hand-

writing movements would be greater for healthy people than for people with tremor

was supported. The results suggest that there is a difference of at least one dimension

between the dynamical systems producing the tangential velocity of handwriting
movements for those without tremor compared to those with tremor. This finding

is consistent with the review paper by Newell and Vaillancourt (2001) which details

a number of studies that show that disease is often accompanied by a reduction in

dimensionality. This contrasts with research indicating that dimensionality reduces

with learning a skill (Mitra et al., 1998), which suggests that reduced dimensionality

is associated with improved control rather than reduced control. However, it is im-

portant to note that the goal of learning to control the system is not so much to re-

duce the dimensionality, but to find the optimal dimensionality of the system. As
noted by Newell and Vaillancourt the dimension of the attractor dynamic of the mo-

tor output will change depending on the confluence of constraints in action. For ex-

ample, Goodman et al. (2000) report that the number of active degrees of freedom

required to capture the dynamics of a pendulum being oscillated at resonant fre-

quency was 3, but this increased to 4 when the pendulum was oscillated at a nonres-

onant frequency. In the experimental paradigm of Mitra et al., the system started

with too many active degrees of freedom, and through learning these were reduced

to an optimal level. In a different task, it may be that the system begins with too few
active degrees of freedom (e.g. the freezing of biomechanical df�s discussed in Newell
and Vaillancourt) which are increased to the optimal level through learning. Once

the optimal level is found, a change from this will tend to result in a deterioration

of performance. As noted above, disease processes have generally been found to

result in reductions of dimensionality.

Previous research has demonstrated that healthy people respond to mild increases

in physical stress or mental load by increasing muscle stiffness in order to maintain

accuracy (Longstaff & Heath, 2000; van Gemmert & van Galen, 1997, 1998). This
muscle stiffness is modulated by an increase in speed and/or by raising the axial

pen pressure. Evidence has been presented for the argument that people with motor

function degradation have less control over parameters associated with the reduction

of unwanted movement variability. In particular, Longstaff and Heath (2000) found

that people without tremor responded to a mildly stressful noisy environment by

writing pseudo-words with greater pen pressure (and therefore greater muscle stiff-

ness) than when in a relatively quiet environment. The pressure used by people

with tremor either remained constant or was slightly lower. This resulted in more
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consistent handwriting (i.e. less variability) for people without tremor, but a ten-

dency for the consistency of the handwriting of people with tremor to decrease.

The correlation dimension is a measure of the minimum number of control pa-

rameters, or active degrees of freedom, needed to fully describe the system. We argue

that the difference in dimensionality between people who are healthy and those with
tremor, at least in part, reflects the loss of control of degrees of freedom associated

with an ability to minimize unwanted movement variability. While this assertion is

speculative at this stage it is at least plausible that the reduction in active degrees

of freedom is explained by a diminished ability to adaptively control muscle stiffness.

As has already been noted the dimension of the motor output can change due to the

particular constraints on the system. This could include competing tasks constraints

such as the necessity to apply a constant force (e.g. increased pressure/stiffness)

which might require an increase in the optimal active degrees of freedom, and the
necessity to apply a sinusoidal varying force (i.e. to produce handwriting) which

might require a decrease in the optimal active degrees of freedom. Further research

will therefore be required before the hypothesized reduction in stiffness control can

be confirmed.

The finding that the largest Lyapunov exponent was greater for people with tremor

than for people without tremor was consistent with the hypothesis. In previous studies,

the motor system of people with tremor was shown to contain more inherent variabil-

ity than that of people without tremor (Longstaff, 2000; Longstaff &Heath, 2000). For
example, Longstaff (2000) found that people with tremor traced mazes with signifi-

cantly greater dysfluency. Dysfluency is a measure of how ‘‘smooth’’ a movement is

during the execution of given task and relates to the number of velocity peaks (or ve-

locity inversions) per distance traveled (or per second). It has been used in numerous

studies as a measure of movement efficiency (Meulenbroek & van Galen, 1988; Mojet,

1991; Smits-Engelsman & van Galen, 1997; van den Heuvel, van Galen, Teulings, &

van Gemmert, 1998; van Doorn & Keuss, 1991; Wright, Lindemann, & Dick, 1999).

