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Abstract    In the context of the Kinematic Theory of 
Rapid Human Movement, handwriting strokes are consid- 
ered to be primitives that reflect the intrinsic properties of 
the neuromuscular system of a writer as well as the basic 
control strategies that the writer uses to produce such strokes. 
The study of these strokes relies on the extraction of the 
different parameters that characterize a stroke velocity pro- 
file. In this paper, we present a new method for stroke pa- 
rameter extraction. The algorithm is described and evaluated 
under various testing conditions. 
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1 Introduction 
The production of handwriting strokes is studied in many 
fields of computer science, particularly in pattern recogni-
tion and robotics. Indeed, many on-line handwriting recog-
nition algorithms are based on the properties of the strokes 
that have been used to generate a character [1−4]. Similarly, 
many on-line signature verification algorithms aim at find- 
ing idiosyncratic features of strokes to characterize a signer 
and verify his identity [5−7]. In handwriting synthesis, 
strokes are used as building elements to construct character 
strings [8, 9], to generate training database [10], and to de- 
sign interactive tools to help children learn how to write [11].  
In anthropomorphic robotics, handwriting strokes are stud- 
ied to explore the biomechanical principles that can be em- 
ployed by humans to produce gestures and to design and  
control a robot arm [12]. Writing robots are also used to 
study ink trace depositions under controlled conditions in 
forensic document analysis [13].  

Many of the above studies are based, directly or indirectly, 
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upon a stroke generation model. A stroke model describes 
the characteristics of the pen-tip trajectory. In this perspec- 
tive, a single stroke is a primitive reflecting some intrinsic 
properties of the neuromuscular system of a writer as well as 
some basic features of the control strategies that the writer 
uses to produce such a movement. Based on a stroke model, 
complex handwriting patterns such as letters and words can 
be considered as sequences of strokes that concatenate and 
superimpose one another. The parameters extracted from the 
strokes through the model can be used in many applications. 

Among various stroke generation models, the Delta-log- 
normal model [14] has been found over years to be one of 
the most powerful models in its capability to reproduce, with 
a minimum error, the velocity profile of a handwritten stroke 
[15−17]. This model is the kernel of the Kinematic Theory 
of Rapid Human Movements [14, 18, 19]. In this theory, a 
clear operational definition of a stroke as a movement primi- 
tive is provided [20]. It describes a single stroke as a pentip 
trajectory with a delta-lognormal velocity profile: 
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(2) 
A stroke is thus produced by a synergy made up of an 

agonist and an antagonist lognormal systems. It can be de- 
scribed synthetically by seven parameters 0 1 1 1 2( , , , , ,t D Dµ σ  

2 2, )µ σ where t0 represents the system activation time, 1,µ  

1,σ 2 2,µ σ characterize the timing properties of the agonist 
and antagonist neuromuscular systems in reaction to the two 
simultaneous input commands D1 and D2, respectively. 

In the past decade, Guerfali and Plamondon [21,22] have 
developed an algorithm, hereafter referred to as INFLEX, to 
extract model parameters from velocity data. INFLEX takes 
advantage of a graphical method [23] to estimate the initial 
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parameter values as the starting point and then applies a 
non-linear regression method [24, 25] to optimize the solu-
tion. Over the years, the performance of INFLEX has been 
evaluated and it has been found that the graphic method 
originally proposed by Wise [23] for the analysis of a single 
lognormal curve was not always efficient in our case where 
two lognormal curves have to be handled together as indi-
cated by Eq. (1). 

In this paper, we propose a new method, hereafter re-
ferred to as INITRI, to estimate the initial parameter values 
for the subsequent optimization by non-linear regression. We 
compare INITRI with INFLEX to discover their strengths 
and weaknesses. Then we develop a system to combine their 
merits and avoid their demerits. 

The remainder of this paper is organized as follows. In 
section 2, we describe the INITRI method and the complete 
parameter extraction process. In section 3, we define a pro-
tocol to test INITRI and INFLEX using seven classes of 
ideal data. The results from the test clearly highlight the 
strengths and weaknesses of each algorithm and lead to the 
design of a system that combines the merits of both methods. 
In section 4, we present the testing results of all these sys-
tems under realistic noisy conditions. In section 5, we use 
real data sets to evaluate these systems. And finally, we pre-
sent our conclusions in section 6. 

