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Montréal QC H3C 3A7, Canada

Received: 22 July 1996 / Accepted in revised form: 15 September 1997

Abstract. This paper presents a handwriting generation
model that takes advantage of the asymptotic impulse re-
sponse of neuromuscular networks to produce and control
complex two-dimensional synergistic movements. A para-
metric definition of a ballistic stroke in the context of the
kinematic theory of rapid human movements is given. Two
types of parameters are used: command and system param-
eters. The first group provides a representation of the ac-
tion plan while the second takes into account the tempo-
ral properties of the neuromuscular systems executing that
plan. Handwriting is described as the time superimposition
of basic discontinuous strokes that results in a continuous
summation of delta-lognormal velocity vectors. The model
leads to trajectory reconstruction, both in the spatial and
in the kinematic domain. According to this new paradigm,
the angular velocity does not have to be controlled indepen-
dently and continuously; it naturally emerges from the vecto-
rial summation process. Several psychophysical phenomena
related to two-dimensional movements are explained and an-
alyzed in the context of the model: the speed/accuracy trade-
offs, spatial scaling, the isochrony principle, the two-thirds
power law, effector independence, etc. The overall approach
also shows how basic handwriting characteristics (dimen-
sion, slant, baseline, shape, etc.) are affected and controlled
using an action plan made up of virtual targets fed into a
neuromuscular synergy that is governed by a delta-lognormal
law.

1 Introduction

Handwriting stands among the most complex tasks per-
formed by literate human beings. It requires sensory-motor
control mechanisms involving a large spectrum of cerebral
activities, dealing with the emotions, rational thought and
communication. As such, the study of handwriting consti-
tutes a very broad field that allows researchers with various
backgrounds and interests to collaborate and interact at mul-
tiple levels with different but complementary objectives (see,
for example, van Galen et al. 1991; Wann et al. 1991; van
Galen and Stelmach 1993; Plamondon 1993a, 1994, 1995a;

Faure et al. 1994; Simner et al. 1996). In this paper, we
are interested in understanding handwriting generation at the
global neuromuscular level, focusing mainly on the devel-
opment of a stroke generation model that is general enough
to explain the origin of some basic psychophysical laws of
simple human movements and to show how human subjects
can take advantage of the knowledge that emerges from the
properties of this representation to control the sensory-motor
interactions involved in the generation of more complex tra-
jectories. The overall approach is based upon the hypothesis
that complex human movements are made up of, and can
be segmented into, basic and simple units. In other words,
due to the intrinsic properties of the neuromuscular system
involved in a rapid writing task, there is a class of simple
movements, hereafter called strokes, that are preferentially
produced by such a system, once it is well-trained. More
complex movements are thus generated by the vectorial ad-
dition of the various strokes belonging to such a class.

The concept of a ballistic or a fundamental unit of hu-
man movement is not new. It originated in the Lashley ex-
periments (Lashley 1917) and was adapted to the analysis
of handwriting in the 1960s (Eden 1962; Denier van der
Gon and Thuring 1965, etc.). Similarly, the idea of overlap-
ping instead of concatenating discontinuous strokes to study
handwriting was put forward by Morasso and Mussa Ivaldi
(1982) in the early 1980s. These concepts have been among
the cornerstones upon which numerous handwriting gener-
ation models have been built (see Plamondon and Maarse
1989, for a review of the models published prior to 1989;
Schomaker et al. 1989; Bullock et al. 1993; Morasso and
Sanguinetti 1993; Morasso et al. 1994; Stettiner and Chazan
1994; Singer and Tishby 1994).

Although these models have been developed for differ-
ent purposes with different practical or theoretical goals in
mind, the majority of their authors were aiming at generat-
ing human-like handwriting. When a systematic comparison
of these models is performed using real handwritten data, it
is clear that some models perform better than others (Plam-
ondon et al. 1993; Alimi and Plamondon 1993, 1994). This
does not mean, however, that a model cannot be useful for
a specific application, if its output is not as realistic as that
of another model. The decision to use a model always de-
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pends on the goal of the research project. For example, the
design requirements are very different if one is developing
an interactive system to help children learn handwriting or if
one is interested in segmenting letters for pattern recognition
purposes.

In this paper, our objective is to use the kinematic theory
of rapid human movements (Plamondon 1993c,d, 1995b,c,
1996, 1997a) to analyze and understand handwriting gener-
ation and control. The kinematic theory describes the global
properties of the neuromuscular networks involved in a syn-
ergistic action. In a single framework, it explains the origin
of the basic kinematic relationships and psychophysical laws
that have been consistently reported in studies dealing with
rapid human movements (Plamondon and Alimi 1996; Pla-
mondon 1997b). This paper shows how the same approach
can be used and generalized to study and to understand the
basic properties of pentip trajectories as produced by hu-
man subjects performing a writing task (Plamondon 1995d;
Plamondon and Guerfali 1996b).

This article deals with three major themes. First, in
Sect. 2, we summarize the neuromuscular model that emerges
from the kinematic theory and use it to describe the basic
properties of a single stroke. Then, in Sect. 3, the gener-
ation of handwriting is studied in the context of a vecto-
rial delta-lognormal model (Plamondon 1995d). Multi-stroke
movements like letter and word production are investigated
(Guerfali and Plamondon 1995a, b; Guerfali 1996). Theoret-
ical and practical considerations concerning the quantitative
use of this new model to analyze and synthesize handwriting
are also examined. Finally, in Sects. 4 and 5, some basic psy-
chophysical properties often reported in handwriting studies
are predicted using computer simulations. In addition, the
global perspective provided by this new approach is com-
pared with those of other models previously published.

