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Abstract. In this paper we compare 23 different models 
that can be used to describe the asymmetric bell-shaped 
velocity profiles of rapid-aimed movements. The com- 
parison is performed with the help of an analysis-by- 
synthesis experiment over a database of 1052 straight 
lines produced by nine human subjects. For each line 
and for each model, a set of parameters is extracted 
that minimizes the error between the original and the 
reconstructed data. Performance analysis on the basis 
of the mean-square-error clearly reflects the superiority 
of the support-bounded lognormal model to globally 
describe the velocity profile characterizing rapid move- 
ments. 

1 Introduction 

One basic approach in the study of rapid human move- 
ments has been the modelling of the movement genera- 
tion system with the help of different mathematical 
representations. These models, sometimes called phe- 
nomenological, can be very useful from two points of 
view. From a theoretical perspective, this approach 
provides a holistic description of the processes, based 
on an external representation of the phenomena, with 
the help of a proper set of differential equations or 
transfer functions. A specific model provides a set of 
parameters that describes the observed movements un- 
der different experimental conditions and so it opens a 
window on the different processes that occur during 
these movements, allowing a global interpretation of 
the phenomena in terms of input commands, control 
variables, and output functions. From a practical per- 
spective, these models can also be used to segment more 
complex movements, to compress and store data 
efficiently and to provide a parametric description of 
signals that can be used for computer processing appli- 
cations in pattern recognition and robotics. 
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However, to take advantage of this approach, sev- 
eral questions must be answered. Probably the most 
important one is. Which is the best model for describ- 
ing a specific set of rapid-aimed movements? Indeed, all 
the theoretical and practical advantages of analytical 
modelling rely on having the most meaningful and 
powerful set of parameters to represent a specific class 
of movements. 

Many models have been proposed in the past for 
describing different classes of movements, and it should 
be expected that, although the goal of each of these 
studies may have differed, some convergence towards a 
single, unique and powerful model of rapid movement 
generation might emerge. As for the modelling of any 
physical system, it should be expected that a model will 
ultimately stand or  fall on the basis of its agreement or 
disagreement with experimental findings. To perform 
such a test, a widely accepted observation must be used 
as the experimental benchmark, and all the models then 
tested under the same experimental protocol and with 
the same database. 

In this context, we ran an experiment where human 
subjects were asked to produce straight lines as fast as 
possible in different directions. The velocity profile cor- 
responding to each of these lines was then computed, 
and an analysis-by-synthesis experiment was conducted 
using the different symbolic models proposed in the 
scientific literature for describing this type of move- 
ment, plus a set of other analytic models that we 
proposed as potential candidates for describing the 
phenomenon. Thus, for each line and for each model, 
we came up with a set of parameters that minimized the 
error between the original and the reconstructed data, 
and all the model performances were compared in 
terms of reconstruction errors. This paper reports on 
this experiment. 

2 Modelling of the movement generation system 

The modelling of the movement generation system, 
from the central nervous system down to the hand, has 
been proposed as a way to globally understand the 
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phenomena related to trajectory formation. But, when 
developing their models, researchers did not have the 
same goal, and so these models were of different design. 
A survey of the previously published models of the 
movement generation system revealed that the authors 
mainly had two interests: 
a) The physical aspects of the system (muscle geom- 

etry, mechanical properties, etc.) 
b) The control processes of the system involved in the 

trajectory formation 
In the first category of models (called dynamic-ori- 

ented models below) are included those for which the 
mechanism of trajectory formation is directly related to 
the geometry of the muscles and to their mechanical 
properties (Morasso and Mussa-Ivaldi 1982). These 
models consider the movement generation system to 
comprise two levels: a cognitive/symbolic (high) level 
and a joint/muscular (low) level. The high level is 
assumed to be for coding and planning. The low level 
contains a geometrical and mechanical transformation 
mechanism, the high level a decision execution mecha- 
nism (van Galen 1980). In this group, three subclasses 
can be distinguished: models considering the muscles as 
force generators, as oscillation generators, and as speed 
generators. 

The second category of models (called kinematic- 
oriented models below) are those for which the trajec- 
tory formation mechanism is independent of the actual 
joint and muscle patterns, and are based on the capabil- 
ity of expressing and controlling the trajectory of the 
hand in space. This hypothesis can be explained by 
logical reasoning (Lashley 1951; Bernstein 1967) or by 
well-known facts, e.g., people can write in almost the 
same way on paper or on a blackboard using the hand 
or the foot (Katz 1951). These models also rely on the 
fact that the kinematic patterns of the hand are invari- 
ant with respect to variations of starting point, of 
inclination and of size (Abend et al. 1982; Morasso 
1981). To represent the mechanisms of movement gen- 
eration, kinematic-oriented models consider a three- 
level system in which an intermediate level for 
information processing is added to the two previous 
levels of the dynamic-oriented models. This intermedi- 
ate level is used to generate spatio-temporal patterns for 
a given planned movement and to transform spatial 
sequences into angular/muscular sequences. 

