
Abstract. Based on the kinematics of goal-directed
aiming movements in a reciprocal Fitts' task, a minimal
limit cycle model is proposed that is capable of produc-
ing the behavior observed at levels of task di�culty
ranging from 3 to 7. From graphical and statistical
analyses of the phase planes, Hooke's planes and
velocity pro®les, we concluded that the minimal terms
to be included in the model were (i) a nonlinear damping
in the form of a self-sustaining, velocity-driven Rayleigh
oscillator and (ii) a nonlinear sti�ness in the form of a
softening spring Du�ng term. The model reproduced
the kinematic patterns experimentally observed in
rhythmical precision aiming, accounting for 95% of
the variance. The coe�cients in the model changed in a
systematic way when distance and precision constraints
were varied, and the meaning of these changes is
discussed in the framework of the dynamical patterns
approach.

1 Introduction

Modeling rhythmic human movements as self-sustained
oscillators has become an important issue in motor
control research (e.g., Haken et al. 1985; Kay et al. 1987,
1991; Kugler and Turvey 1987; Beek et al. 1995, 1996;
Kelso 1995; Zaal and Bootsma 1995). A major challenge
to this modeling is to identify the nonlinear oscillator
components that biological movements may exploit,
singly or in combination, to exhibit autonomous limit
cycle dynamics. To assess the contribution of the
relevant nonlinear damping and sti�ness terms, several
methods can be used. A good starting point is a
topological analysis of the attractive trajectories, seeking
graphically for local or global expressions of a typical
nonlinearity (Beek and Beek 1988). Such qualitative
analyses can be complemented with more quantitative

analyses. Time-series methods (spectral or dimensional-
ity analysis) may provide essential information about the
nature of the dynamics. Analysis of the global space-
time behavior allows identi®cation of the dissipative
terms by their e�ects on the amplitude-frequency and
peak velocity-frequency relations (e.g., Kay et al. 1987).
Using stability analysis, which is a powerful tool to
understanding the transitions between di�erent attrac-
tive patterns (e.g., Haken et al. 1985; Buchanan et al.
1997), it is also possible to gain a deeper insight into the
transient behavior toward the attractor using perturba-
tion experiments, which is probably the most e�cient
way to obtain information about the non-conservative
terms (Eisenhammer et al. 1991). Finally, one can use
statistical methods to quantify the contributions of
di�erent nonlinearities (Beek and Beek 1988; Beek et al.
1995) or methods to reconstruct the model more directly
from data series (Cremers and HuÈ bler 1987) and even
use several of these methods in combination to enhance
the precision of the modeling (e.g., Bingham et al. 1991;
Beek et al. 1996).

It is well known that in precision aiming, time and
space relate in a systematic fashion (e.g., Woodworth
1899; Fitts 1954), leading to speed-accuracy trade-o�s
whose underpinnings are to date still subject to debate
(e.g., Meyer et al. 1988; Plamondon and Alimi 1997).
Broadly speaking, these speed-accuracy trade-o�s imply
that any experimental increase in relative precision re-
quirements will lead to a systematic drop in average
speed, accompanied by systematic changes in movement
kinematics (e.g., longer decelerative phase for narrow
targets, time to peak velocity scaling to movement am-
plitude; MacKenzie et al. 1987). The question of how
time and space relate is also central to modeling the
dynamical properties of unconstrained rhythmical
movement (e.g., Kay et al. 1987), where the systematic
drop in amplitude that occurs with an increase in
movement frequency is explained using a hybrid model
combining Rayleigh and Van der Pol dissipation.
However, few studies have addressed the question of
how time and space relate in precision aiming from a
dynamical systems perspective (but see Schmidt et al.
1995; Mottet and Bootsma 1995).
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In this article, the fundamental question of how dis-
tance and precision constraints in¯uence the dynamics
of upper arm aiming is addressed. Given the general
assumption that rhythmical precision aiming motion (as
produced in a Fitts' task) is a self-sustained oscillation in
which the frequency and the stability are adapted to
cope with the (relative) precision requirements of the
task, our aim is to propose a minimal dynamical model
capable of reproducing the observed behaviors and the
changes in kinematics that occur with the changes in
required precision.

The article is organized as follows. In Sect. 2, a
method is proposed for identifying the oscillator com-
ponents, assembled to produce the rhythmic precision
aiming movements. The experimental method is de-
scribed in Sect. 3, and the results of data analysis and
modeling are detailed in Sect. 4. Finally, we highlight
several important results and new routes opened by this
experiment in the Discussion.

2 Modeling strategy and assumptions

As a starting point, the method assumes that the action
system relies on limit cycle dynamics to produce
rhythmic movements in an abstract task space (Saltz-
man and Kelso 1987) and that a graphical and
mathematical analysis of the observed kinematics can
reveal the assembled oscillatory components giving rise
to the limit cycle regime. Second, we assume that the
attractor does not change at the time scale of obser-
vation, that the time of observation is much longer
than the relaxation time toward the attractor, and that
stochastic ¯uctuations at a micro-scale level express
themselves as random noise, pushing the observed
behavior around the average attractive dynamic
pattern. These assumptions are widely accepted (e.g.,
Haken et al. 1985; Kay et al. 1987; SchoÈ ner and Kelso
1988a,b; SchoÈ ner 1990; Beek et al. 1995), even if higher-
order dimensional systems might better account for the
supposed random noise around the limit cycle (Mitra
et al. 1997). Our method combines qualitative graphical
analyses to identify the nonlinear functions underlying
rhythmic precision aiming and quantitative statistical
procedures to assess how their respective contributions
change with distance and precision requirements.