2 Stroke generation model

Figure 1a schematizes the global features of the stroke gen-
eration model that results from the kinematic theory (Pla-
mondon 1995d). According to this scheme, a stroke is pro-
duced by the synergistic control of the pentip velocity~ν(t).
This is achieved by synchronously activating two global neu-
romuscular systems, one agonist and the other antagonist,
that control the end-effector movement around a generalized
joint. Each system has an impulse response, asymptotically
described by a lognormal functionΛ(t; t0, µ, σ2) (Plamon-
don 1991, 1993b, 1995b,c). These two systems constitute
a neuromuscular synergy that produces, from a given ini-
tial postureP0, a stroke along a circular path of curvature
C0 around the generalized joint, in a given initial direction
θ0. To execute this basic movement, two input commands
~D1(P0,θ0,C0)U0(t− t0) and ~D2(P0,θ0,C0)U0(t− t0) are fed simul-
taneously into the agonist and antagonist systems, at a given
time t0. Each of these two systems reacts to its specific input
with a lognormal impulse response in a logtime delayµ1 or

µ2, and with a logresponse time ofσ1 or σ2 respectively
(Plamondon 1993c, 1995d).1

In this context, a stroke executed from an arbitrary start-
ing positionP0 is characterized by nine parameters. At the
action plan level,C0 and θ0 reflect the global geometric
properties of the set of muscles and joints recruited to ex-
ecute the movement, whereas the parametersD1, D2 and
t0 provide a synthetic description of the input commands.
The parametersµ1, µ2, σ1 and σ2 describe the global tim-
ing properties of the neuromuscular networks involved in
generating the movement. In other words, the different pa-
rameters take a single specific value for a given stroke, but,
in practice, these parameters can be considered as random
variables with specific distributions. Analyzing a set of simi-
lar strokes should highlight the statistical properties of these
distributions.

The key feature of a single stroke is that the magnitude
of its velocity |~ν(t)|, often referred to as curvilinear velocity,
along the circular path is described by (Plamondon 1993c,
1995b):

|~ν(t)| =
∣∣∣ ~D1(P0,θ0,C0)Λ(t; t0, µ1, σ

2
1)

− ~D2(P0,θ0,C0)Λ(t; t0, µ2, σ
2
2)
∣∣∣ (1)

where

Λ(t; t0, µjσ
2
j )

=
1

σj

√
2π(t − t0)

exp

(
−[ln(t − t0) − µj ]2

2σ2
j

)
(2)

with t > t0.
This latter expression has been shown to be the best

descriptor of individual stroke velocity profiles out of 26
different models tested over the same database (Plamondon
et al. 1993; Alimi and Plamondon 1993, 1994). It also in-
corporates in its formulation all the global characteristics
of rapid movements, from basic kinematic and kinetic rela-
tionships to speed/accuracy trade-offs (Plamondon 1993c,d,
1995b,c, 1996, 1997a; Plamondon and Alimi 1997; Plamon-
don 1997b).

The direction of the stroke velocity (∠(~ν(t)) with respect
to any arbitrary reference can be described as a function of
time by:

∠~ν(t) = θ(t) = θ0 + C0

∫ t

t0

|~ν(τ )|dτ (3)

and its first derivative as a function of time (often referred
to as the angular velocity (Plamondon 1987, 1989a, 1992)
gives

νθ(t) =
dθ(t)
dt

= C0|~ν(t)| (4)

This latter expression (4) shows that, for a single cir-
cular stroke, the amplitude of the angular velocity also has
an ‘asymmetric bell-shaped velocity profile’ described by a
delta-lognormal law. This is consistent with the data reported

1 The parametersµ and σ are temporal parameters that represent the
global time delay and the response time of a neuromuscular network on
a logarithmic time scale. We use the terms logtime delay and logresponse
time to point out this scaling effect (Plamondon 1993c, 1995b, 1997b).
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Fig. 1. a Kinematic description of a synergy.b Single stroke:continuous
line, original data;squares, model predictions.c Signal velocity profile
(cm/s):continuous line, original data;squares, model predictions

in various studies dealing with specific rotation movement
along a single joint (see, for example, Morasso 1981; Abend
et al. 1982).

Figure 1b shows a typical large stroke and Fig. 1c the
magnitude of its velocity vector. The velocity signal pre-
sented in Fig. 1c was plotted using a bipolar or signed rep-
resentation to highlight the change of direction associated
with the small oscillations occurring at the end of the move-
ment. On each graph, the predictions of the kinematic theory
are reported using squares superimposed on the continuous
lines that extrapolate the original digitizer data, sampled at
100 Hz. As can be seen, the model in Fig. 1a is able to re-
construct a stroke, both in the image and in the kinematic
domain. Similar results have been reported over different
databases for more than 3000 strokes in all (Alimi and Pla-
mondon 1993; Alimi 1995).

Another important feature of the kinematic theory is
the analytical equation predicting the duration of a single
stroke with respect to its relative spatial accuracy (Plamon-
don 1993d, 1995c). In short, the theory demonstrates that,
for a specific group of neuromuscular networks recruited for
executing a specific stroke, it is possible for a human subject
to anticipate the duration of that stroke with respect to the

relative spatial precision of the target that he or she is aiming
at. In its simplest form,2 the kinematic theory predicts that

MT = K

(
D

∆D

)α

(5)

whereMT is stroke duration,D is stroke amplitude, with
D = | ~D1(P0,θ0,C0) − ~D2(P0,θ0,C0) |, ∆D is absolute error of the

stroke amplitude, andK andα are constants depending on
µj , σj .

As will be seen below, this prediction is of major im-
portance when it comes to understanding the generation of
multiple-stroke movements. This speed/accuracy trade-off
shown in (5) provides a framework that can be used as a pos-
sible explanation for the capacity of human subjects to an-
ticipate and superimpose strokes to generate fluent and more
complex trajectories. Indeed, the kinematic theory leads to
the assumption that once a stroke has been initiated, that is,
once~D1(P0,θ0,C0) (U0(t−t0) and ~D2(P0,θ0,C0) U0(t−t0) start si-
multaneously activating the proper neuromuscular systems,
a well-trained subject can know in advance that the target,
a stroke of amplitudeD, will be executed with an absolute
error ±∆D, within a movement timeMT . The next stroke
can thus be initiated before the completion of the current
one, as though this latter stroke had been completed and its
target had been reached (Plamondon 1995d).

3 Handwriting generation:
The vectorial delta-lognormal model

From this perspective, the production of fluent handwriting
can be seen as the vectorial superimposition in time of dif-
ferent strokes. The image of a trajectory simply results from
this vectorial summation process. In terms of differential
geometry, a continuous handwritten trace is considered as a
plane curve, described by its curvature along the curvilinear
axis ξ:

C(ξ) =
dθ(ξ)
dξ

(6)

where θ(ξ) represents the angular direction along the arc
length.