The heightened unwanted variability in the motor system of people with tremor
was more clearly demonstrated by Longstaff and Heath (2000) who found that the

between trial coherency for the horizontal, vertical and tangential velocity profiles

as well as for the axial pen pressure profiles, was greater for people without tremor.

If the motor system of people with tremor contains more noisy variability, as shown

by Longstaff and Heath, it is not surprising then that it would be also be less predict-

able. Since the largest Lyapunov exponent is a measure of the unpredictability of the

system, any increase in its magnitude represents the generally higher level of un-

wanted noise variability that pervades the psychomotor system of people with motor
skill degradation.

This increased unpredictability of the system�s output implies that rather than
thinking in terms of a pervasive level of ‘‘neuromotor noise’’ we should be thinking

about the predictability of the system dynamics. In this context people with motor

function degradation (e.g. from tremor, MS, Parkinson�s Disease etc.) have a motor
system with less predictable dynamics rather than simply having a ‘‘noisier’’ system.

As there was no change in the correlation dimension or largest Lyapunov exponent

when the participants wrote in a mildly stressful environment, these indices appear to
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measure a stable aspect of the psychomotor system. However, this needs to be con-

firmed with further empirical research. It could be that the stress was simply too mild

to disrupt the fundamental dynamics of the system.

As hypothesized, the handwriting velocity profiles were found to be low dimen-

sional. The hypothesis that the largest Lyapunov exponent would be positive and
that the sum of the exponents would be negative was also supported. This compli-

ments the findings reported by Longstaff and Heath (1999), and provides further

support for the proposal that handwriting velocity profiles display nonlinear chaotic

dynamics. These results are consistent with those detailed by Dooijes and Struzik

(1994), who reported low dimensional estimates of handwriting traces, Kay (1988)

who concluded that simple rhythmic finger movements are low dimensional and Mi-

tra et al. (1997, 1998) who found simple rhythmic motor movements can be charac-

terized as low dimensional nonlinear dynamical evolutions on a strange attractor.
Furthermore, the results support the work by Akamatsu, Hannaford, and Stark

(1986) who found that a muscle model based on the classic length tension curves

could produce inherent oscillations during contraction that exhibited a positive larg-

est Lyapunov exponent.

It could be argued that the low dimensional, nonlinear nature of the data is merely

due to some peculiar feature of the actual word that was written, or possibly some

artifact of the data collection apparatus. Perhaps it was due to the pre-processing

techniques of concatenation of trials and SVD. These arguments can be easily
discounted. In Longstaff and Heath (1999) the target character string was the

pseudo-word �madronal� and in the present study the letters were reversed to produce
the pseudo-word lanordam. While the same letters were used in both words, there

are sufficient differences in the way letters are joined in cursive writing for these

words to require quite different movements, resulting from different letter combi-

nations. The argument that the result is due to the apparatus or pre-processing tech-

nique can also be dismissed. If this were true, there would be no significant

differences between the two groups in terms of the magnitude of either the correla-
tion dimension or largest Lyapunov exponent.