The ®rst step is to obtain some insight into the os-
cillator components, which can be done by visual in-
spection of graphical representations of the data. From
the many possible representations, three were selected.
First, a phase plane representation (position vs velocity)
is a classical tool, useful for getting an idea of the level of
nonlinearity of the underlying oscillatory process. Every
deviation from a circle is a consequence of nonlinearity,
mainly due to the dissipative components, which express
themselves in the stability. Second, a Hooke's plane
representation (position vs acceleration) allows a direct
assessment of the sti�ness function (Guiard 1993).
Sti�ness is the k parameter in the equation �xÿ kx � 0.
Hence, the global sti�ness is equivalent to the general
slope of the portrait. However, more interesting are

probably the local sti�ness (given by k � �x=x for every
point on Hooke's portrait) and the local sti�ness chan-
ges represented by the changes in this ratio. Third, the
velocity pro®le (velocity vs time) was chosen as the best
and most well-known representation including time. It
was included here as a key element because this repre-
sentation allows precise assessment of the time behavior
of the data and model and because extensive work has
been done on the bell-shaped velocity pro®le in aiming
movements (e.g., Atkeson and Hollerbach 1985; Pla-
mondon and Alimi 1997).

The second step is to assess the respective contribu-
tion of the nonlinear components thus identi®ed, which
can be done using multiple linear regression. However,
in order to be able to compare the absolute value of the
coe�cients obtained through statistical regression, a
normalization of the data must be performed. To this
end, the spatial dimension of the data is rewritten in
units of maximal deviation from the center of oscilla-
tion, and the time dimension of the data is rewritten in
units of cycle time.

From the assumption that the motion results from
second-order dynamics with a ®xed origin, ®xed mass,
and ®xed main frequency, the general equation of mo-
tion reads:

�x� F �x; _x� � 0 �1�

where x is the normalized spatial deviation from the
origin, the dot represents di�erentiation with respect to
normalized time, and the F function summarizes the
linear spring plus the contribution of all the (conser-
vative and dissipative) nonlinear components of the
motion. Obviously, F can be computed from movement
data, thus allowing regression of the components of the
model toward �x using multiple linear regression. The
method described here is similar to the W method
(Beek and Beek 1988), which has proven to be a
valuable tool in revealing the individual contributions
of the nonlinear terms in juggling (Beek and Beek 1988;
Beek 1989), pendulum swinging (Beek et al. 1995), or
rhythmic forearm movements (Mottet 1994). The
original W method uses stepwise regression of all the
possible terms in W, up to a combined power of 3 (i.e.,
x, x3, _x, x2 _x, x _x2, _x3, see Beek and Beek 1988). Such a
procedure did not yield useful results with respect to
the present data set. The regression process led to an
unstable model for 93% of the individual trials and
included a signi®cant linear damping in only 10% of
the cases. This disappointing result is due to the lack of
sign constraints on the coe�cients in the regression
process: If the result is to be a self-sustaining oscillator,
the linear damping must be negative, while at least one
of the nonlinear damping terms must be positive.
Consequently, our method starts with qualitative
graphical analyses to identify the nonlinear terms to
be included in the model. Once the model is identi®ed,
we use multiple linear regression to assess how the
contributions of the di�erent terms change with
distance and precision requirements.
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3 Experiment

3.1 Task, procedure, and experimental design

The subjects were nine volunteers (two women and seven
men, aged 21±36 years). None su�ered from any known
motor impairment of the dominant arm (two were left-
handed). All participants had normal or corrected to
normal vision.

The task was to perform as many back and forth
movements as possible in 15 s between two targets
printed on a model sheet. Each target consisted of an
elongated tolerance zone, centered on a 1 mm cross. If
the error in any single trial was more than 5%, or if the
subject produced more than two consecutive trials with
0% error, the trial was rerun with the injunction to
adjust the speed.

The recording system consisted of an OceÂ Graphics
G6453 digitizing tablet connected to a Macintosh Pow-
erBook computer. This tablet can read the position of a
nonmarking stylus pen input device within a distance of
2.5 mm from its surface. It provides two-dimensional
position coordinates at a rate of 163 Hz with a spatial
accuracy better than �0.5 mm.

At the start of each trial, a model sheet (A4) was ®xed
on the digitizing tablet that rested on a tabletop. Sub-
jects were allowed to modify the tablet orientation at
their convenience within a range of about 30°. All the
subjects chose an orientation allowing the forearm to be
roughly parallel to the vertical axis of the model sheet. A
trial started with an initial pointing at the two target
centers, to calibrate the system. Then, the subjects were
instructed to begin the trial. When they felt they were
complying with the constraints (i.e., going as fast as
possible with less than 5% error), they informed the
experimenter, who started the recording about 1 s later.
The subjects were instructed to continue their movement
until 15 s had elapsed and the computer sounded a bell.
At the end of each trial, information about performance
was provided (total number of target hits, error for each
target).