In our study, we have analyzed all these models with 
a fixed point of view, which is their performance in 
reproducing the velocity profile of simple and rapid 
aimed-movements. Indeed, many investigators have re- 
ported that the velocity profiles of rapid-aimed move- 
ments are approximately bell-shaped (Beggs and 
Howarth 1972; Georgopoulos et al. 1981; Morasso 
1981; Soechting and Laquaniti 1981; Abend et al. 1982; 
Atkenson and Hollerbach 1985). Moreover, the shape 
of the bell, after appropriate rescaling, is approximately 
superimposable, that is, the shape is almost preserved 
for movements that vary in duration, distance or peak 
velocity (Atkenson and Hollerbach 1985; Bullock and 
Grossberg 1988). These velocity profiles have also been 
observed in handwriting, for curvilinear velocity 

(Morasso and Mussa-Ivaldi 1982; Plamondon et al. 
1991) and for angular velocity as well (Plamondon 
1989b; Plamondon and Yergeau 1990). 

This invariance in the shape of the velocity profiles 
suggests that velocity might play a key role in move- 
ment control, and that the central nervous system 
might, in one way or another, take this information 
into account in movement planning. In this context, a 
general way to look at movement generation is to 
consider the overall sets of neutral and muscle networks 
involved in the production of a single rapid movement 
as a linear system producing a velocity profile from an 
impulse command Uo(t - to) of amplitude D occurring 
at to (Plamondon 1991; Plamondon 1993). In this case, 
we can write: 

t 

V(t) = ~ DUo(t - t0 - v)H(r) dr (1) 
0 

V(t) = DH( t  - to) with t i> to (2) 

Equation (2) shows that the velocity profile directly 
reflects the impulse response H ( t -  to) of the global 
system. Since the generation of different rapid move- 
ments involves the activation of the same neuromuscu- 
lar systems under different experimental conditions, the 
similarity of the velocity profiles and their invariance 
for different experimental conditions follows directly 
(Plamondon 1993). Much indirect evidence also sup- 
ports this view (Gibson et al. 1985; Houk and Gibson 
1987; Plamondon and Parizeau 1988; Houk 1989; Pla- 
mondon and Maarse 1989; Plamondon 1992a). 

Moreover, we have not limited out study to the set 
of models already published, but have also extended it 
to other models that we consider potential candidates 
for best describing the velocity profiles of rapid move- 
ments. For each model, we therefore provide a brief 
description of its velocity output using the following 
representation and notation: 

V~: curvilinear velocity; V~ = x/V], + V 2 
To: time of movement beginning 
1"1 : time of movement end 
Tm :time of maximum velocity 
Pi: parameters of the model 

The equations of the curvilinear velocity profile pro- 
duced by each model are listed in the Appendix. 

The results of our analysis-by-synthesis experiments 
are summarized in Table 1. This table, divided into 
three parts, will be used throughout the paper. In the 
first column, all the models tested are listed in alphabet- 
ical order, grouped into the three families of models 
(dynamic-oriented models, kinematic-oriented models 
previously published, new kinematic-oriented models 
added in this study). The next two columns of this table 
show the number of parameters for each model as well 
as some properties of the model. As can be seen, there 
is great variation between the models in terms of their 
number of parameters and whether they produce con- 
tinuous or discontinuous, symmetric or asymmetric ve- 
locity profiles. 



Table 1. Performances of all models studies 

Model No of Properties MSE (cm2/s 2) Standard Percentage 
parameters deviation of lines 

12l 

EH Eden (1962)/Hollerbach (1981) 7 SC 5.21 6.59 95.6 
MAR Maarse (1987) 12 AD 2.01 1.39 91.4 
MCD MacDonald (1964) 18 AD 12.70 12.02 97.9 
ME Mermelstein and Eden (1964) 14 AD 0.99 2.64 97.9 
PLA Plamondon and Lamarche (1986) 6 AD 14.55 10.81 99.4 
DD Denier van der Gon (1962)/Dooijes (1983) 12 AD 13.49 9.91 99.4 
YAS Yashuhara (1975) 9 AC 50.35 36.21 97.6 