According to the vectorial delta-lognormal model, a trace
is memorized as a symbolic action plan representing a se-
quence of virtual targets to be linked with strokes in a two-
dimensional (2D) space to produce a letter or word. Starting
from that action plan, a movement-sequencing mechanism
generates the proper series of input commands to the system
depicted in Fig. 1a (Plamondon and Privitera 1995; Privit-
era and Plamondon 1995). The resulting velocity~ν(t) of the
pentip, for a sequence of strokes linkingn virtual targets,
is thus obtained by summing the vectors representing each
individual stroke velocity:

~ν(t) =
n∑

i=1

~νi(t − t0i) (7)

where each~νi(t−t0i) is described by (1) and (3), fort > t0i.

2 A more complex formulation, in terms of a quadratic law, describes
the general case (Plamondon 1993d, 1995c).
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The trajectory is planned from a given positionP0 with-
out any reference to a specific axis system and the action
plan is invariant to rotation. The global orientation of the
handwritten trace is embedded in the sequence ofθ0i values.
Depending on these geometric constraints, the neuromuscu-
lar systems recruited for each stroke will respond more or
less rapidly to the input commands, as reflected by the cor-
responding values of the temporal parameters (µj , σj) of the
systems.

If the vectorial summation ofn strokes is analyzed and
studied in a specific cartesian reference system (as defined,
for example, by a digitizer), the instantaneous magnitude and
direction of the velocity~ν(t) can be described by:

|~ν(t)| =



[

n∑
i=1

νxi(t − t0i)

]2

+

[
n∑

i=1

νyi(t − t0i)

]2



1/2

(8)

and

θ(t) = arctg

{∑n
i=1 νyi(t − t0i)∑n
i=1 νxi(t − t0i)

}
(9)

where

νxi(t − t0i) = νi(t − t0i) cos(θi(t − t0i)) (10)

νyi(t − t0i) = νi(t − t0i) sin(θi(t − t0i)) (11)

andθi(t − t0i) is defined by (3).
For the simple case where only two strokes are activated

at timest01 and t02 respectively, (7) and (8) reduce to

|~ν(t)|=
√

ν2
1(t−t01)−ν2

2(t−t02)+2ν1(t−t01)ν2(t−t02) cos(∆θ(t)) (12)

where

∆θ(t) = θ1(t − t01) − θ2(t − t02) (13)

and

∠~ν(t) =θ(t) = arctg
{

ν1(t−t01) sin(θ1(t−t01))+ν2(t−t02) sin(θ2(t−t02))
ν1(t−t01) cos(θ1(t−t01))+ν2(t−t02) cos(θ2(t−t02))

}
(14)

= arctg
(

f (t)
g(t)

)
(15)

As can be seen, even in this simple case, the angular
velocity νθ(t), as obtained from the time derivative ofθ(t),
is a rather complex analytical formula linking the specific
cartesian components of each individual stroke velocity:

νθ(t) =
df (t)
dt g(t) − f (t)dg(t)

dt

f2(t) + g2(t)
(16)

where

df (t)
dt

=
dν1(t − t01)

dt
sin(θ1(t − t01))

+C01ν
2
1(t − t01) cos(θ1(t − t01))

+
dν2(t − t02)

dt
sin(θ2(t − t02))

+C02ν
2
2(t − t02) cos(θ2(t − t02)) (17)

dg(t)
dt

=
dν1(t − t01)

dt
cos(θ1(t − t01))

−C01ν
2
1(t − t01) sin(θ1(t − t01))

+
dν2(t − t02)

dt
cos(θ2(t − t02))

−C02ν
2
2(t − t02) sin(θ2(t − t02)) (18)

Using (12), (16) and (6) for each stroke, the complete
kinematics of a 2D trajectory can be recovered, as can the
pentip position with respect to any arbitrary postural refer-
enceP0. Figure 2 shows how the French word ‘elle’ (‘she’
in English), as generated by a human subject, can be re-
constructed using the vectorial delta-lognormal model. Here
again, squares represent model predictions, and the continu-
ous lines the interpolation of real data, sampled at 100 Hz. As
can be seen, the vectorial summation of time-superimposed
strokes provides a realistic description of both the visual
and the kinematic aspects of a word. In this example, the
movement starts at rest (|~ν(t)| = 0) and the complex pattern
of the curvilinear velocity can be accounted for by adding
delta-lognormal velocity patterns (12). The angular veloc-
ity as predicted by (16) shows a similar oscillatory pattern,
with a phase shift of about 180◦ with respect to|~ν(t)|. This
phase shift between angular and curvilinear velocity is im-
plicit in the model, and is depicted in Figs. 3 and 4 as well.
It simply emerges from the vectorial superimposition of dis-
continuous strokes. This phenomenon has been reported for
more than a century (Binet and Courtier 1893; Jack 1895)
and been studied by numerous groups. Moreover, contrary
to what has been assumed in the preliminary version of our
model (Plamondon 1987, 1989a, 1991, 1992), it is clear that
continuous control of the angular velocity is not necessary
to produce fluent handwriting (Plamondon 1995d; Guerfali
1996).

There are several ways to perform the analysis-by-syn-
thesis of a given handwritten trace (Plamondon and Guerfali
1996b; Ḿenier et al. 1997; Guerfali and Plamondon 1997).
In this paper, we have used the following algorithm (Guerfali
1996):

– compute the module and the direction of the curvilin-
ear velocity from theX(t), Y (t) coordinates of a word
written on a digitizer,

– using the pen-paper contact information available from
the digitizer, perform a first-level segmentation of the
word into components, defined as the pentip traces pro-
duced during a continuous pen-down signal,

– for each component, extract the partially hidden strokes
by optimizing the matching of the curvilinear velocity,
with a sum of delta-lognormal equations delayed in time,
as well as matching the angular velocity curve that results
from this vectorial addition of strokes,

– save the nine parameters that best represent each stroke.