 

2 The INITRI algorithm 
The INITRI algorithm is based on an assumption that the 
initial rise (initri) of the velocity magnitude from t0 to its 
first maximum is mainly contributed by the agonist neuro-
muscular activity. Unlike the INFLEX algorithm that uses 
the tangents at the inflexion points to estimate the initial 
parameter values, INITRI uses an analytic method instead. 
In this method, some points along the ascending portion of 
the profile are used to estimate the initial parameter values, 
see Fig. 1. 

2.1  Estimation of the agonist parameters 

Let 0( )f t t− be the function of the agonist system such that: 
 2
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Its first order derivative is 
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 (4) 
Considering the peak time and peak value of the lognormal 
curve, we have 
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Fig. 1  Three temporal indices ti, tj and tm of a lognormal curve used by the 
INITRI process 

 
We assume that in [0, tm] the superimposition effect of the 
antagonist system can be ignored so the values of f(t−t0) can 
be estimated within this region. Given a  0, ,k k mt t t t< <  
with a non-zero value 
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where 1kα >  is the ratio of fm over 0( ),kf t t− it follows 
that 
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Because 0 k mt t t< < , from Eq. (6), we have 
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Now consider two different time occurrences ti and tj such 
that 0 ,i j mt t t t< < <  we have 
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Thus, it follows that 
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In the above equations, the velocity magnitudes at time 
occurrences ,it  tj and tm are already known, iα and jα are 
the ratio of the peak value over the values at time ti and tj, 
respectively. Thus, 1σ can be solved without difficulty. Once 

1σ  has been solved, 1µ  can be solved by Eq. (10) or (11), 
then D1 by Eq. (7) and t0 by Eq. (6), respectively. 

2.2  Estimation of the antagonist parameters  

Let 0( )g t t−  be the function of the antagonist system such 
that 
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 2
0 2 0 2 2( ) ( ; , , ).g t t D t t µ σ− = Λ  (13) 

0( )g t t− can be uncovered from the synthetic signal v(t) 
once the agonist system 0( )f t t−  has been solved: 

 0 0( ) ( ) ( ).g t t f t t v t− = − −  (14) 
Similar to the case of the agonist system, the peak time and 
the peak value of the antagonist system satisfy the following 
equations: 
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where L is the trajectory distance. Because t0, D1 and L are 
already known, we have 
 2 1 .D D L= −  (18) 
Now the activation time t0, the peak time tm, the peak value 
gm, and the command amplitude D2 of 0( )g t t− are already 
known, we have 
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From Eqs. (19) and (20), we have  
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and hence 
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Eqs. (22) and (19) give a complete solution to 2σ  and 2.µ  

2.3  Optimization process 

The initial parameter values estimated by the INITRI 
method may represent only a coarse solution depending on 
the experimental conditions under which handwriting data 
are collected. Starting from the coarse solution, we can op-
timize the parameters to get a better solution. Here we use 
the non-linear regression technique to minimize the distance 
between experimental data and the predictive model in terms 
of the Mean Square Errors (MSE) [25].  

The complete parameter extraction algorithm thus con-
sists of two modules: an initialization process that estimates 
the initial parameter values, and an optimization process that 
starts from the initial values and converges to an optimal 
solution. The complete system works as follows: given a 
velocity profile v(t), the first process evaluates the agonist 
lognormal parameters as described in section 2.1. The an-
tagonist lognormal curve is obtained by subtracting the ago-
nist lognormal curve from the synthetic curve, and its pa-
rameters are estimated as described in section 2.2. Then the 
seven estimated parameter values are used as the initial con-

ditions by the optimization module [24,25]. Both the optimal 
values of the seven parameters and the MSE between the 
original and the reconstructed velocity profiles are obtained 
after the optimization process converges. 