GOSA Gaussian asymmetric (Plamondon 1989b) 6 AD 0.49 0.51 100 
GUT Gutman and Gottlieb original (1991) 3 AC 5.32 6.79 I00 
LGN Lognormal (Plamondon 1991) 4 AC 0.66 0.86 100 
LGNB Lognormal support-bounded (Plamondon 1992b) 5 AC 0.16 0.25 100 
MJ Minimum jerk (Flash 1983; Flash and Hogan 1985) 3 SC 1.57 1.53 100 
MMMA Morasso/Mussa-Ivaldi/Maarse asymmetric (Morasso 1987) 6 AD 1.59 1.99 98.7 
MMMS Morasso/Mussa-Ivaldi/Maarse symmetric (Morasso 1987) 3 SC 5.30 5.79 98.4 
MOR Morasso and Mussa-Ivaldi (1982) 3 AC 2.99 1.96 100 
MS Minimum Snap (Flash 1983; Edelman and Flash 1987) 3 SC 1.33 1.49 97.8 

BET Beta 5 AC 0.52 0.46 97.8 
GAM Gamma 4 AC 3.62 3.12 99.4 
GOSS Gaussian symmetric 3 SC 1.37 1.41 100 
GUTG Gutman and Gottlieb generalized 4 AC 1.12 1.12 100 
SIGC Sigmoidal continuous 4 AC 2.56 2.29 99.1 
SIGD Sigmoidal discontinuous 8 AD 0.81 0.58 99.1 
WBL Weibull asymmetric 3 AC 97.41 61.79 100 

A, Asymmetric; C, continuous; D, discontinuous; S, symmetric 

2.1 Dynamic-oriented models 

The upper  part  o f  Table 1 lists the seven dynamic-ori- 
ented models that we have implemented. As may  be 
seen, we have grouped some models together. Although 
some of  these had slight inherent differences, they all 
led to a similar equation describing the curvilinear 
velocity profile of  the straight lines used in this study, 
once a simple impulse command  had been applied to 
their specific impulse response. 

The Denier van der Gon and Dooijes models. The model 
proposed by Denier van der Gon  was the first hand- 
writing model (Denier van der Gon  et al. 1962). I t  
considers the fast movement  to be caused by two 
perpendicular groups of  muscles which apply forces to 
the hand to produce the trajectory. The forces gener- 
ated by the muscles have a rectangular profile and 
represent the input of  a movement  generation system 
described by a second-order equation that takes into 
account the intrinsic viscosity of  the hand. The duration 
is related to the magnitude of  the movement.  

Dooijes (1983) tried to improve on the model of  
Denier van der Gon  by proposing two additions: the 
first was a uniform trend added to the horizontal 
movement ,  and the second assumed that  the principal 
axes of  direction were oblique rather than orthogonal.  

In our study, since we focus on the curvilinear 
velocity profile, the direction of  the principal axis has 
no influence. Since we also study small movements  
from a central origin, the uniform trend is not necessary 
to reproduce the data. In this context, these two models 

have the same formulation for the asymmetric discon- 
tinuous curvilinear velocity profile. 

The MacDonald model. To improve the performance of  
the Denier van der Gon/Dooijes  model in simulating 
handwriting, MacDonald  (1964) suggested the use of  a 
trapezoidal force pulse. In  this case, too, the profile of  
the curvilinear velocity can be asymmetric and discon- 
tinuous. 

The Yasuhara model. Yasuhara  (1975) demonstrated 
that exponential transitions for the force patterns are 
even more powerful in the simulation of  handwriting. 
Thus, the force pulses used in this model have an 
exponential profile and the resulting curvilinear velocity 
is asymmetric and continuous. 

The Maarse model In a model comparison experiment, 
Maarse (1987) used, among other things, triangular 
acceleration pulses as input to a cascade of  integrators, 
which is equivalent to assuming a purely ballistic sys- 
tem. The triangular acceleration pulses produce an 
asymmetric discontinuous velocity profile defined by a 
second-order polynomial.  

The Eden, Mermelstein and Hollerbach models. Three 
authors have proposed a model that  considers the 
muscles as harmonic oscillators. Eden (1962) was the 
first to suggest such a model, in which the outputs o f  
the movement  generation system are sinusoids repre- 
senting the velocity. In his model, two orthogonal  gen- 
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erators of different frequencies are used to simulate 
handwriting. Mermelstein and Eden (1964) modified 
this model to incorporate asymmetry in the velocity 
output by taking into account different amplitudes, 
frequencies and phase shifts for the rise and fall phases 
of the profile. 

Hollerbach (1981) proposed a synthetic oscillation 
theory of handwriting. He considered that "handwrit- 
ing arises from orthogonal oscillations horizontal and 
vertical in the plane of the writing surface. . .  The 
oscillations are modulated in certain ways and at spe- 
cific points to produce the shapes characteristic of the 
English Palmer script" (p. 140). He studied nonorthog- 
onal axes as well. 