Each subject performed a total of 25 trials in one
experimental session with the order of conditions being
randomized. The 25 trials per subject resulted from a
two-factor experimental design with repeated measures
on the amplitude of movement (D: 80, 120, 160, 200, and
240 mm) and the target size or endpoint tolerance (W: 4,
8, 12, 16, and 20 mm). Computing the task's index of
di�culty (Fitts 1954), the design gave rise to a single
experimental factor with 18 levels (i.e., ID = log2(2D/
W): 3.00, 3.32, 3.58, 3.74, 3.91, 4.00, 4.32, 4.58, 4.64,
4.74, 4.91, 5.06, 5.32, 5.64, 5.91, 6.32, 6.64, 6.91).

3.2 Data reduction

From the bidimensional data sampled by the graphics
tablet, only the relevant axis was processed. Here,
following the task-dynamic approach (Saltzman and
Kelso 1987), the method assumes that the rhythmical
planar movement in Fitts' task reduces to a one-

dimensional task space (the task's main axis, linking
one target center to the other).1

The position time series were ®ltered at a cut-o�
frequency of 10 Hz with a dual-pass, second-order
Butterworth ®lter. From the ®ltered data, the ®rst and
second time derivatives were computed using the ®rst
central di�erence technique.

Every individual trial was ®nally summarized in an
average normalized cycle. This normalized average cycle
is taken to represent the dynamical organization (i.e., the
limit cycle) that emerged in response to the task demand,
the stochastic noise from the micro-scaled ¯uctuations
being canceled out through the averaging process. The
average cycle computation involved the following steps.
First, the time series recorded during a 15-s trial were
segmented into half-cycles representing the motion from
one target to the other, as in Fitts' (1954) original par-
adigm. On average, a 15-s trial consisted of 15.9 full
cycles, with a minimum of 5 and a maximum of 55 de-
pending on the task di�culty. Each half-cycle was sub-
sequently normalized using 21 (time) equidistant points,
and the normalized half-cycles beginning at the same
target were averaged point by point. Finally, combining
the back and forth normalized average half-cycles gave
the (42 points) normalized average cycle. This normal-
ized average cycle, which is supposed to represent the
attractive pattern governing the dynamics of the end
e�ector on the task's main axis, served as a basis for all
graphical and statistical analyses.

4 Data analysis and modeling

4.1 Graphical analysis

In this section, the analysis focuses on Hooke's portraits
of the data, using phase planes and velocity pro®les as
complementary representations. Figures 1, 2 and 3 show
the data portraits obtained for the 25 experimental
conditions (phase portraits, Hooke's portraits, and
velocity pro®les, respectively). All these data are plotted
in the normalized space previously de®ned, where the
scales of position, velocity, and acceleration are compa-
rable. For example, for a pure linear process, the scale is
unity in every dimension (i.e., xmax � _xmax � �xmax � 1),
and the harmonic nature of the dynamics leads to a
phase portrait on the trigonometric circle, a Hooke's
portrait as a straight line, and a velocity pro®le as a
perfect sinusoid.

Starting with a general inspection of the Hooke's
portraits in Fig. 2, the most striking aspect is the general
tendency to deviate from a straight line which clearly
appears both with increasing aiming distance (Fig. 2:
top to bottom) and decreasing target width (Fig. 2: left
to right). Because a linear (harmonic) oscillator implies a
straight line in Hooke's plane, this tendency re¯ects the
increasing in¯uence of nonlinear terms in the data with

1 This choice is reinforced by the fact that the little movement that
did occur along the ignored dimension (1.7 cm on average) was
independent of task conditions (distance and target width).
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the increase in task di�culty. To quantify this e�ect, we
introduce a simple measure of the relative contribution
of the nonlinear terms in the observed motion. From
both (1) and Hooke's portraits, it is clear that the
amount of variance that can be attributed to simple
harmonic motion can be measured by the r2 of the linear
regression of position onto acceleration. The residue of
this regression measures the in¯uence of the sum of all
the nonlinear terms (as does the W function in Beek and
Beek 1988). Hence, the percentage of variance that is to
be attributed to nonlinear components can be assessed
using 1 ) r2 = NL. Using NL as a dependent variable,
a two-way ANOVA showed an increase of NL with
distance (F(4, 32) = 21.82, P < 0.0001, E�ect Size
ES = 4.81%) and a decrease with target width
(F(4, 32) = 197.61, P < 0.0001, ES = 72.60%), with
no signi®cant interaction. The contribution of nonlinear
terms was also found to increase with task di�culty
(F(4, 32) = 82.57, P < 0.0001, ES = 82.51%).

4.2 Model proposition

From the analysis of the data in Fig. 2, we concluded
that the harmonic process for the lowest ID (NL = .00)
became strongly nonlinear for higher IDs (NL = .54).
Hence, Hooke's portrait for the higher IDs should be
rich in information about the conservative and dissipa-
tive nonlinear terms to include in the model (see also the
simulation in Fig. 4).