This study employed some novel techniques in an attempt to further understand

fine motor control. With a growing interest in measures such as dimensionality it is

important not only to calculate raw values but also to try to understand changes in

these parameters due to task constraints or population group. A critical aspect of

this is to utilize knowledge gained from more conventional techniques. As such,

the results of this study are interpreted within the context of what is already known

about motor control in general as well as past findings with this population group.
The results presented here indicate that the dimensionality of handwriting velocity

profiles is lower for people with tremor than with people without tremor. It is spec-

ulated that this reflects a reduction in the ability to control movement parameters

associated with minimization of unwanted variability. This leads to a movement out-

come that is more variable (as found in a previous study) and less predictable, as

measured by the largest Lyapunov exponent. Future research will further explore

the possible causes for this reduction in dimensionality and increase in temporal un-

predictability.
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Appendix A. Technical details of the dynamical systems analysis used in this study

A.1. Singular value decomposition

Singular value decomposition (SVD) derives orthogonal eigenfunctions from the

original time series, each of which corresponds to one of a sequence of decreasing eigen-
values. Each eigenvalue represents the relative contribution of the corresponding eigen-

function towards fitting the original time series. A new time series based on the first few

eigenfunctions weighted by their respective eigenvalues is computed. Since the additive

noise is distributed evenly across the eigenfunctions the SVDmethod serves to increase

the signal–noise ratio without altering the basic properties of the attractor.

A.2. Correlation dimension

The dimension of a system refers to the minimum number of scalar variables

needed to model the dynamic process, or contain the attractor and hence provides

a measure of the system�s complexity. The dimension estimate in the present study
is the correlation dimension, D2, which is based on geometric properties of the at-
tractor in phase space. D2 is defined by Eq. (A.1) (Grassberger & Procaccia, 1983).

D2 ¼ lim
e!0

logCðeÞ
logðeÞ ; ðA:1Þ

where the correlation integral, CðeÞ, is defined by

CðeÞ ¼ lim
N!1

1

N 2
XN

i;j¼1
H e
�

� xi

�� � xj

���: ðA:2Þ

In Eq. (A.2) N is the total number of points, the ith point being represented by the m-
dimensional vector, xi. Hð�Þ is the Heaviside function which equals 1 when its ar-
gument is greater or equal to 0, and is equal to zero otherwise. Eq. (A.2) counts the

number of pairs of points that are no greater than e apart as a proportion of the total
number of pairs of points in the data set. In practice, for any fixed value of em-

bedding dimension, D2 is estimated as the average slope in a plot of log cðeÞ against
logðeÞ within a central almost linear scaling region.

A.3. Lyapunov spectra

Lyapunov spectra were calculated using NETLE (Genc�ay & Dechert, 1992; Kuan
& Tung, 1995). This procedure uses a multilayer feed forward neural network to gen-
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erate a nonlinear model of the experimental time series that is then used to estimate

the Lyapunov spectrum. By definition, the Lyapunov exponents for a dynamical sys-

tem measure the average rate of divergence or convergence of a typical trajectory

(Genc�ay & Dechert, 1992). There are n Lyapunov exponents for an n-dimensional
system. Using this definition, Genc�ay and Dechert (1992) state that all the Lyapunov
exponents can be calculated using the Jacobian of the nonlinear function g (using the
neural network) along a trajectory fxtg. This function is estimated by the network
and derives from differentiating the original nonlinear mapping in the embedding

space. The technique used in NETLE involves estimating the nonlinear function g,
which relates the next time series value to its previous values based on the reconstruc-

tion and then calculating the Lyapunov exponents of g using the definition in terms
of the Jacobean functions.

Multilayer feedforward neural networks can asymptotically approximate a (differ-
entiable) function and its derivatives to any degree of accuracy and with as few as a

hundred observables. For the handwriting data, since the D2 estimate was approxi-
mately 3, the embedding dimension chosen for NETLE was 7 (i.e. 2� D2 þ 1).
Lyapunov exponents were calculated using seven input units with the number of hid-

den units ranging from 1 to 14. The model that produced stable Lyapunov exponents

was chosen and both the largest Lyapunov exponent and the sum of all Lyapunov

exponents were calculated. The Schwartz information criterion (SIC), an index of

the goodness of model fit, was used to select the appropriate number of hidden units.
The Lyapunov spectrum generated from the network with the lowest SIC was used

for further analysis.
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