The Eden model and the orthogonal axis version of 
the Hollerbach model used a symmetric continuous 
curvilinear velocity profile, while the Mermelstein and 
Eden model used an asymmetric discontinuous velocity 
profile. 

The Plamondon and Lamarche model. Another ap- 
proach was used by Plamondon and Lamarche (1986) 
to develop a dynamic-oriented model by considering 
the muscles as speed generators. In fact, they apply the 
transfer function of the DC motor used in the hand- 
writing simulator of Vredenbregt and Koster (1971) to 
obtain a speed generator system which produces move- 
ment from a rectangular neural pulse and which is 
independent of the direction (Plamondon 1987, 1989a). 
The curvilinear velocity profile of such a system is 
asymmetric and discontinuous. 

2.2 Kinematic-oriented models 

The middle part of Table 1 lists the nine previously 
published kinematic-oriented models, while the lower 
part of the table gives seven other potential models. 

The Morasso and Mussa-Ivaldi model. Morasso and 
Mussa-Ivaldi (1982) developed a model in which the 
movement is considered to be a sequence of basic 
segments of given length, tilt angle and angular change. 
Each basic stroke is generated with a symmetric contin- 
uous bell-shaped velocity profile in its original version. 
The bell-shaped velocity profile is obtained by a cubic 
spline function. 

The Flash and Hogan minimum jerk model and the 
Edelman and Flash minimum snap model. Dynamic op- 
timization (Nelson 1983; Hogan 1984) has been pro- 
posed as a principle of organization for a large class of 
movements. From this principle, many models have 
been developed based on the minimizing of one crite- 
rion or another. An example is the minimum jerk model 
(Flash 1983; Flash and Hogan 1985), which considers 
the trajectory of the movement to be obtained by 
minimizing the jerk which is the third-time derivative of 
the displacement. This criterion gives a trajectory 
defined by a fifth-order polynomial. Another example is 
the minimum snap model (Flash 1983; Edelman and 
Flash 1987), which is based on the optimization of the 

snap (the fourth-time derivative of the displacement) 
and which gives a trajectory defined by a seventh-order 
polynomial. The curvilinear velocity profile produced 
by these two models is symmetric and continuous. 

The Morasso, Mussa-Ivaldi and Maarse models. In his 
model comparison experiment, Maarse (1987) described 
a modified version of the Morasso and Mussa-Ivaldi 
model (1982) using cosine functions instead of splines 
for the bell-shaped velocity profile. Two versions of this 
model are implemented (producing symmetric continu- 
ous and asymmetric discontinuous velocity profiles). 

The Plamondon gaussian model. Plamondon proposed a 
model based on the intrinsic representation of hand- 
written curves without reference to any fixed-axis sys- 
tem (Plamondon 1989b). The generation of straight 
lines is reduced to the production of the curvilinear 
velocity having an asymmetric discontinuous bell- 
shaped profile that is represented by a gaussian func- 
tion (Plamondon 1989b; Leclerc 1989; Leclerc and 
Plamondon 1990; Plamondon et al. 1990; Plamondon 
and C16ment 1991). 

To study the effect of the asymmetry of the velocity 
profile, we have added a symmetric continuous version 
of this model (Table 1, lower part) by using one gaus- 
sian function instead of the two used in the previous 
asymmetric version. 

The Gutman and Gottlieb model. Gutman and Gottlieb 
(1991) proposed a model that describes the trajectory of 
a movement by x( t )= P I [ 1 -  e-t3/J'2]. We have also 
generalized this model (Table 1, lower part) by using an 
equation having the power of t as a parameter, which is 
more general than to fix it at 3, as in the original model. 
The two versions of this model produce asymmetric 
continuous velocity profiles. 

The Plamondon lognormal model. Plamondon proposed 
a stochastic model for the origin and the invariance of 
the bell-shaped velocity profiles for rapid-aimed move- 
ments (Plamondon 1991). The model describes these 
movements as originating from the sequential action of 
a set of velocity generators working in cascade fashion. 
Applying the central-limit theorem to describe the con- 
verging behavior of such a system, it is shown that 
velocity profiles can be described by lognormal curves 
(Aitchinson and Brown 1966) which are asymmetric 
and continuous. 

The Plamondon support-bounded lognormal model. Pla- 
mondon modified his earlier lognormal model in order 
to propose a more general explanation of the origin of 
the asymmetric bell-shaped velocity profiles and to de- 
scribe them with a lognormal function (Plamondon 
1992b). This sequential generation model considers the 
overall sets of neural and muscle networks involved in 
the production of a single rapid movement as a linear 
system producing the proper velocity profile from 
an impulse command. If the global system is made 
up of a cascade of n linear subsystems with dependent 
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response times, and if n is sufficiently large, the central 
theorem applies, and predicts that the impulse response 
of the global system will tend toward a lognormal curve 
(Aitchinson and Brown 1966). Experimental results 
suggest that a support-bounded lognormal gives better 
results; in other words, the time support of the lognor- 
mal function is limited, that is, V~(tl) = 0, where tl is 
the end of the movement time (Plamondon 1992b, c). 