Each handwritten component is thus made up of a set
of strokesthat are superimposed in time to produce a flu-
ent trace. According to the model, these strokes constitute
the basic units of human writing movements and serve as
the coding elements in the motor planning of complex tra-
jectories. Each stroke is characterized by a velocity vector
~ν(t) whose magnitude obeys the delta-lognormal law (1). A
stroke is thus an arc of a circle characterized by nine param-
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Fig. 2. aHandwriting specimen (French word ‘elle’):continuous line, orig-
inal data;squares, model predictions.b Curvilinear velocity (cm/s):con-
tinuous line, original data;squares, model predictions.c Angular velocity
(rad/s):continuous line, original data;squares, model predictions

eters:C0, θ0, t0, D1, D2, µ1, µ2, σ1, σ2. These strokes are
not directly apparent in the image of a handwritten word,
as already suggested by Morasso et al. (1983). Strokes are
partially hidden in the trajectory as a consequence of the
superimposition process. To recover them, the pentip veloc-
ity has to be analyzed using an algorithm similar to the one
described above.

Figure 3 clearly illustrates the concept of partially hidden
strokes. The word ‘she’ as written by a subject on a digitizer
(Fig. 3a) has been analyzed with the previous algorithm. Fig-
ures 3c and d show the original and reconstructed curvilinear
and angular velocity signals respectively. What is of inter-
est here is the representation of a possible action plan that
could have been used by the subject to produce this word.
The spatial and timing properties of the stroke sequence are
illustrated in Fig. 3b and e respectively. To generate a con-
tinuous trace, 11 strokes have been used here. The subject
started at the top of the letter ‘s’, with the first stroke aimed
at a first virtual target. Once this stroke is initiated, the sub-
ject assumes that this target distance will be covered with

a certain degree of precision and after a certain movement
time, as predicted by (5). The subject can thus anticipate the
end of the first stroke and initiate the second stroke to aim
at a second virtual target, and so on.

In this context, Fig. 3b can be seen as describing the spa-
tial characteristics (D1, D2, C0i, θ0i) of the action plan used
by the subject, and Fig. 3e as describing the timing charac-
teristic (t0i) of the same plan, once activated. Moreover, the
individual description of each stroke, in terms ofµji and
σji, allows a detailed analysis of the temporal properties
of the neuromuscular agonist and antagonist systems used
to execute that action plan. For example, for right-handers,
strokes executed at 45◦ and 270◦ with respect to a baseline
defined by the wrist oscillation plane are generally faster
than strokes produced in other directions (Plamondon and
Clément 1991). It is expected that these strokes will proba-
bly be characterized by smallerµj andσj values.

4 Psychophysical properties

One interesting feature of the handwriting model described
in this study is that it is based on a kinematic theory
of rapid human movements (Plamondon 1993c,d, 1995b,c,
1996, 1997a) that is consistent with the basic psychophysi-
cal observations that have been reported in the field. These
observations follow from the delta-lognormal law which de-
scribes the magnitude of the velocity of each stroke. This
results in an analytical description of a single stroke that can
be used for the automatic analysis of complex trajectories.
It is also useful for demonstrating how other well-known
properties of handwriting simply emerge from the vectorial
stroke summation.

4.1 Temporal and spatial control and invariance

According to the kinematic theory, the rules of stroke super-
imposition are governed by the basic speed/accuracy trade-
offs that result from the perceptivo-motor conditions (Plam-
ondon 1993d, 1995c) that must be fulfilled to produce and
control each individual stroke, as previously mentioned in
Sect. 2, equation (5). In this perspective, the vectorial delta-
lognormal model highlights the interactive role of shape, size
and time in handwriting control. Many papers have been
published on spatial or temporal invariance across changes
in writing conditions (Freeman 1914; Denier van der Gon
and Thuring 1965; Yasuhara 1975; Wing 1980; Hollerbach
1981; Stelmach and Teulings 1983; Greer and Green 1983;
Thomassen and Teulings 1985; Wright 1990). Typical stud-
ies on these topics deal with specific measurements of spatio-
temporal variables for words with a similar shape but of dif-
ferent size, words of similar size but a different shape, as
well as words of similar shape written at different speeds.
Some experimental conditions are also extended to study the
effect of a change of effectors and of visual feedback (Bern-
stein 1967; Merton 1972; Wright 1990). The term ‘word’ is
used here in a very broad sense and, depending on the study,
refers to any piece of handwriting: a few strokes, a single
letter, some alternating patterns, a sequence of letters or a
few real and meaningful words or sentences.
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Fig. 3. a Original handwriting specimen (word ‘she’).b Ac-
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c Curvilinear velocity (cm/s):continuous line, original data;
squares, model predictions.d Angular velocity (rad/s):con-
tinuous line, original data;squares, model predictions.e Time
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So far, some studies have supported the concept of mo-
tor equivalence, that is, the ability of a subject to write a
word with a different group of end-effectors while roughly
preserving its shape. Other studies show clearly that, for the
same set of effectors, a subject is able to write the same word
in different sizes while preserving its shape almost perfectly.
With regard to time control, no consensus has been reached
concerning what has been referred to as temporal invariance,
that is, invariance of writing time across changes in writing
size (Wright 1993).

The vectorial delta-lognormal model presented in this
paper provides some clues to explain and interpret the var-
ious observations reported in these experiments. First, one
must take into account a technical problem related to the
measurements that are performed on the data used in these

studies. According to the theory presented in this paper and
in line with other similar studies (Morasso and Mussa Ivaldi
1982; Morasso et al. 1983; Morasso 1986), strokes are par-
tially hidden in the signal and their individual shapes and
timing properties are partially affected by the superimposi-
tion process. This basic phenomenon is generally neglected
in the studies mentioned above, and operational methods to
segment a handwritten trace are used. For example, a word
is segmented at the minimum of its velocity pattern (e.g.
Schomaker and Teulings 1991), at the minima of theY coor-
dinates (e.g. Mermelstein and Eden 1964) or at the points of
peak curvature (e.g. Morasso 1986). These methods consti-
tute a rapid and operational way to segment a trace, but they
do not allow the recovery of the individual strokes that have
been superimposed to generate the observed pattern. Mea-
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Fig. 4. a Sequence of two linear strokes
with no superimposition: angular discon-
tinuity, intermediate target reached.b Ef-
fect of a moderate stroke superimposition
on the trajectory, the curvilinear and the
angular velocities.c Effect of a significant
stroke superimposition on the trajectory,
the curvilinear and the angular velocities.
d Effect of an almost complete superim-
position of strokes on the trajectory, the
curvilinear and the angular velocities

suring the time elapsed between two, three or a few of these
operational segmentation marks, or evaluating the changes
in the shape of the corresponding trace, reflects more or less
what has happened at the stroke level, depending on the rel-
ative importance of the stroke superimposition process that
has occurred in the production of a specific trace.

