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This  paper  describes  a  non-invasive  human  brain-actuated  robotic  arm  experiment,  which  allows  remote
writing.  In  the  local  environment,  the  participant  decides  on an arbitrary  word  to  transmit.  A men-
tal  speller  interface  is  then  used  to select  the  letters.  A robot  arm  placed  in  the remote  environment
writes  the  word  on  a  whiteboard  in real  time.  A  multidisciplinary  framework  such  as  the  one presented
eywords:
rain–machine interface
obot operator
300 evoked potential
uman–robot interaction

here exemplifies  a class  of  interactive  applications  with  possible  relevance  in a variety  of  fields,  such as
entertainment  and  clinical  environments.

© 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
emote writing

. Introduction

.1. State of the art

The presence of robots in human society has been increas-
ng exponentially for the last 25 years. The main target fields of
uman–robot interaction include robot-assisted search and rescue,
ssistive robots, space exploration, as well as military, industrial
nd educational applications (see review in [1]). From the clini-
al point of view, robots provide an opportunity for interaction to
hose persons with communication problems. For instance, their
se has been shown to be useful with autistic children, who  usu-
lly respond weakly to social cues but respond well to mechanical
evices [2].  For some people with physical challenges, an intelli-
ent wheelchair [3] or even the embodiment of a robot [4] provides
upport and unique opportunities not available in other forms of
echnology.

Specifically, robot arms represent a useful tool in numerous
nvironments and situations. In this sense, numerous applications
ave been developed to control real or virtual robotic arms for
bject telemanipulation (see an exemplary review in [5]).

A particular way to move robots is by means of brain waves

hrough a brain–machine interface (BMI). In general terms, a BMI
ystem consists in recording and interpreting the electrical activ-
ty generated by the brain in order to control an external device or
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media without requiring the use of peripheral nerves or muscles
for communication. Traditionally, BMI  systems have been used for
clinical and rehabilitation purposes for disabled patients, including
cursor control [6,7] or prosthetic hand operation [8].  A replication
of the latest has been developed in virtual reality for controlling a
computer-generated 3D virtual arm [9].  The interest in BMI  tech-
nology has grown exponentially during the last years not only for
clinical applications but also for applications in different fields,
including education, communication, military, computer gaming
and even biometric authentication (see review in [10]).

Within the frame of human–robot interaction, BMI  technology
offers an additional mean for communication, for example to con-
trol a wheelchair by motor imagination and words association [11]
or left-right thinking [12]. A BMI  application for navigation in a
virtual environment by a tetraplegic patient in a wheelchair has
also been demonstrated [13,14]. In [15], remote human brain–robot
communication was established to move a robot between two
cities separated by 260 km.  Within this scope, important advances
have been achieved in animal research. A monkey in U.S. was able,
through a BMI, to control the gait motion of a human-sized robot
located in Japan, at 11 400 km far away. The electrical impulses in
the monkey’s brain while walking on a treadmill were transmitted
to the robot via Internet, making the robot walk, i.e., mimicking the
monkey’s motion [16].

The first BMI  application for written/verbal communication,
called the “thought-translation device”, was  developed in the late

1990s by Birbaumer and colleagues [6,7,17] and based on slow-
cortical potentials. This device allowed the user to choose one
character from the alphabet in an iterative process. The whole pro-
cess might last more than 1 min  for single character selection.

d.
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Besides active BMI  strategies, based on voluntary mental
ctions, reactive strategies based on brain responses to external
timuli offer a technically different solution. Among these reac-
ive interfaces, that based on the P300 evoked potential is the

ost widespread. The P300 is the most prominent cognitive event-
elated potential. It appears in presence of a rare stimulus among
everal standard stimuli around 300 ms  after stimulus presenta-
ion. The P300 is not restricted to any particular sensory modality,
.e., it appears both with visual or auditory stimuli [18].

A visual P300-based BMI  system allows a more time effi-
ient approach for written communication since the user can
elect a character every 10 s approx from a mask containing all
lphanumeric characters [19,20]. It allows very high accuracy and
epresents a practical approach since very little training time (less
han 5 min) is needed. Compared with other strategies, P300-based
MI  systems do not require subjects to learn to modulate their
EG, reducing massively the training time. A performance study has
eported that 72% of the subjects achieved a 100% accuracy level,
ith a mean accuracy 91% with the P300 speller [21]. In a previ-

us related study, only 6.2% of subjects performed at an accuracy
evel between 90 and 100% with a motor imagery BMI system [22].
he authors compared both approaches in terms of the time per-
ormance and found that the P300-based BMI  is about two times
aster than the equivalent BMI  system using motor imagery [22].
n another study, Donchin et al. estimated speed vs. accuracy and
tated that speed could be enhanced until 7.8 items/min for 80%
ccuracy level or 4.3 items/min for 95% accuracy level for able-
odied subjects [19].