New kinematic-oriented models added in this study. In 
addition to the symmetric gaussian model and the 
generalized Gutman and Gottlieb model that we have 
already mentioned, we have also studied five other 
models (Table 1, lower part). The sigmoidal model (in 
two versions, continuous and discontinuous) comes 
from the study of the first-time derivative of a sigmoid 
function defined by: f ( t )  = tn/(1 + tn). The beta model 
used a beta distribution (which is asymmetric continu- 
ous) as a profile for the curvilinear velocity. It should 
be noted that this model has a discontinuous time 
derivative in the right-hand part. The gamma model 
uses a gamma distribution (which is asymmetric contin- 
uous) as a profile for the curvilinear velocity. The 
Weibull model uses a Weibull distribution (which is 
asymmetric continuous) as a profile for the curvilinear 
velocity. 

3 Data processing 

All the original data came from a previously described 
experiment (Plamondon et al. 1990; Plamondon et al. 
1991). These data are composed of 1262 strokes pro- 
duced by recording the cartesian pentip trajectory of 
nine subjects sampled during 2-s periods by a digitizer 
at a spatial resolution of 0.005 in. (0.127 mm) and a 
sampling frequency of l lg .5Hz.  The subset of data 
used in our study was limited to 1052 strokes by 
eliminating from the original data those not corre- 
sponding to single movements (one dominant velocity 
pulse). 

Each trajectory is described by two space variables 
Dx and Dy as a function of a discrete time variable, 
t = 0, 1, 2 . . . .  , i, . . . .  T. To minimize the quantization 
noise and all the jitters produced by the digitizer, a 
gaussian low-pass filter was applied. 

This gaussian filter was synthesized by cascade uni- 
form filters (Wells 1986), and its choice was motivated 
by the fact that this unique filter class implies no 
generation of extra extrema in the filtered signal 
(Badaud et al. 1986). The filter was designed with a 
cut-off frequency of about 10 Hz, corresponding to the 
evaluated spectral frequency of rapid handwriting 
movements (Schomaker and Teulings 1990). 

By applying a transform used by Burr (1982), based 
on the Fourier series interpolator which gives an ap- 
proximate response that is optimum in the minimum 
mean-square error sense, coupled with the Campbell 
smoothing method (Campbell 1973) to minimize the 
effects of the boundary discontinuities, a continuous 
approximation Dx~(t), DrF(t) was obtained with a con- 

tinuous time variable 0 ~< t ~< T. This approximation 
could easily be oversampled at a higher rate if desired. 

From there, it was easy to evaluate the cartesian 
velocities Vx~(t), Vy~(t), and the intrinsic curvilinear 
velocity was calculated according to 

V, = x/V2xr(t) + V~( t )  (3) 

The signals Dx~(t), Dr~(t) and V~(t) were oversam- 
pied at a double rate. This operation generally con- 
tributes to a better convergence of the iterative 
reconstruction process. 

For each trial, the curvilinear velocity V,(t) always 
grows from a null velocity (rest position) and returns to 
a null velocity. A segmentation was performed to find 
the temporal boundaries corresponding to the begin- 
ning and to the end of the pentip movement related to 
the production of the straight line. This operation was 
done to minimize the number of mathematical opera- 
tions involved in the reconstruction process. 

To reconstruct the velocity profile, we needed to 
extract several parameters from the curvilinear velocity 
curves. Searching of the parameters was carried out by 
minimizing a least-squares criterion. The least-squares 
method is normally dedicated to linear equations, but it 
is possible to extend this technique to nonlinear equa- 
tions (Arbenz and Wohlhauser 1980; Press et al. 1989). 
This is done by expanding the function in the neighbor- 
hood of a point that is an approximate solution. Thus, 
the computed values are not the parameters, but a 
correction of the approximate solution. After several 
iterations, it is possible to converge to the parameter 
solution that minimizes least-squares errors. To do so, 
the Levenberg-Marquardt method was used. This tech- 
nique has become a standard for nonlinear least- 
squares routines (Press et al. 1989). It is a robust 
method for parameter extraction with minimization of  
the sum-of-squares errors. It is a compromise between 
the Gauss-Newton method and the steepest descent 
method. 

After parameter extraction, we can easily recon- 
struct velocity profiles with the different equations 
for each model described in the appendix. Figure 1 
contains four examples of such reconstructed velocity 
profiles. 