Looking at the simple traces described in Fig. 4, for ex-
ample, it can be seen that, using the same pair of straight
strokes, a different curved pattern can be generated depend-
ing on the time occurrencet02 of the second stroke (Guerfali
1996). If the resulting trace is segmented into ‘operational
strokes’ using curvilinear velocity minima, different pairs of
these strokes will be analyzed in terms of duration, size or
shape, although the only effective change that occurred in
this simulated example was to the parametert02. A single
operational stroke might even be found when the superim-
position process is very significant (Fig. 4d). If the same
traces were analyzed in the representation space provided
by the vectorial delta-lognormal model, using the segmenta-
tion method described in the previous section, a single pair
of strokes would be theoretically extracted and analyzed in
any of these specific conditions. Generally speaking, apply-
ing the kinematic theory to study spatio-temporal phenom-
ena and comparing stroke timing, size and shape could pro-
vide better insight into the invariant properties of a trace
and would reflect more clearly the possible action plan and
strategies used by the subjects under different experimental
conditions.

In this context, one can easily understand, for exam-
ple, why some past studies have led to contradictory results
regarding temporal invariance (Wright 1993). If we recall
that each individual stroke is subject to a speed/accuracy
trade-off (5), due to the delta-lognormal law that governs its
velocity profile, then there is a relationship between stroke
duration and the relative spatial accuracy of the target to
be reached with that stroke (Plamondon 1993d, 1995c). The
factor and exponent in this relationship (5) are related to
the global timing properties of the agonist and antagonist
neuromuscular networks involved in the production of the

stroke. Temporal invariance requires at least the preserva-
tion of the relative spatial accuracy of the movement, at the
stroke level, as well as keeping the neuromuscular param-
eters almost constant from trial to trial. Depending on the
performance of the subjects with respect to these constraints,
the expected temporal invariance will be more or less ap-
parent.

We have shown in Figs. 2 and 3, for example, as well as
in Guerfali (1996), Leclerc (1996), Plamondon and Guerfali
(1996b), Plamondon et al. (1997) and Plamondon (1997b),
comparative and quantitative results demonstrating the ca-
pacity of the vectorial delta-lognormal model to reconstruct
real and complex data. The next step will be to use the vec-
torial delta-lognormal model to study large sets of real data
to analyze and characterize subject performance in specific
experiments (aimed at improving our understanding of the
motor control aspects of handwriting), although this is be-
yond the scope of this paper. However, as in Hollerbach
(1981), Morasso and Mussa-Ivaldi (1982), Edelman and
Flash (1987), Bullock et al. (1993) and Singer and Tishby
(1994), computer simulations can be used to highlight con-
trol strategies, supported by the vectorial delta-lognormal
model, that are consistent with well-known behavioral data.

Figure 5 illustrates a few strategies that can be used to
generate slightly different traces from the same action plan,
that is, the same set of virtual targets, with a slightly differ-
ent subset of strokes. Figure 5a shows a typical action plan
made up of a sequence of 10 discontinuous strokes linking
a set of 10 virtual targets. Figure 5b shows a typical contin-
uous output, as obtained by activating a neuromuscular syn-
ergy with a proper timing scheme (t0i, µ1i, µ2i, σ1i, σ2i). The
stroke superimposition process results in a continuous trace:
the word ‘axe’. The global writing time is given in the top
right-hand corner. The same word (Fig. 5c) can be written
in the same movement time but enlarged spatially by merely
increasing the values ofD1i andD2i of the action plan by
a specific ratio (100% in this example). For many years,
this phenomenon has been known as the isochrony princi-
ple and has been studied by many researchers (Binet and
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Fig. 5. a Action plan and virtual targets
for the word ‘axe’ (10 strokes).b Typical
output generated with the vectorial delta-
lognormal model (D1i/D2i = 5.0). c Ho-
mothetic transform: 100% increase as ob-
tained by increasingD1i andD2i by 100%).
d Effect of decreasing relative spatial preci-
sion (D1i/D2i = 2.0) and stroke activation
time t0i. e Baseline change as obtained by
increasing theθ0i by 0.5 rad.f Increasing
handwriting speed (by a factor of≈ 300%),
by decreasingµ1i, µ2i by ln (3) and t0i,
by 66%. g Effect of a simulated change
of effectors: decreasingµ1i, µ2i, σ1i, σ2i

by 20%.h Effect of a simulated change of
effectors: increasingµ1i, µ2i, σ1i, σ2i by
20%

Courtier 1893; Freeman 1914; Fitts 1954; Viviani and Mc-
Collum 1983; Viviani 1986; Viviani and Schneider 1991). In
this example, since the ratioD1i/D2i is kept constant, as are
the other system parameters, the same relative spatial preci-
sion is reached for each stroke and the total movement time
is constant. The movement time of the various operational
strokes, as estimated, for example, using minima of curvilin-
ear velocity, is also almost constant. This phenomenon was
reported by Denier van der Gon and Thuring in 1965. In a
similar fashion, in Fig. 5d,D1i and D2i are changed while
keeping the individual stroke length (D1i − D12) constant,
decreasing the ratioD1i/D2i and reducing thet0i. The indi-
vidual stroke duration is reduced and a loss in relative spatial

precision will be observed, and the shape (and eventually the
legibility) of the word will be affected.

A change in the baseline can be performed by modifying
the θ0i of the motor plan by a specific offset, as shown in
Fig. 5e. Figure 5f illustrates another way to change writing
speed using a mixed strategy. By reducing thet0i as well as
the µ1i, µ2i, a stiffer neuromuscular synergy that executes
the sequence of strokes faster can be simulated. Finally, us-
ing the same action plan as in Fig. 5b but executing it with
different neuromuscular synergies, one can mimic the effect
of a change of effectors. In Fig. 5g and h, theµ1i, µ2i, σ1i and
σ2i have been respectively decreased or increased by 20% as
compared with the values used in Fig. 5b. The effector inde-
pendence phenomenon as reported by Bernstein (1967) and
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Fig. 6. a Action plan and virtual targets for the word ‘une’ (11 strokes).
b Typical output generated with the vectorial delta-lognormal model.c Ef-
fect of a vertical increase in the virtual target positions.d Effect of a hor-
izontal increase in the virtual target positions.e Slant change as obtained
by a right translation of the top set of virtual targets.f Slant change as
obtained by a left translation of the top set of virtual targets

Merton (1972) is clearly apparent here. The word ‘axe’ is
still easy to read, although it appears slightly different from
the specimen depicted in Fig. 5b. A larger modification of
the timing properties of the agonist and antagonist systems
would eventually result in a loss of legibility.