Therefore, although BMI  applications for written communica-
ion do exist, they mostly involved human–computer rather than
uman–robot interaction. In particular, combined solutions for
riting through a robot arm operator with thoughts have not been

xplored yet.

.2. Objectives

Here we describe a BMI  experiment for remote (or local) writing
ia human brain-actuated robot arm. The novelty that this exper-
ment brings to the state of the art is the combination of BMI  and
obotics to develop a new experience in the field of remote writ-
en communication. The synergy of resources from BMI plus robot
perators illustrates a class of applications with great potential in
ifferent domains. The assessment of the usability of such a sys-
em needs of user studies that are beyond the scope of the present
echnical note. Specific queries to be addressed in future works are
ointed out.

. Materials and methods

The present experiment was developed in the frame of the
NTERACCION 2009 conference held simultaneously in Barcelona
Spain) and Armenia (Colombia).

.1. Local environment

One female volunteer sat comfortably at a desktop, with her
rms and feet resting relaxed on the lap and the floor, respectively.
he was instructed to sit and concentrate on each letter of the
ord in turn during the flashing stage (see Section 2.5). A web-

am allowed the audience in Colombia to see her and the local
nvironment in real time.
.2. Remote environment

A Mitsubishi RV-2AJ operator robot with 5 degrees of free-
om and anthropomorphic articulation was used for writing
ng & Physics 33 (2011) 1314– 1317 1315

execution. The robot combines a maximum speed of 2100 mm/s
with an accuracy of ±0.02 mm.  Therefore, it is appropriate for small
environments and for academic and research purposes in particu-
lar. Because of the physical limitations, the maximum number of
characters per word was limited to six.

The robot has a Mitsubishi CR1-571 controller responsible
for the control and communication protocol. The communication
between the robot controller and the robot server was through the
RS-232 serial port. For this communication, the SerialCommRV2AJ
API was  developed [23]. This API was created using the Java Com-
munications API in order to access the serial port and send/receive
commands from the controller.

2.3. Communication between environments

The HTTP protocol was  used for the communication between the
two  environments. HTTP requests to the robot server were resolved
through an application based on Java Servlets [24]. Writing requests
sent by the BMI  system in Barcelona were received and stored by
the ServletWritter.  Then, characters were sent to the API responsible
for processing the alphanumeric characters (RV2AJWritter), which
generated the corresponding files with instructions and trajec-
tory coordinates. These files were then sent to the robot controller
through the serial port (SerialCommRV2AJ). The writing process was
finally carried out based on the positioning system of the robot.
Fig. 1 shows an overview of the system architecture.

For visual feedback of the robot’s actions, and since the robot
was  located at a remote laboratory about 8500 km from the local
BMI  set-up, MJPG video streaming was  generated with a network
camera (Axis Network Camera 214 PTZ) pointing to the robot.

2.4. EEG recording system

Eight Ag/AgCl electrodes (Fz, Cz, Pz, P3, P4, PO7, PO8 and Oz,
International 10/20 System) were arranged on the head of the sub-
ject. A ground electrode was  placed on the forehead and reference
on the right earlobe. The voltage signal was fed on the g.USBamp
amplifier (gtec, Guger Technologies OEG) and acquired at 256 Hz.
Impedances were kept below 5 k�.  A Notch-filter (network 50 Hz
rejecting) and a band-pass filter (Butterworth 5th order) between
0.1 and 30 Hz were applied. The High-Speed Online Processing tool-
box (Guger Technologies OEG) running under Simulink/MATLAB
(Mathworks, Inc.) was used for real-time parameter extraction.

2.5. The P300-speller

We use a BMI  system based on the P300-speller approach pro-
posed in [19,20]. The system presents the user with a 6 × 6 matrix,
each cell containing one alphanumeric character. The user focuses
attention on the cell containing the character (letter or number) to
be communicated while the rows and the columns of the matrix
are intensified repetitively in a random sequence. To maintain the
concentration on the task, the user has to count mentally how many
times the selected target cell flashes. When the row or column con-
taining the attended cell is intensified (i.e., the target stimulus is
presented), the P300 response is elicited.