4. Results and discussion 

The results of our analysis-by-synthesis experiments are 
summarized in the last three columns of Table 1. For 
each model, the mean square error (MSE in cm2/s2), 
with its standard deviation, and the percentage of lines 
for which the parameter extraction process has con- 
verged are indicated. The results, ranked in ascending 
order, are also depicted in Fig. 2. 

From Fig. 2 or Table 1, we can see that the sup- 
port-bounded lognormal model gives the best perfor- 
mance in the reconstruction of the 1052 lines, followed 
by the beta and the asymmetric gaussian models. In- 
creasing the number of parameters is not necessarily the 
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Fig. 1. Examples of  reconstructed velocity 
profiles. See Table 1 for full names of  models 

Fig. 2. Mean square error of reconstruction of all 
studied models. See Table 1 for full names of  
models 

way to improve the performances of  a model (e.g., the 
MacDonald  model has an MSE = 12.70 cm2/s 2 with 18 
parameters,  whereas the support-bounded lognormal 
model gives MSE = 0.16 cm2/s 2 with only 5 parameters, 
which means that the reconstruction done by using the 

support-bounded lognormal model is performed with a 
mean error of  only +_0.4 cm/s over all the velocity 
profile). Moreover, the complexity of  the parameter  
extraction grows very fast with the number  of  parame- 
ters. Attention should also be paid to the continuity of  



the velocity profile produced by each model. In fact, 
real curvilinear velocities are continuous, and a model 
producing discontinuous profiles is not acceptable even 
if its performances are high (e.g., the discontinuous 
version of the sigmoidal model, the beta model and the 
Mermelstein and Eden model). 

From the MSE values given in Table 1, it is not 
easy to confirm the superiority of one model over 
another. A statistical analysis is necessary to study the 
differences between the mean errors calculated over the 
1052 lines for the 23 models. For this reason, an 
unbalanced analysis of variance (ANOVA) was per- 
formed on the MSE values of the 23 models, and the 
test of mean equality was performed by using four 
different criteria: Wilk's criterion, Pillai's trace, the 
Hotelling-Lawley trace and Roy's maximum root crite- 
rion. According to these studies, two means were said 
to be different if Prob > F was less than 5%. 

Table 2 shows the results of the ANOVA test. As 
can be seen from this analysis, the global results shown 
in Table 1 are significant for a majority of models (the 
boxes in Table 2 show the statistically different succes- 
sive pairs of models; only seven are not different. 

Table 1, clearly shows the great improvement in 
performance resulting from the use of an asymmetric 