Fig. 1. Average normalized phase portraits for the 25 experimental
conditions. Increasing distance (top to bottom) and decreasing target
width or tolerance (left to right), combining in increasing ID (top-left
to bottom-right), produces systematic deviations from a circle
(harmonic motion). Increased skewing to the second and fourth
quadrants denotes the operation of a Rayleigh-type dissipation,
nonhomogeneous distribution of the points denotes a slowing down
when arriving at the targets, and increasing maximal velocity denotes
a stronger nonlinear behavior

Fig. 2. Average normalized Hooke's portraits for the 25 experimental
conditions. Increasing distance (top to bottom) and decreasing target
width or tolerance (left to right), combining in increasing ID (top-left
to bottom-right), produces systematic deviations from a straight line
(harmonic motion). Hooke's portrait exhibits (i) an increasing N
shape denoting a softening spring and (ii) within each half-cycle, an
increasing asymmetry denoting a Rayleigh-type damping (see Fig. 4)

Fig. 3. Average normalized velocity pro®les for the 25 experimental
conditions. Increasing distance (top to bottom) or decreasing tolerance
(left to right), combining in increasing ID (top-left to bottom-right),
leads to more asymmetric velocity pro®les, with maximal velocity
attained in the early part of the motion
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The shape of this Hooke's portrait can be considered
the best graphical representation of the sti�ness in both
a local and a global view, thus providing valuable in-
formation on the nature of the sti�ness function. From
Fig. 2, it is easily appreciated that Hooke's portrait
tends to an N shape with increasing ID. This N shape
indicates that the local sti�ness decreases as the system
gets closer to the targets (Fig. 4), which is characteristic
of a softening spring behavior. Thus, a negative x3 is to
be included in the equation of motion, which becomes
that of a cubic softening Du�ng oscillator:

�x� xÿ x3 � 0 �2�
Gaining insight into the nonconservative damping terms
is not as straightforward. Focusing again on the
Hooke's planes (Figs. 2 and 4), one notes that with
only Du�ng terms, the positive and negative parts of a
half-cycle would have been identical, which is obviously
not the case when ID is high. This asymmetry within a
half-cycle2. (Fig. 4) can be achieved with the inclusion of
dissipative terms which ensure that (i) the absolute value
of peak acceleration is larger than that of deceleration

and (ii) that peak velocity is reached in the ®rst part of
the half-cycle, thus leading to phase portraits skewed to
the second and fourth quadrants (e.g., see Fig. 1 for
D = 240 and W = 4). Moreover, the sign of the linear
damping must be opposite to the sign of nonlinear
damping, with a negative linear damping to obtain a
limit cycle. The simplest oscillator that ful®lls these
requirements was ®rst described by Lord Rayleigh for
pipe organs. Hence, a Rayleigh term ( _x3) must be
included in the equation of motion:

�x� xÿ _x� _x3 � 0 �3�
Thus far, the graphical analysis conducted has ascer-
tained that the minimal terms to be included in the
equation of motion were (i) a dissipative term leading to
a Rayleigh self-sustaining oscillator (3) and (ii) a
conservative term leading to a softening Du�ng sti�ness
(2). In the normalized space de®ned previously, the
equation of this minimal model (RD model in the
following) reads:

�x� c10xÿ c30x3 ÿ c01 _x� c03 _x3 � 0 �4�
where the dot represents di�erentiation with respect to
normalized time, x the spatial deviation from the origin
in the normalized space, and the coe�cients are indexed
following the W method notation where cij denotes the
coe�cient of xi _xj.

The ®t of the RD model to the data recorded in the
experiment was explored using statistical regression
methods. All the regressions were based on (4) using
multiple linear regression of all the RD model's terms
(i.e., x, x3, _x, _x3) onto �x to obtain an estimate of the
coe�cients (respectively, c10, c30, c01, c03). For the 225
normalized average cycles, these regressions revealed
that the model accurately predicts the observed behav-
ior, accounting for 95% of the variance on average. The
best ®t was obtained for the most harmonic trials (100%
of the variance for D = 80 and W = 20), while the
lowest ®t was obtained for the trials with the highest
IDs, where the left-right and right-left movements were
somewhat di�erent (82% of the variance for D = 200 or
240 and W = 4). These results con®rm that the RD
model, while including only four parameters, can ade-
quately capture the dynamic behavior of the end-e�ector
in rhythmical precision aiming (Fig. 5), allowing us to
address the question of the changes in parameters with
the changes in distance and precision.

5 E�ects of task constraints on the coe�cients
in the model

In the previous section, the contribution of the nonlinear
terms was found to increase with ID, and we proposed a
minimal dynamical model that adequately captures this
dynamic behavior. The issue to be addressed in this
section concerns the in¯uence of the task constraints on
the contribution of the Rayleigh and Du�ng compo-
nents, which is di�cult to estimate from graphical
representations and will be addressed through the

Fig. 4. Typical Hooke's portrait for a high ID obtained from
numerical simulation with the RD model. The path from the left to
the right target is in bold (the return thin). The acceleration phase is
depicted dark gray and the deceleration phase in light gray. The
portrait tends to an N shape, but the pro®le is asymmetric with (i) a
peak acceleration greater than the peak deceleration and (ii) zero
acceleration (peak velocity) reached in the ®rst part of the motion. The
asymmetry of the acceleration pro®le in a half-cycle is a classical result
in pointing research, the acceleration phase being shorter and sharper
than the deceleration phase (MacKenzie et al. 1987)