Data epochs of 800 ms,  the window starting 100 ms  before the
stimulus and ending 700 ms  after, are buffered for signal process-
ing. Data from target and non-target trials are down-sampled to
64 Hz and separated into two data sets offline. The elicited EEG

response is computed for each data set (target and non-target).
The algorithm detects the character by determining which row and
which column elicit the best P300 response (see [21] for further
details). Then, the weights for the LDA (linear discriminant analysis)
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Fig. 1. Overall system architecture at the lo

lassifier are estimated offline using the gBSAnalyze commercial
ackage (gtec, Guger Technologies OEG).

. Procedures

.1. Training stage

Prior to the final experiment, the user completed a short train-
ng session in order to get acquainted and confident with the task.
n this training session, the “copy spelling” mode was used, which
llowed entering arbitrary letters that the participant had to select,
n our case, the vowels “OIAUIE”. The user did not receive any feed-
ack about performance since a classifier was not generated at that
ime. Then, the LDA weights were computed and save for the later
nline classification during the test stage. Since the user success-
ully selected the six vowels in the first run, only one training run
as required. The training session was carried out five days before

he conference.

.2. Test stage

For the test stage, a set of specific movements for the robot oper-
tor was implemented. The corresponding trajectories for each of
he 27 characters of the Spanish alphabet were individually pro-
rammed. The “free spelling” mode was used, which allows writing
ords freely without any previous input. The user decided to write

BARCEL”, i.e., the first six letters of the word “BARCELONA” (see
ig. 2).

Immediately after the speller system detected the character that
licited the best P300 response, the character ID was passed to the
obot via Internet, as a variable in the URL query string. After the
esired word was completed, the symbol “ ” had to be chosen as
nd-of-word character. In order to write a second word, and due to
he limited placed on the whiteboard, the robot was programmed
o clean the board before writing the following word.
During the test experiment, all letters were chosen, sent and
ritten correctly. Flash and dark times for each column or row
ere adjusted to 100 ms  and 75 ms,  respectively. Flash repetitions
ere set to seven for each row/column, as a compromise between

Fig. 2. (a) Snapshot of the P300-speller interface during the experiment. (b) Snap-
shot of the remote environment during the demonstration. The robot arm placed in
Colombia writes on a whiteboard the letters (“BARCEL”) mentally selected by the
participant in Barcelona.
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ccuracy and writing velocity. Therefore, one character selection
asted 14.7 s (6 × 6 matrix, 175 ms  for row/column, 7 flash repeti-
ions). This led to a transfer rate of 4.1 letters/min. In the remote
nvironment, the robot needed 5 s in average for writing a letter.
egarding the time delay for the communication between the two
nvironments, averaged round-trip time was 217 ms  (ping, DOS-
ommand).

. Discussion

The P300-based BMI  system was successfully used for remote
riting via a human brain-actuated robot arm. The participant was

ble to mentally select all the letters correctly during both the
raining and the final session even with a reduced number of flash
epetitions (n = 7). This led to a transfer rate of 4.1 letters/min. This
erformance is in line with previous results that have reported
igh accuracy (>90%) even with only 6 flashes per trial [25].
peed could be increased by using word-completion or a lan-
uage model’s predictions. When the language model’s predictions
re accurate, many successive characters can be selected by a
ingle gesture. These techniques are usually applied in writing
ystems based on gaze direction [26], which have existed in the
ssistive technology for some years. Although EEG-based systems
annot compete in speed against gaze-controlled systems, they
epresent an alternative for those cases where gaze-based tech-
ology is not suitable. Indeed, the integration of BMI  with other

nterfaces is encouraging since it enriches existing collaborative
nvironments as well as raises further opportunities in specific
ituations due to several considerations like physical or cognitive
onstraints.

Our current research direction includes a large user study to
valuate the feasibility of the system in terms of long periods of
se, fatigue and efficiency. More importantly, it will allow us to
stimate the degree of usability within the context of possible
uman brain–robot interfaces given the current technology avail-
ble.

. Conclusions

Summarizing, a proof of concept for a human brain–robot inter-
ace for remote writing was presented. The system allows a user
o select by thought arbitrary words and to send them to a robotic
rm, which receives the command via Internet and writes the word
n a whiteboard in real time. Users can easily operate the sys-
em after 5 min  of training with very high accuracy level. Future
esearch should explore the viability of the system in terms of
sability. BMI  applications to control robots or even virtual sur-
ogates may  also have broad repercussion in entertainment and
linical environments.
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