Table 2. Resu l t s  o f  A N O V A  

M o d e l s  c o m p a r e d  F fo r  M S E  P r o b  > F 

L G N B  vs G O S A  F ( 1 , 2 1 0 2 )  = 354.63 

G O S A  vs B E T  F ( 1 , 2 0 7 9 )  = 1.56 0 .2113 

B E T  vs L G N  F ( 1 , 2 0 7 9 )  = 21 .12  

L G N  vs S I G D  F ( 1 , 2 0 9 2 )  = 24 .14  

S I G D  vs M E  F ( 1 , 2 0 7 0 )  = 4 .82 

M E  vs G U T G  F ( 1 , 2 0 8 0 )  = 1.92 0 .1664 

G U T G  vs M S  F ( 1 , 2 0 7 9 )  = 13.74 

M S  vs G O S S  F ( 1 , 2 0 7 9 )  = 0 .32 0 .5688 

G O S S  vs M J  F ( 1 , 2 1 0 2 )  = 9.32 

M J  vs M M M A  F ( 1 , 2 0 8 8 )  = 0.10 0 .7476  

M M M A  vs M A R  F ( 1 , 1 9 9 8 )  = 29.46 

M A R  vs S I C G  F(1 ,2003)  = 4 1 . 8 8  

S I C G  vs M O R  F ( 1 , 2 0 9 3 )  = 20 .46  

M O R  vs G A M  F ( 1 , 2 0 9 6 )  = 31.19 

G A M  vs E H  F ( 1 , 2 0 5 0 )  = 49 .47  [-O.-.-.-.-.-.-.-.-~ 

E H  vs M M M S  F ( ! , 2 0 3 9 )  = 0.11 0 .7407  

M M M S  vs G U T  F ( 1 , 2 0 8 5 )  = 0 .00 0 .9522  

G U T  vs M C D  F ( 1 , 2 0 8 0 )  = 298 .64  

M C D  vs D D  F ( 1 , 2 0 7 4 )  = 2.70 0 .1003 

D D  vs P L A  F(1 ,2090)  = 5.43 

P L A v s  Y A S  F ( 1 , 2 0 7 1 )  = 937.55  

Y A S  vs W B L  F ( 1 , 2 0 7 7 )  = 446.12  

See T a b l e  i fo r  full n a m e s  o f  m o d e l s  
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version of a specific model (the Plamondon gaussian- 
model GOSA vs GOSS, the Morasso/Mussa-Ivaldi/ 
Maarse model MMMA vs MMMS, the Mermelstein 
and Eden model ME vs the Eden and Hollerbach 
model EH). This is in accordance with other findings 
concerning the universality of the asymmetric bell- 
shaped velocity profile (Abend et al. 1982; Atkenson 
and Hollerbach 1985; Morasso 1981; Soechting and 
Lacquaniti 1981; Nagasaki 1989). Moreover, Beggs and 
Howarth (1972) have shown that the velocity profile is 
more symmetric at high speed than at low speed. This 
asymmetry can even be inverted at very high speed, as 
reported by Zelaznik et al. (1986). So, an important 
characteristic of a model should be its facility in provid- 
ing changes and inversion of the asymmetry. It can be 
seen from the model equations given in the Appendix 
that for the support-bounded lognormal model, for 
example, changing the value of its parameter P4 will 
directly affect the asymmetry of the velocity profile 
while a change in the sign of/ '4 will invert the asymme- 
try (Plamondon 1993). This feature is difficult to obtain 
for some of the models (the Gutman and Gottlieb 
model and the minimum snap model, for example) and 
is not available for others (the minimum jerk model, 
the Plamondon gaussian model and the Eden and 
Hollerbach models, for instance). 

Finally, it is observed that the performance of the 
models is improved in the case of a support-bounded 
version. For example, in the lognormal model 
MSE = 0.66 cm2/s 2 and is the support-bounded version 
MSE = 0.16 cm2/s 2. 

5 Conclusion 

In this study, we have used an experimental benchmark 
to compare different analytical models that have been 
employed to describe the asymmetric bell-shaped veloc- 
ity profile universally found in the production of rapid- 
aimed movements. Using the same experimental 
approach, all the models have been compared in terms 
of their performance in reconstructing experimental 
data from an optimal set of characteristic parameters 
extracted from these data. 

It is clear that the best performances are obtained 
from a support-bounded lognormal model. The two 
next best models produce 300% more errors and suffer 
major discontinuity problems. The fourth best model, 
an unbounded lognormal, does not encompass disconti- 
nuities, but its performances are four times worse than 
those of the support-bounded version. 

In other words, all other models tested go far 
beyond the support-bounded lognormal, and most of 
them result in the production of unrealistic velocity 
profiles, although many of them have been claimed to 
produce human-like movements. The poor perfor- 
mances of many models seriously question the assump- 
tions made and the conclusions drawn during their 
development. Their inability to reproduce the data re- 
veals that most of them are inadequate for theoretical 
purposes and thus should be rejected. 
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On the other hand, this study strongly suggests that 
lognormal models should be further investigated in 
order to throw light on the neuromuscular processes 
that are hidden behind their analytical description. 
Apart from being well supported theoretically (Plamon- 
don 1991, 1992b), the lognormal approach supports 
different asymmetry profiles and is among the models 
that necessitates a minimal number of parameters for 
reconstruction. Moreover, it can be used to derive basic 
laws and trade-offs that occur in human movements 
(Plamondon 1992b). 

Finally, from a practical perspective, the differences 
in performance among the various models show the 

importance of running exhaustive comparisons with 
real data, under a specific reconstruction criterion, be- 
fore adopting or proposing a new model. Any new 
model will have to outperform the support-bounded 
lognormal model to be considered as a potential candi- 
date for analyzing and describing rapid human move- 
ments, otherwise it should be rejected. 
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Appendix: equations of eurvilinear velocity profile for all models 

The Denier van der Gon and Doojies models 

fx / [p l (1  _ e-p2(,- p3))]2 + [e4( 1 _ e-e~(t- *'6))]2; 

Va = 10~[P7 e - P s " -  P9))] 2 + [e,o e-P' l ( t -  e,2))]2; 

To<~t<~T,,  

T,~ <<. t <<. T~ 

elsewhere 

The MacDonald  model 

I x/[P, ( 1 - e -  e2 (, - e3))] 2 + [P4 ( 1 - e - *'5 (t - P6 ))] 2; T O ~ t ~ T 2 

~x/[* '7  e -~8(' -,'19~ + (e9 t - P,~)] 2 + [P~o e - " l , ( ' -  ",9~ + (~'l~ t - *'19)] ~; T: ~< t ~ T~ 
V~ / 

L~O PI3e-Pl4(tPlS)]2~ elsewhereT3~t<~Tl 
In our simulations, we have taken T2 = To + (7"1- T0)/6 and T3 = T 1 -  ( T l -  T0)/6. These values were chosen to 
obtain a large constant zone in the acceleration pulse as reported in the MacDonald experiments (MacDonald 1964). 