2 It is important to distinguish the asymmetry that may be ob-
served between left-right and right-left movements (i.e., between
peak acceleration in the ®rst half-cycle and peak deceleration in the
second half-cycle) from the asymmetry to be observed within half a
cycle. The former (e.g., Fig. 2 for D = 240 and W = 4) suggests a
di�erence between extension and ¯exion movements, while the
latter points to a di�erence between acceleration and deceleration
phases that are also evident in the deviation from a symmetrical
bell-shape in the velocity pro®le (Fig. 3).
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analysis of the changes in the damping and sti�ness
coe�cients. A primary analysis in the normalized space,
where all coe�cients in the RD model are comparable, is
useful to clearly quantify and point out the main
topological aspects. A subsequent analysis in absolute
physical time and space will complete the investigation,
addressing the question of the time behavior in relation
to the spatial constraints.

5.1 Topological aspects

Because the absolute distance or target width no longer
appear in the normalized space, the analysis of the
contribution of the Du�ng and Rayleigh terms in the
nonlinear behavior of the oscillator is better addressed
when collapsing the D and W factors in a measure of the
task's di�culty. The in¯uence of the ID on the values of
the coe�cients in the RD model was found to be
signi®cant for both the Du�ng and the Rayleigh terms.
The results of the analysis of variance (ANOVA) are
summarized in Table 1, and the ID e�ect is illustrated in
Fig. 6.

The conservative linear and cubic Du�ng coe�cients
exhibit a roughly parallel increase when task di�culty
increases (Fig. 6). Therefore, the roots of the sti�ness
function move inward, and the amplitude of the oscil-
lation covers an increasing part of the inter-root
distance. Using S � 1=

��������������
c30=c10

p � 100% as a measure of
the percentage of the inter-root distance covered by the
(normalized amplitude of the) oscillation, we found that
S increased from 7% to 99% with ID. Hence, increasing

task di�culty clearly makes the sti�ness act more as a
softening spring, with the roots of the sti�ness function
moving toward the targets, and the oscillation running
along the entire inter-root distance for the highest ID. A
major consequence of this change in sti�ness is a local
change in angular frequency due to the decreased sti�-
ness in the neighborhood of the targets. As the time
normalization was performed using the actual frequency
of the oscillator (i.e., the experimentally recorded fre-
quency W), the local slowing down (due to the increase
of the cubic Du�ng coe�cient c30) is compensated by an
increase in the linear sti�ness coe�cient c10. When c10 is
higher than unity, this detuning (Beek and Beek 1988)
indicates that the nonlinear sti�ness makes the system
run slower than its eigenfrequency (i.e., x2

0 � c10X
2),

which clearly points out the nonlinear nature of this
slowing down.

The dissipative damping coe�cients also exhibit a
roughly parallel increase when task di�culty increases.
All the individual trials (except 2 out of 225 that ren-
dered pure harmonic processes) exhibited the required
sign opposition. For ID higher than 4, the system
exhibited a more and more stable Rayleigh limit cycle

Fig. 5. Hooke's portraits obtained by numerical simulations with the
RD model for the 25 experimental conditions. These simulated
Hooke's portraits ®t the experimental data in Fig. 2 with an average
r2 = 0.95

Table 1. Results of the analysis of variance (ANOVA) on the
coe�cients of the RD model in normalized time and space. For
each experimental factor, the F value and e�ect size (ES = the
amount of variance explained) of the e�ect is reported. The sig-
ni®cance of the F values was determined after Greenhouse and
Geiser correction. The e�ects of distance, target width, and ID were
signi®cant (P < 0.05) for the four coe�cients in the RD model,
but no interactions reached signi®cance

Target width e�ect Distance e�ect ID e�ect

F(4,32) ES (%) F(4,32) ES (%) F(17,136) ES (%)

c10 57.99 62.00 17.23 4.07 37.90 70.46
c30 68.65 62.59 18.11 4.42 41.08 71.20
c01 30.85 54.94 6.50 2.20 20.37 62.44
c03 43.93 50.40 4.00 2.48 15.24 56.83

Fig. 6. Coe�cients of the RD model (normalized time and space) as
a function of task di�culty. Increasing ID shows a parallel increase of
the damping (triangles) and sti�ness (squares) coe�cients, denoting an
increasing contribution of the nonlinear terms
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regime (Fig. 6) with increasing positive values for c01
and c03 [remember that c01 is preceded by a minus sign in
(4)]. For ID lower than 4, the value of the dissipative c01
coe�cient was relatively small but negative, which in-
dicates that the system behaved in a quasi-harmonic
fashion, but as an unstable, repelling Rayleigh limit
cycle. This point will be discussed later. Overall, the
increase in the value of the linear damping coe�cient c01
indicates that the stability of the system increased with
ID.