 

3 Testing under ideal conditions 
Firstly, we used ideal data to evaluate the performance of 
INITRI and compare it with INFLEX. For this purpose, we 
created seven data sets using a random generator, each set 
containing 1000 delta-lognormal velocity profiles with all 
seven parameters being randomly selected within a realistic 
interval [26,27]. Notice that a delta-lognormal velocity pro-
file described by Eq. (1) may have up to two zero crossings, 
leading to 1, 2 or 3 peaks, we grouped these simulated 
curves into seven classes according to (a) the number of 
peaks appeared in the velocity profile, and (b) the dominant 
position of the antagonist component with respect to the 
agonist one. Figure 2 depicts a typical examples for each 
class Cuw, where the subscript u can be b (before), a (after) 
or s (simultaneous) and the subscript w can be 0, 1, 2 or i, 
which represents the number of zero crossings, and w = i 
(imaginary) means that there is no real roots to the zero 
crossing equation [18]. As one can see in these plots, the 
different timing of the antagonist curve versus the agonist 
curve generates different velocity profile patterns. 

In this experiment, each random delta-lognormal curve 
was sampled at a rate of 200Hz to simulate the data col-
lected from a digitizer; the discrete data then were used for 
the test. The seven parameters extracted by INFLEX and 
INITRI were compared with the true parameters and the 
results are summarized in Table 1. In this test, the parame-
ters extracted by a system were considered as matching the 
original ones if the SNR between the original and the recon-
structed curve was greater than 100 dB.  

As one can see from Table 1, for the Ca classes, INFLEX 
performs better than INITRI, except for Ca2, where INITRI 
gets perfect results. Both algorithms have serious problems 
with the Cb classes, where the antagonist activity is domi-
nant before the agonist activity. If we remove these two 
classes from our database, we can see, in the penultimate 
column, that there is a 6% difference between the two algo-
rithms. This difference drops to 2% (last column) when all 
the specimens are taken into account. A vertical comparison 
of the results in Table 1 also emphasizes the complementar-
ity of the two algorithms. This is mainly due to the fact that 
INFLEX encounters some difficulties when the main peak 
of the velocity profile is almost symmetric, while INITRI 
has some troubles with these profiles that are very asymmet-
ric. 

In an attempt to improve the performance, we have thus 
designed a combined system, INFLEX+INITRI that inte-
grates both algorithms in parallel. The test results of 
INFLEX+INITRI under the same conditions are presented 
in Table 1. As one can see from Table 1, INFLEX+INITRI 
has a better performance than both INFLEX and INITRI. It 
can recover 99.07% of the original parameters for the Ca  
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Fig. 2  Seven classes of delta-lognormal velocity profiles (solid lines) with corresponding agonist and antagonist components (dotted lines) 

Table 1  Results of the tests under ideal testing conditions (Performance criterion: SNR≥100 dB)(%) 
         Cbi 

 
Cb1 

 
Ca0 

 
Cai 

 
Ca1 

 
Ca2 

 
Cs2 

 
Downstream  
only 

All 

INFLEX 0 9 90.1 94.6 91.9 94.6 92.8 92.8 66.41 
INITRI 3 37.1 74.7 92.1 80.7 100 65.8 86.87 64.38 
INFLEX+INITRI 3 41 98.5 99.4 98.4 100 94.5 99.07 76.01 
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classes even though it still faces problems when the antago-
nist activity precedes the agonist activity. 

 

4 Testing under noisy conditions 
In a real situation, the handwriting signals acquired from a 
digitizer tablet usually contain noise. To test the perform- 
ance of our systems under noisy conditions, a 25dB noise 
with zero mean was added to the previous ideal data sets 
using a Gaussian random noise generator [27, 28]. The algo-
rithms were applied to the noisy data to extract the seven 
parameters and then reconstruct the delta-lognormal curves 
using the extracted parameters. The algorithms were evalu-
ated based on the mean square error (MSE) and sig-
nal-to-noise ratio (SNR) of the reconstruction. Figure 3 
shows a pair of noisy profiles corresponding to two of those 
profiles presented in Fig. 2. 

Under the noisy conditions, the extracted parameter vec-
tor normally converges towards a certain point with a 
non-zero MSE, and the SNR is small when the discrepancy 
between the noisy and reconstructed curves is large. The 
experimental results on the 7000 noisy curves are summa-
rized in Table 2, where a parameter vector was assumed to 
have converged if the SNR between the original curve and 
its reconstructed version was greater than 10 dB.  