The vectorial delta-lognormal model also supports other
well-known types of phenomena. Figure 6a shows another
action plan, and Fig. 6b a typical instance of this plan. Fig-
ures 6c and d show the effect of increasing, respectively, the
vertical and horizontal distances between the virtual targets
of the action plan. Figures 6e and f depict the capacity of
the model to change the writing slope by translating the top
set of virtual targets to the right or to the left with respect
to the bottom set of targets. In all these examples, the re-
sulting traces look quite realistic. However, these vertical or
horizontal scale changes are not as straightforward as the ho-
mothetic changes depicted in Fig. 5c. To simulate a change
in the vertical scale, for example, one has to change more pa-
rameters of the action plan (D1i, D2i, C0i, θ0i) as compared
with the simple changes ofD1i andD2i that were required to
realize a full homothetic scaling. This observation is consis-
tent with the fact that it is normally easier for human subjects
to produce a full homothetic scaling as compared with a ver-
tical or a horizontal change of scale or a change of slope. It
must also be remembered that the problem is probably even
more complex than the simple examples shown here, where
the neuromuscular timing parameters (µ1i, µ2i, σ1i, σ2i) have
been kept constant for simplicity.

As can be seen from these various simulated examples,
different types of realistic patterns can be generated by the
vectorial delta-lognormal model. In practice, a subject might

use and combine some of these strategies to produce flu-
ent and legible handwriting. Using the kinematic theory, the
individual strokes could be recovered and their specific pa-
rameters analyzed under different experimental conditions to
study these strategies.

4.2 Discontinuous angular control and the 2/3 power law

Another consequence of the vectorial delta-lognormal model
is that the control of the angular velocity is not an indepen-
dent process, as we have suggested in some of our previous
studies (Plamondon 1987, 1989a, 1991, 1992). The contin-
uous angular velocity signal emerges from the vectorial ad-
dition of discontinuous strokes. Depending on the timing
difference between two successive strokes, different trajec-
tories can be generated, with specific curvilinear and angular
velocity patterns (Fig. 4). According to this view, a subject
can generate different shapes with some characteristic ve-
locity profiles, mostly by controlling the time occurrencet02
of the second stroke. The angular velocity of the pentip sim-
ply emerges from the stroke superimposition process, each
individual stroke direction evolving according to the time
integral described by (3).

This superimposition process provides an explanation for
an important phenomenon that has been reported concerning
the relationship between angular velocity and the curvature
of a trajectory (or the curvilinear velocity and the radius of
curvature) (for a review see Bourdon and Plamondon 1993).
Indeed, Laquaniti et al. (1983, 1984) have observed that, for
a certain class of movements (mostly elliptical or piece-wise
elliptical trajectories), the curvatureC(t) and the angular
velocity (Vθ(t)) are linked by a 2/3 power law:

νθ(t) = kC2/3(t) (19)

or, if one analyzes the curvilinear velocity with respect to
the radius of curvature of the trajectory:

ν(t) = kR2/3(t) (20)

For more complex trajectories, this simple relationship
becomes less valid and a better equation must be used to fit
real data (Viviani and Schneider 1991; Viviani and Stucchi
1992):

ν(t) = k(t)

(
R(t)

1 − aR(t)

)b

or

νθ(t) = k(t)

(
1

C(t) + a

)b
(21)

If a = 0 andk(t) is a constant as a function of time, these
latter relationships are equivalent to (19) and (20), forb =
1/3.

This 2/3 power law can be interpreted in the context of
the vectorial delta-lognormal model (see Appendix). Indeed,
the superimposition of two circular strokes leads to a com-
plex trajectory that can be described by (12) and (16). A part
of this trajectory approximates an ellipse and in this specific
zone the 2/3 power relationship is valid. Outside the zone,
the relationship will not be verified, a point that has been re-
ported by a few studies (e.g. Thomassen and Teulings 1985;
Wann et al. 1988).
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Fig. 7. a Superimposition of two strokes:crosses,
portion of the simulated trajectory that respects the
2/3 power law.b Ratio Vθ/C2/3 as a function of
time continuous line. Vertical dotted lines, limits of
the duration when 2/3 power law applies.c Superim-
position of six strokes:crosses, portion of the simu-
lated trajectory that respects the 2/3 power law.d Ra-
tio Vθ/C2/3 as a function of timecontinuous line.
Vertical dotted lines, limits of the duration when the
2/3 power law applies.e Typical handwriting as pro-
duced by a human subject (word ‘une’), and portions
of the trajectory that best fits the 2/3 power law.
f Ratio Vθ/(C + A)2/3 as a criterion of timecon-
tinuous line. The portions of the trajectory that best
fit the 2/3 power law (word ‘une’) are within the
vertical dotted lines

Figure 7a shows a typical simulated trace, made up of
the vectorial superimposition of two circular delta-lognormal
strokes, and Fig. 7b depicts the ratioνθ(t)/C(t)2/3 as a func-
tion of time. As can be seen, there is a specific period (iden-
tified by truncated vertical lines in Fig. 7b) during the execu-
tion of the movement where this ratio is almost constant and
the corresponding portion of the trajectory (identified with
large crosses in Fig. 7a) is roughly elliptical. Figures 7c and
d illustrate how this phenomenon can become more apparent
by repeating the same pattern of strokes while superimpos-
ing them to create a sequence of loops. For a large part
of this latter trajectory, the 2/3 power law applies. By con-
trast, if one looks at the word ‘une’ as depicted in Fig. 7e,
the 2/3 power law is quite a rough approximation, for some
very specific portion of the trajectory. Even the more general
equation (21) is only valid for very specific short moments
(Fig. 7f). A more complex trajectory cannot be easily approx-
imated by portions of ellipses, and the relationship between
the curvilinear velocity and the radius of curvature is more
general:

ν(t) = f (R(t)) (22)

This latter equation can be rewritten in the form of (21),
which constitutes a good approximation for some specific
portions of the trajectory.