To summarize, the general increase in the absolute
value of the coe�cients with ID denotes the rising in-
¯uence of the nonlinear terms on the limit cycle be-
havior of the system. On the one hand, the system slows
down in the neighborhood of the targets, due to the
increase in the sti�ness coe�cients. On the other hand,
the system behaves in an increasingly stable way due to
the increase in the damping terms. However, the higher
coe�cients for the sti�ness terms indicate that their
relative contribution is stronger than that of the dam-
ping terms. It is ®nally worth noting that all the terms in
the RD model participate in the increase of the non-
linear behavior with ID, thus clearly showing that the
RD model is minimal in terms of the dynamical com-
ponents to be included.

5.2 Time and accuracy aspects

The analysis previously conducted in normalized space
allowed us to address the main topological aspects of
rhythmical aiming, showing an ID e�ect on the value of
all the coe�cients in the RD model. Reintroducing the
observed frequency W and the maximum deviation from
the center of oscillation A in the coe�cients of (4), it is
possible to compute the value of the non-normalized
coe�cients (i.e., C01 = c01W, C03 = c03/WA2, C10 =
c10W2

, C30 = c30W2/A2), thus switching back the analysis
to absolute physical metrics in both space and time. In
absolute time-space metrics, the analysis can address the
time behavior of the system in relation to the task's
spatial requirements. Moreover, the e�ects of the
distance and target width are no longer collapsed in
their ratio. Hence, the analysis can make the distinction
between the e�ects of the distance and target width
factors on the values of the absolute coe�cients in the

RD model. The results of the ANOVA performed on the
absolute coe�cients and movement times are summa-
rized in Table 2.

In line with the literature on Fitts' task, the time be-
havior of the system was in¯uenced by the distance and
target width factors: The movement frequency increased
for shorter distances and larger target widths, without
signi®cant interaction. Using the same measures as Fitts
(1954), the half-cycle duration (movement time, MT)
was found to increase with task di�culty, and averaged
over subjects, Fitts' law explained 93% of the ob-
served variance (MT = 0.249 * ID ) 0.623, F(1, 16) =
227.04, P < 0.0001). To account for these changes in
frequency with distance and target width, the conser-
vative linear sti�ness coe�cient C10 increased with target
width and decreased with distance, without signi®cant
interaction (Fig. 7A). Conversely, the softening Du�ng
coe�cient C30 increased with decreasing target width
and distance, with a stronger e�ect of target width for
shorter distances (Fig. 7B). These results indicate that
the adaptation of the overall speed to the distance and
accuracy constraints implied a systematic evolution of
the two sti�ness coe�cients. The increase in MT denotes
a global slowing of the motion, which is mainly due to
the decrease in the linear sti�ness C10. However, the
results of the previous section show that this e�ect is
enhanced by the changes in motion topology: For the
highest ID, the linear sti�ness is minimal, while the
softening spring behavior is maximal. The major con-
sequence of this is an increased dwell time at the targets
for higher di�culties.

To adapt to the accuracy constraints of the task, the
system must change the coe�cients of the damping
function, which acts mainly on the spatial aspects of the
behavior. The dissipative linear damping coe�cient C01

increased when target width decreased without a signi-
®cant e�ect of distance and no interaction (Fig. 7C).
Hence, the stability of the limit cycle attractor increased
with the absolute precision requirements (signi®cant
linear regression with r2 = 0.84, F(1,23) = 128.06,
P < 0.0001), while the distance to be covered had little
in¯uence on the stability of the system. It is important to
note that this result can be considered a simple rede-
scription (in the language of the equation parameters) of
the absolute precision constraint at the level of the task
de®nition: A narrower target requires more stable

Table 2. Results of the ANOVA on the coe�cients of the RD model in absolute time and space. For each experimental factor, the F value
and ES of the e�ect is reported. The signi®cance of the F values was determined after Greenhouse and Geiser correction (P < 0.05) (MT
movement time)

Target width e�ect Distance e�ect Interaction D*W ID e�ect

F(4,32) ES (%) F(4,32) ES (%) F(16,128) ES (%) F(17,136) ES (%)

C10 16.60 15.47 25.55 24.3 1.94a 4.13 11.83 50.21
C30 12.23 9.75 22.28 30.23 8.34 15.43 4.12 26.22
C01 35.85 43.48 2.60a 1.79 1.86a 3.60 12.47 49.33
C03 26.27 36.07 6.63 4.78 8.86 19.22 12.48 55.31
MT 126.20 67.20 72.84 14.67 2.39a 1.48 56.46 85.82

aNonsigni®cant F value (P > 0.05)
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behavior, hence a higher linear damping coe�cient C01.
The cubic damping coe�cient C03 was also found to
increase with target width and distance, with a signi®-
cant interaction (Fig. 7D). Because the cubic damping
coe�cient C03 has little meaning when considered in
isolation,3 the latter result is di�cult to interpret.

We can conclude that all the nonlinear components
included in the RD model are important to capture the
behavior in rhythmical aiming. The general increase of
the nonlinear terms with task di�culty implies an in-
crease in both nonlinear sti�ness and damping which
adequately reproduce the nature of the task constraints.
Summarizing the main results of the present study, one
can argue that the spatial accuracy constraints are ac-
commodated by changes in the damping (mainly a more
attractive limit cycle for narrower targets), while the
time constraints are accommodated by changes in the
sti�ness function (most notably a local decrease in
sti�ness). In this context, the time/accuracy constraints

are accommodated through a subtle relation between
damping and sti�ness: The nonlinear Du�ng sti�ness
leads to an increasing dwell time near the targets when
necessary for high levels of task di�culty, which ensures
that the (local) relaxation time is kept smaller than the
(half)-cycle time. This, in turn, allows the task to be
performed with an adequate error rate while keeping the
overall movement frequency as high as possible. This
interpretation deserves further empirical testing through
perturbation experiments.