As one can see from Table 2, INITRI performed better 
than INFLEX under noisy conditions, and the combined 
system (INFLEX+INITRI) converged in more than 93% of 
the cases. 

Since we know the real parameter values of each noisy 
curve in this simulation experiment, we can evaluate a sys- 

tem regarding its capability to recover the real parameter 
values. Figure 4 highlights this point using the combined 
system. In Fig. 4 there are seven parameter plots that link the 
extracted parameters with the real parameters of Ca2 data 
classes. Each plot in Fig. 4 relates to a parameter and each 
dot in a plot represents the best extraction result obtained by 
INFLEX+INITRI method. For an ideal system, all dots in a 
plot should be located on the 45o oblique line. As one can 
see from these plots, the combined system converges on the 
45o oblique line very well regarding parameters 0 ,t D1 and 
D2, but it disperses from the line a little bit regarding pa-
rameters 1 1 2 2, , andµ σ µ σ . 

 

5 Testing with real data 
To evaluate the performance of our new parameter extrac-
tion method in real applications, we conducted another ex-
periment using real stroke data and the results are presented 
in Fig. 5. Figure 5(a) and (b) depict two strokes produced by 
a human subject on a digitizing tablet. In this experiment, 
the synthetic velocity profile from the two component ve-
locities x(t) and y(t) of each stroke was computed using a 
derivative filter. The data then was input to our parameter 
extraction system. The results of this analysis-by-synthesis 
process are shown in Fig. 5(c) and (d). In each case, as 
one can see, the velocity profile reconstructed from the 
seven extracted parameters is very close to the original 
profile. The MSE−SNR of the two reconstructed strokes 
were 0.58 cm2/s2-29.12 dB and 0.04 cm2/s2-39.87 dB, 
respectively. 

 

 
 

 

Fig. 3  Two noisy delta-lognormal profiles that correspond to two of the ideal profiles depicted in Fig. 2 (classes Ca2 and Ca0, respectively), 
upon which 25dB noise has been superimposed 

 

 
Table 2  Results of the tests under noisy testing conditions (Convergence criterion: SNR≥10 dB) 

Noisy data 
Algorithms % of convergence 

(from 7000 curves) 
MSEmean   

/cm2
·s−2 

MSEstd  
/cm2

·s−2 SNRmean /dB SNRstd /dB 

INFLEX 63.24 32.90 62.44 26.76 2.13 

INITRI 82.90 31.98 60.91 26.62 2.28 

INFLEX+INTRI 93.81 29.70 63.20 26.83 2.26 
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6 Conclusion 
In this paper we have proposed a new method (INITRI) to 
estimate the initial values of the seven delta-lognormal 
parameters, which are used as a start point by a non-linear 
regression process for parameter optimization. We have 
compared INITRI with INFLEX (a previous method) under 
ideal and noisy conditions. Our experiments have shown 
that INITRI performed better than INFLEX under noisy 

conditions although the reverse was observed under ideal 
conditions. Since the two algorithms seemed to be com- 
plementary, we developed a combined system, INFLEX + 
INITRI, which inherits the merits of both methods. Further-
more, the performance of the combined system on real 
stroke data has been highlighted. Our algorithms are useful 
in various studies that focus on the intrinsic properties of 
strokes as building blocks for the automatic processing of 
handwriting in various fields of computer science [29, 30]. 

 
 

 
 

Fig. 4  Comparative results between the extracted parameter values (vertical axis) and their real values (horizontal axis) for the Ca2 classes 
under noisy conditions using INFLEX+INITRI method (SNR = 25 dB). The global convergence rate was 95% 



112   

 

 

 
 

Fig. 5  System performance on real data. (a) and (b): stroke trajectory; (c) and (d): velocity profiles (cross: original profile; solid line: recon-
structed profile; truncated line: agonist component; dotted line: antagonist component). Extracted parameters for (a) and (b): 

0 = 0.704 s,t 1=17.54 cm,D 1=µ 1.89,− 1= 0.32,σ D2 = 8.38 cm, µ2 = −1.61, σ2 = 0.21, 0 1 1 1= 0.251 s,  = 7.63 cm, = 1.20,  = 0.16,t D µ σ−  

2 = 0.26 cm,D 2 2= 0.87,  = 0.05.µ σ−  
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