The Yashura model 

f ~ / [ P l  e -P2( t -  P9) + P3 e-P4( t -  P9)] 2 AI-[e5 e-e6(t- P9) -]- P7 e-es(t- P9)]2; 
v~ 16 

To <~ t <~ T~ 

elsewhere 

The Maarse model 

[x /[P~( t  - P2)(t - P3)] 2 + [P4 ( / -  es)(t - P6)]2; 
/ 

Va = ~%//[P7(/  - -  P8 ) (  t - -  P9)]  2 -~-[P~0(t - P l ~ ) ( t  - P I 2 ) ] z ;  

[o 

To <~ t <<. Tm 

Tm<~t <~T1 
elsewhere 

The Eden and Hollerbach models 

fOW/{P1 s in[P2( t -  P3)] + P4}2+ {P5 s in[P6(t -  P7)]}2; 
v~ 

M-- 

The Mermelstein and Eden model 

To <~ t ~ T 1 

elsewhere 

(x /{Pl  sin[P2(t - P3)] + P4} 2 + {Ps sin[P6(t -- P7)]}2; 

V~ = lox//{p8 sin[P9(t P10)] + PH }2 + {P,2 sin[P~3(t -- el4)]}e; 
/ 

The Plamondon and Lamarche model 

To <~ t <<. Tm 

Tm <~ t <~ T 1 
elsewhere 

[P1 (1 - e -e:(*- p3)); 

Vet : l e 4 e - P s ( t - P 6 ) ;  
To <<. t <<. T,~ 

T m ~ t < ~ T 1  

elsewhere 



The Morasso and Mussa-Ivaldi model 

= y P l ( t - -  P 2 ) ( t -  P3), To ~<t ~< T l v~ 
to elsewhere 

The Flash and Hogan minimum jerk model 

V~ = {ol ( t  - p2)2(t - P3)2; elsewhereT~ 

The Edelman and Flash minimum snap model 

Va = { ~  l(t - Pz)3(t - P3)3; elsewhereT~ 

The symmetric version of the Morasso, Mussa-Ivaldi 
and Maarse model 

V~ = { PI {1-c~ - P3)]}; elsewhereT~ 

The asymmetric version of the Morasso, Mussa-lvaldi 
and Maarse model 

( e l  {1 - cos[P2(t  - -  P 3 ) ]  };  

V. = , ~ P . { 1 - - c o s [ P s ( t  P6)]}; 

(o 

To <<, t <<. Tm 
Tm <<. t <~ T~ 
elsewhere 

The asymmetric version of the Plamondon gaussian 
model 

{ i  ~ e-((t- P2)/P3)2; To <. t <. T,. 
Vo- = 4 e - ( ( ' -  es~/e6)2; T m <~ t <. T 1 

elsewhere 

The symmetric version of the Plamondon gaussian model 

;Pl( t  - P2)  2 e - ( ( t - P 2 ) a / P 3 ) ;  To <~ t <. 7"1 
v. 

elsewhere 

The original version of the Gutman and Gottlieb model 

V~ = { Pl(t - P2)2 e-(('-e2)3/e3~; elsewhereT~ 

The generalized version of the Gutman and Gottlieb 
model 

Va= { Pl( t -P2)(e3-1)  e-((t-ez)e3/e4); elsewhereT~ 

The Plamondon lognormal model 

V~ = - - P 2 )  e-e3~ P 2 ) - - P 4 1 2 ;  To ~< t ~< TL 

elsewhere 

The Plamondon support-bounded lognormal model 

f P1 e-P4[ln((t- P 2 ) / ( P 3  - -  t ) )  - -  PSI  2 .  

V, = (t - -  Pz)(P3 - t) 
To <,N t <<, T1 

0 elsewhere 

The continuous version of the sigmoidal model 

{~ t -- P2 
V . =  ~ [1 + P 3 ( t : P 2 ) e . ]  2; T~ 

elsewhere 

The discontinuous version of the sigmoidal model 

t -P~  
P l  ~ 

[1 + P3(t - P2)Vq 2' 

V~ = P5 t - -  P 6  . .  

[1 + PT(t - / ' 6 ) ' q  2' 
0 

The beta model 

V ={P, ( t -P2)P3(P4- t )es ;  

The gamma model 

g ={01(t--e2)e3e-P4(t-P2); 

The Weibull model 

V ={P(t--P2)'3-1e-(t-P2~P3; 

To<.t<.Tm 

Tm <<. t <~ T 1 

elsewhere 

To ~< t ~< T1 

elsewhere 

T O ~< t ~< T I 

elsewhere 

To ~< t ~< T1 

elsewhere 
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