5 Discussion

The vectorial delta-lognormal model can be used to represent
and reconstruct handwriting both in the spatial and in the
velocity domain. The model allows for the recovery of each
individual stroke and its description with a specific set of
parameters. It is then possible to study how these strokes are
superimposed to produce a specific trace (Fig. 3). As such,
the model provides an original and new set of analytical tools
to analyze human movements (Plamondon 1997b), based on
the realistic stroke description resulting from the kinematic
theory of human movements (Plamondon 1993c,d, 1995b,c,
1996, 1997a).

Using analysis-by-synthesis methods to analyze neuro-
biological or neuropsychological data might provide new
support for the theory, as well as limiting its range of appli-
cation. From many points of view, the model is consistent
with behavioral data, but cleverly designed experiments that
exploit the model’s global perspective might provide new
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insights into our understanding of motor control. The global
approach, polarized around opposing agonist and antagonist
systems, is in accordance with the recent comments made by
Mackay (1997) and Sherwood (1997). The concept of plan-
ning movement in kinematic coordinates is also supported
by some experiments (e.g. Wolpert et al. 1995), as is the idea
that velocity might be the primary control variable in move-
ment control (Flanders and Herman 1992; Soechting et al.
1995; Houk and Gibson 1987). But how does this happen?
What is the role of the various motor cortex areas of the
cerebellum, the basal ganglia, and the different motor neu-
rons and muscle fibers? This has to be studied, and the use of
the delta-lognormal law will be of great help for this purpose
since it allows very good data fitting in three complementary
representation spaces: curvilinear and angular velocity, and
the static trajectory image.

A single stroke velocity profile, as described by a delta-
lognormal law, is intrinsically asymmetric as compared, for
example, with the symmetrical velocity profiles of the min-
imum snap (Edelman and Flash 1987) or minimum jerk
models (Flash and Hogan 1985), the models that use cubic
splines (Morasso and Mussa-Ivaldi 1982) or sinusoidal func-
tions (Eden 1962; Hollerbach 1981). Moreover, the delta-
lognormal velocity profiles are intrinsically continuous. Sev-
eral previous models were based on discontinuous velocity
profiles (Denier van der Gon et al. 1962; MacDonald 1964;
Mermelstein and Eden 1964; Dooijes 1983; Flash and Hogan
1985; Plamondon and Lamarche 1986; Edelman and Flash
1987; Plamondon 1989a,b; Leclerc et al. 1992, Wada and
Kawato 1995). Others use a continuous oscillatory pattern
as a basic movement and generates discontinuities in the re-
constructed signals (Eden 1962; Hollerbach 1980; Stettiner
and Chazan 1994; Singer and Tishby 1994), discontinuities
that are not apparent in the real signal.

Many models require advance definition of movement
duration as a command parameter (Denier van der Gon et al.
1962; MacDonald 1964; Yasuhara 1975; Dooijes 1983; Flash
and Hogan 1985; Plamondon and Lamarche 1986; Edelman
and Flash 1987; Plamondon 1989a,b; Leclerc et al. 1992;
Wada and Kawato 1995) and, as such, require a further hy-
pothesis to deal with speed/accuracy trade-offs (Plamondon
and Alimi 1997). With the kinematic theory, movement time
does not need to be preplanned since it emerges from the
delta-lognormal law that describes the stroke speed, predicts
any forms of these trade-offs and suggests how they can con-
stitute a key feature for the anticipation process that leads
to stroke superimposition (Plamondon 1997b). According to
this view, movement duration is not an explicit parameter
of the motor action plan but an implicit characteristic of
the trajectory. It emerges from the intrinsic properties of
the delta-lognormal law characterizing a neuromuscular syn-
ergy. Consequently, in the time domain, fluent handwriting
can be produced by voluntarily controlling the individual
stroke starting time. The only other model that deals with
the speed/accuracy trade-offs is the Bullock et al. (1993)
model, provided that a proper set of GO signals is used as
input and synchronized to control the three degrees of free-
dom required by this model.

The vectorial delta-lognormal model exploits the speed/
accuracy trade-offs to define and represent a generic action
plan in terms of a discontinuous sequence of circular strokes

linking virtual targets that have to be reached within some
spatial errors. This representation is consistent with several
papers suggesting that arm movement planning occurs in a
spatial coordinate system instead of a joint planning space
(Morasso 1981; Abend et al. 1982). In practice, most of
the virtual targets are not reached during execution due to
the superimposition process which results in a continuous
smooth trajectory. As a consequence, most of the virtual tar-
gets lie outside the real trajectory, and to recover them one
has to look at high-curvature area and trajectory discontinu-
ities (Leclerc 1996; Li et al. 1996). This is also consistent
with the fact that human subjects tend to direct their eye
saccades toward the same high curvature area when they
look at a line image (Noton and Stark 1971). The sequence
of directional targets required by the neural network model
of Bullock et al. (1993) or the via points necessary to ex-
ploit the models based on minimization principles (Flash and
Hogan 1985; Edelman and Flash 1987; Wada and Kawato
1995) do not necessarily have this perceptivo-motor inter-
pretation, and this often leads to an ad-hoc representation of
a specific trajectory.

Other differences between the vectorial delta-lognormal
model and other models already published can be found
at the spatio-temporal level. Indeed, the vectorial delta-
lognormal model can easily take into account the various
spatio-temporal properties observed in handwriting without
requiring continuous monitoring of the current position of
the end-effector, as required by some models (Bullock et al.
1993). For example, size and shift invariance can easily be
obtained by modifying only two parameters. Some models
‘cannot uniformly regenerate an expanded or reduced tra-
jectory of the original trajectory in time and space’ (Wada
et al. 1995, p. 19). The vectorial delta-lognormal model ex-
plains the spatio-temporal properties of various trajectories
in terms of changes in the parameters of the motor action
plan, or at a lower level in terms of changes in the pa-
rameters of the neuromuscular networks that execute that
plan, without requiring any minimization principle. It is not
claimed here that the minimization of some kinematic or dy-
namic factors is not important in trajectory generation. Our
interpretation is that these factors are not part of the basic
stroke definition. Strokes are defined with respect to the fun-
damental asymptotic properties of the impulse response of
a neuromuscular system and, consequently, this definition is
sufficient to reconstruct a trajectory. However, it is clear that
an analysis-by-synthesis experiment might lead to numerous
equivalent solutions and the use of kinematic or dynamic
minimization criteria might be one way to reduce the search
space and to select an optimal solution with respect to such
a criterion (Guerfali 1996).