6 Discussion

The aim of the present article was to address the
question: What is the attractor underlying goal-directed
rhythmic aiming movements?

Seeking for a model combining a minimal number of
terms in the equation of motion, we have shown that a
dynamical model combining Rayleigh and Du�ng terms
can capture the main kinematic features of performance
on a rhythmical Fitts' task. The modeling strategy and
assumptions which led to the RD model are that of the
W method (Beek and Beek 1988), with an emphasis on

Fig. 7A±D. Landscape representation of the RD model's coe�cients in real time and space metrics as a function of distance and target width: A
linear sti�ness coe�cient C10, B cubic Du�ng sti�ness coe�cientC30, C linear damping coe�cient C01,D cubic Rayleigh damping coe�cient C03

3 In the RD model, the amplitude of the limit cycle results from
nontrivial interactions between the cubic damping term (which acts
as a constraint on the maximal velocity) and the sti�ness function
(which can be far from linear).

242



the graphical analysis to qualitatively derive the oscil-
latory components and a subsequent statistical analysis
to quantify the contribution of these components.
However, the minimality criterion in our modeling
strategy raises two problems, each of which can be ad-
dressed at the price of including new terms in the sti�-
ness and damping de®nitions.

First, with a cubic softening spring sti�ness, the sys-
tem described by the RD model diverges to in®nity when
the position reaches a root of the sti�ness function.
Obviously, this behavior is not representative of real
world motion because it would imply, for example, the
inability to manage any overshoot. This problem can
easily be dealt with through the inclusion of a quintic
Du�ng term in (4). With a quintic Du�ng term added,
the sti�ness potential function can exhibit local minima
in the neighborhood of the targets (e.g., Gonzalez and
Piro 1987). Hence, including a quintic Du�ng term in
the RD model allows a stable behavior both within and
outside the inter-root interval.

Second, when ID was low, the RD model led to un-
realistic unstable oscillations, indicating that amend-
ments are needed for the damping description. It is
important to recall that, because Rayleigh is velocity-
driven and Van der Pol position-driven, they act or-
thogonally in phase space. Their e�ect on the skewness
of the limit cycle is inverted, as is their e�ect on the
asymmetry in Hooke's plane. Changing Rayleigh for
Van der Pol dissipation in our modeling gave rise to a
systematic sign reversal for the linear and nonlinear
dissipative terms: The Van der Pol-based model pro-
duced stable limit cycles for ID lower than 4, but un-
stable limit cycles for ID above 4. As a consequence, a
stable realistic model should exhibit Rayleigh dissipation
(for a high ID) and Van der Pol dissipation (for a low
ID). We face here a limit in the power of the analysis
with our statistical method. Because Van der Pol and
Rayleigh terms act as sine and cosine skewing on the
circular phase trajectory of an harmonic process, their
combined in¯uence can lead to a perfectly harmonic
graphical representation (circular phase trajectory and
linear Hooke's plane) in the presence of strong but equal
Rayleigh and Van der Pol coe�cients. Our graphical
and statistical method can only assess the sum (di�er-
ence) of the combined in¯uence of Rayleigh and Van der
Pol terms. Hence, the results reported here show that (i)
Van der Pol was stronger than Rayleigh for low IDs and
that (ii) Rayleigh became more important than Van der
Pol when ID increased. To gain more insight into the
dissipative oscillator components, methods that are
more powerful are needed to directly assess the stability
of the behavior as in perturbation experiments (Eisen-
hammer et al. 1991).

The conclusion to be drawn here is that, for general
stability reasons and even if the model complexity in-
creases, a realistic model of Fitts' task should include (i)
a quintic term in the Du�ng sti�ness de®nition and (ii) a
hybrid Van der Pol plus Rayleigh damping. The price to
pay with the inclusion of these new terms in the model is
that a precise assessment of the coe�cients is no longer
possible using the W method.

In the literature, a number of studies are reported in
which the kinematics observed in rhythmical movement
of the upper arm are also modeled as limit cycles. Most
of these studies addressed more or less directly the
problem of the relations between time and space be-
havior, which is central to Fitts' task.

One modeling strategy has been to assume that sti�-
ness is linear (and acts as a control parameter) and to
rely on the analysis of the relations between frequency
and amplitude or peak velocity to derive the damping
function. Following such a strategy, Kay et al. (1987)
proposed the so-called `hybrid model' which combines
nonlinear Raleigh and Van der Pol damping. More re-
cently, a derived version with a frequency-dependent
Rayleigh term was shown to better account for indi-
vidual data (Beek et al. 1996). These models adequately
capture the observed behavioral changes when fre-
quency is increased in rhythmical movements without
spatial constraints (i.e., drop of amplitude and increase
of peak velocity in single-e�ector tasks, switch from
antiphase to inphase coordination in bimanual tasks).
The same relations between peak velocity, amplitude
and frequency are observed in Fitts' task, hence justi-
fying the importance of both Van der Pol and Rayleigh
damping in this context (Schmidt et al. 1995).

However, to extend the results of these studies to the
domain of spatially constrained rhythmical movements,
nonlinear sti�ness terms need to be included in the os-
cillator. In the present study, a Du�ng term became
manifest as a function of the spatial constraints on the
task. With the W method, Beek et al. (1995) showed that
the dynamical modeling of pendulum swinging implied
the inclusion of nonlinear Du�ng and p-mix (x _x2) sti�-
ness terms together with nonlinear damping combining
Van der Pol and Rayleigh terms. In their experiments,
the relative and absolute contribution of the di�erent
terms varied as a function of the moment of inertia and
amplitude of oscillation and as a function of the ratio of
the actual frequency to the pendulum's eigenfrequency.
One important aspect of this contribution was to un-
ambiguously introduce the idea that nonlinear sti�ness
was an omnipresent component of pendulum swinging,
while con®rming the previous results on the presence of
a hybrid Van der Pol and Rayleigh damping. Moreover,
an important prediction and result from their experi-
ment 3 was the presence of p-mix oscillators when
`precise points at which the movement has to come to
rest are prescribed' (p. 506), which is precisely the case in
Fitts' task. Our experimental data clearly con®rm the
presence of Rayleigh (possibly combined with Van der
Pol) and Du�ng terms, but the p-mix terms did not
appear as clear components, either in the portraying of
our data or in stepwise regressions including the p-mix
terms. Consequently, the most common terms in dy-
namical modeling of upper arm movements appear to be
the hybrid Van der Pol plus Rayleigh damping to which
a nonlinear Du�ng sti�ness is added.

This result is important because the behavioral ca-
pabilities of such a model might extend far beyond the
scope of rhythmical aiming. In a contribution aimed at
dynamically modeling discrete movements, SchoÈ ner
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(1990) used an analytically solvable nonlinear oscillator
(that we denote GP oscillator) whose behavior has been
extensively studied (Gonzalez and Piro 1987). One im-
portant aspect of this contribution is that the multiple
dynamical regimes in the GP oscillator allow us to
qualitatively reproduce the main types of human
movement (i.e., postural, rhythmical, and discrete) using
a single dynamical model. The behavioral capabilities of
SchoÈ ner's model rely on the bifurcations in the GP os-
cillator. First, a Hopf bifurcation due to the nonlinear
(Van der Pol) damping explains the switch from a point
attractor to a limit cycle attractor. Second, a pitchfork
bifurcation due to the nonlinear (Du�ng) sti�ness ex-
plains the switch from a single to a dual-point attractor.
In such a context, discrete movements appear as a spe-
cial case of rhythmical motion where a limit (half)-cycle
serves to link two stable points. SchoÈ ner (1990) showed
that coupling two such oscillators captured the syn-
chronization properties of two-armed movements and,
more importantly in the context of the present study,
that the linear relation linking MT and amplitude
qualitatively reproduced Fitts' law (when excluding the
precision requirement from consideration). However,
the model of SchoÈ ner (1990) is based on Van der Pol
damping, which implies that peak velocity is always
reached in the second half of the trajectory, thus leading
to unrealistic velocity pro®les for IDs higher than 4.

When comparing the oscillator components in the
RD and GP models, the di�erences appear in the dam-
ping (Rayleigh or Van der Pol) and in the sti�ness def-
inition, which is quintic in the model used by SchoÈ ner
(1990). Importantly, Hopf and pitchfork bifurcations
are possible in both models (i.e., due to the Rayleigh
damping and Du�ng sti�ness in the RD model). This
similarity makes the dynamical regimes in the RD model
similar to that of the GP oscillator, while being far more
di�cult to assess because the RD model is not exactly
solvable. Even though this point deserves more mathe-
matical and empirical attention, an important aspect
of the RD model is that it o�ers the same behavioral
capabilities as SchoÈ ner's model, while leading to more
realistic kinematics.

Thus, a ®rst conclusion is that a comprehensive model
of human movements should allow for one or two stable
points in the workspace, linked by a limit cycle. In dy-
namical modeling terms, these constraints act on the
sti�ness (which should be a quintic Du�ng) and on the
damping (which should combine Rayleigh and Van der
Pol dissipation). Although this kind of model can cap-
ture most human behavior, it may become unwieldy in
terms of its free parameters. However, it is worth noting
that, in practice, modeling of human aiming movements
might reduce to only a few sti�ness and damping pa-
rameters and may reduce to even less when attention is
paid to the relations between the parameters. This latter
point is an important new route to investigate. Finally,
a second conclusion is that our choice to address the
problem at the level of the attractor allowed us to ®nd
that the behavior relies on the same dynamics whatever
the task's di�culty. However, the normalized average
cycles that served as the database for the analyses focus

on the attractor only. A next step would be to address
the (half) cycle by cycle behavior, which could allow
addressing the problem of variability in human motor
behavior from a new perspective. Once the attractor
is identi®ed, the behavior around the attractor should
allow description and quanti®cation of what the noise in
the system is and how it participates in the actual
behavior.
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