6 Conclusion

In this paper we have presented the principal characteristics
of a vectorial delta-lognormal model of handwriting gener-
ation to highlight how this model can be useful in the study
and analysis of handwritten patterns and in understanding
them. We have specifically focused on stroke description,
superimposition and extraction to analyze and synthesize
handwriting and to explain some of the most best-known
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psychophysical phenomena reported in the field. What con-
sistently emerges from that approach is the fact that human
beings seem to exploit the very basic properties and limi-
tations of their own neuromuscular synergies, as described
by the delta-lognormal law (Plamondon 1993c, 1995b), to
produce complex tasks in a quasi-automatic fashion. In this
perspective, the vectorial model is very powerful at a de-
scriptive level and, as such, provides a global framework
and a general methodology for pointing out and exploit-
ing among other things, the higher-level strategies used by
some subjects to accomplish these tasks. Although the algo-
rithms are complex and the solutions might not be unique
(Guerfali 1996), being able to perform a reverse analysis
and extract the original intended strokes from a specific tra-
jectory is a key tool that can be very useful to researchers
interested in studying fundamental aspects of handwriting
control as well as in applying these concepts to the design
of computer-based systems that use handwriting or gesture
as a human-machine interface.
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Appendix. The origin of the 2/3 power law

The vectorial delta-lognormal model predicts under which conditions a 2/3
power law will be observed between the angular velocity and the trajectory
curvature. This can be seen by analyzing a trajectory made up of two strokes
superimposed in time. Each stroke ‘i’ is characterized by a curvatureC0i

and an initial angular directionθ0i, and the magnitude of its velocity vector
is described by a∆Λ law.

Assuming for simplicity that the first stroke starts att01 = 0 and the
second att02, the velocity profile of the complex profile is described by

~ν(t) = ~ν1(t) + ~ν2(t − t02) (A1)

If this vector is analyzed in a cartesian coordinate system, theX and Y
components of the resulting velocity are obtained by

νx(t) = ν1(t) cos(θ1(t)) + ν2(t − t02) cos(θ2(t − t02)) (A2)

νy(t) = ν1(t) sin(θ1(t)) + ν2(t − t02) sin(θ2(t − t02)) (A3)

If ∆θ(t) is defined as the instantaneous difference in angular direction
between the two strokes at timet:

∆θ(t) = θ1(t) − θ2(t − t02) (A4)

(A2) can be written as:

νx(t) = ν1(t) cos(θ1(t)) − ν2(t − t02) cos(θ1(t) − ∆θ(t)) (A5)

and using trigonometric transformations

νx(t) = ν1(t) cos(θ1(t)) + ν2(t − t02) cos(θ1(t)) cos(∆θ(t))

−ν2(t − t02) sin(θ1(t)) sin(∆θ(t)) (A6)

Similarly, for theY component, we obtain

νy(t) = ν1(t) sin(θ1(t)) + ν2(t − t02) sin(θ1(t)) cos(∆θ(t))

−ν2(t − t02) cos(θ1(t)) sin(∆θ(t)) (A7)

Hypothesis 1:There are parts of the resulting trajectory where

∆θ(t) ' nπ

4
(A8)

For that portion, (A6) and (A7) reduce to

νx(t) ' ν1(t) cos(θ1(t)) + ν2(t − t02) sin(θ1(t)) (A9)

νy(t) ' ν1(t) sin(θ1(t)) − ν2(t − t02) cos(θ1(t)) (A10)

where we focus onn = 1 for the rest of the demonstration.
Using trigonometric transformations, these latter two equations can be

rewritten as follows:

νx(t) ' ν1(t) cos(θ1(t)) + ν2(t − t02) cos(90◦ − θ1(t)) (A11)

νy(t) ' ν1(t) sin(θ1(t)) − ν2(t − t02) sin(90◦ − θ1(t)) (A12)

Hypothesis 2: The starting timet02 of the second stroke is such that the
following equivalences are roughly valid on the specific portion of the
trajectory under study:

ν2(t − t02) cos(90◦ − θ1(t)) ' Kx(t)ν1(t) cos(θ1(t)) (A13)

ν2(t − t02) sin(90◦ − θ1(t)) ' Ky(t)ν1(t) sin(θ1(t)) (A14)

In other words, the subject starts his or her second stroke at a specific
time, in such a way as to compensate for the 90◦ phase shift between the
two strokes and to link the velocity module of this second stroke to the
velocity module of the first stroke by a time functionKx(t) or Ky(t).

Thus, theX and Y components of the resulting velocity can be de-
scribed by

νx(t) ' ν1(t)(1 + Kx(t)) cos(θ1(t)) (A15)

νy(t) ' ν1(t)(1 + Ky(t)) sin(θ1(t)) (A16)

The previous two equations have a form similar to that of the parametric
equation of the velocity of a particle along an elliptic trajectory, provided
that

ν1(t)(1 + Kx(t)) ' a (A17)

ν1(t)(1 + Ky(t)) ' b (A18)

wherea andb are approximately constant for that portion of the trajectory.
(The reader should note that ifa > 0 and b < 0 the trajectory will be
hyperbolic and the same conclusion will apply.)

If these latter two conditions (A17 and A18) are met, then the curvature
C(t) of that elliptical portion will be

C(t) =
ab

(ν(t))3
(A19)

and

ν(t) '
[
ν1(t)2(1 + Kx(t))(1 + Ky(t))

]1/3
R(t)1/3 (A20)

that is

ν(t) ∝ R1/3(t) (A21)

or

νθ(t) ∝ C2/3(t) (A22)

Thus, under the specific conditions described by hypotheses 1 and 2,
the vectorial delta-lognormal model predicts that the time superimposition
of two circular strokes will result in a complex trajectory having a portion
that can be approximated by an ellipse, and that, for that specific portion,
a 2/3 power law will be observed between the angular velocity and the
curvature. Outside that specific portion, the law will not be valid. Computer
simulations show that the length of the trajectory where the 2/3 power law
applies can be expanded if more than two strokes are superimposed (see
Fig. 7d).
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