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Abstract

The aim of this work was to build an objective tool for the detection of graphomotor di0culties involving disorders
in the writing of children. We outline some characteristics of layouts, describing the automation level of the graphic
activity. We have de2ned exercises, like copying 2gures or writing sentences under di4erent conditions that allowed
us to measure simple aspects of graphomotor skill up to complex ones. A tool was conceived which was able to
automatically extract low-level and high-level primitives. Based on such descriptors, we focus on the analysis of the
temporal structuring of two particular drawings. In the 2nal part, we present the method we used to select features
that can describe the automation level of the graphic activity and we show that, in most cases, these features allow to
discriminate children with academic di0culties. ? 2002 Pattern Recognition Society. Published by Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Before handwriting becomes an additional and com-
plementary way of expression for children, they will have
to be familiarized with the use of a writing tool. This
apprenticeship begins at the nursery school by the prac-
tice of drawing and continues at primary school mainly
through copying tasks. Many early works have focused
on the children’s behaviour while copying drawings or
while writing, e.g. Goodnow and Levine [1], Nino and
Lieblich [2], Simner [3] or Smits-Engelsman et al. [4].
The interest in automating children’s handwriting is to
make them able to focus their attention on the linguistic
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dimension of their production. Studies have shown that
some children labelled as presenting with “disorders
of writing” saw their access to the written language
strongly slowing down by graphomotor di0culties, e.g.
Zesiger [5], Hamstra-Bletz and BlLote [6]. However, no
objective tool allowing the detection of such di0culties
is available. We outline here some spatio-temporal and
kinematic characteristics of the layout, that we call des-
criptors, describing the automation level of the graphic
activity, as pointed out by R&emi et al. [7]. Therefore,
we have de2ned an experimental protocol, containing
exercises, like copying 2gures or writing sentences un-
der di4erent conditions, to underline increasing evolved
and complex aspects of graphomotor skill. The skills
required during the layout production change accord-
ing to the proposed task. All the layouts are real-
ized on a digitizer tablet set under temporal mode
and are on-line recorded as presented by R&emi et
al. [7], and by Amara et al. [8]. Our objective is to
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process and analyse these layouts, from both a dy-
namic and a static point of view, using well-known
image processing methods including the problem of
reducing noise due to the digitizer (e.g. the work by
Marquardt and Mai [9]), low-level features extraction
and high-level descriptors identi2cation. The latter is
based on a phase of recognition of simple geometric
elements and a clustering stage of the selected elements
allowing the recognition of more complex patterns like
circles, squares etc.
The remainder of this paper is organized as follows:

Section 2 describes the experimental protocol. Section 3
discusses the analysis of the temporal structuring of two
drawings: geometric elements identi2cation, analysis of
the grammar of action. Section 4 presents the feature
selection process and results obtained in terms of school
level recognition. Section 5 concludes the paper.

2. Experimental protocol and low-level features

The control of writing requires a speci2c training that
is superimposed on the motor and perceptive develop-
ment of the child. The school activities result in gradu-
ally automating the writing of the child. During this pe-
riod of learning, noticeable changes occur on the strate-
gies of writing. Such changes probably result from the
modi2cations in the possibilities of planning the task, an-
ticipation of gesture e4ects and control of the movement
as pointed out by Thomassen et al. [10] or Ziviani [11].
In order to characterize these changes, we aimed to study
layouts produced by children from a space-time point of
view as well as from a structural one. The main inter-
est of such approaches is to understand the behaviour of
writing in terms of precision, speed, Ouidity, strategy of
execution and space structuring, and so the modi2cations
of the concerned cognitive processes. To this end, we de-
veloped an experimental protocol, based on four di4erent
tests commonly used and recognized by psychologists to
which we added a new one. The former aims at evalu-
ating the level of learning of each basic skill necessary
for the production of high level writings and are not used
by the teacher to avoid bias due to the training e4ect.
The latter, which consists in producing a sentence un-
der various and unusual conditions, involves high level
writing.

• The test of understanding in reading [12]
Its objective is to evaluate the understanding of the lan-
guage written by the child. Due to Khomsi, this test
involves 22 boards each of them including one state-
ment and four images. The task of the child is, for
each board, to choose the image that corresponds to
the presented statement. The boards of this test can be
classi2ed into three categories according to the syntac-
tic structure of the associated sentences. The indication

of the correct image requires processings of di4erent
complexity levels.
The 3 usual notes are computed and new features like
average times of response, full time, have been added.

• The test of drawing
In this test, the child has to reproduce two drawings
composed of geometrical shapes, known as 9gure I of
Bender and Figure of Meulenbroek.
◦ 9gure I of Bender [13]
This drawing, which belongs to a series of tests
used for the psychological examination of children
of school age, contains a circle and a tangent square
as in Fig. 1-(Up). This test was initially used to
seek a possible defect of the grapho-perceptive or-
ganization in the children presented with a school
delay. The model has to be copied on a sheet with-
out any reference mark and no realization time
requirement.

◦ Figure of Meulenbroek [14]
This drawing, shown in Fig. 1 - (Bottom), which
is composed of four segments arranged so that its
realization requires at least one rising of the pen,
was conceived for adults. In our test, segments are
longer according to the abilities of both the engine
control of the young child and the linearity level of
the straight lines. The production conditions are the
same as Bender’s 2gure one.
Features describing the space organization (e.g.
height, width, surface of the drawings) are retained.
Others providing information about the regular-
ity of the movement (e.g. mean and variance of
the production speed) are computed as well as
some features revealing the drawing strategy (e.g.
number of pauses, duration, primitives sequenc-
ing). The extraction of symbolic features related
to the sequencing (called high-level descriptors) is
described in the next section.

• The test of the crown [15]
It aimed at evaluating psychomotor abilities to control
movement kinematics which may improve the spatial
precision of writing. The child has to draw continu-
ously two circles as slowly as possible. The circles
must be traced in an area delimited by two concen-
tric circles. A starting position (in the middle of the
left half-circle) is indicated by the experimenter to the
child without real point on the sheet.
Realization times of part or the whole of each circle,
pressure exerted on the pen and its orientation are fea-
tures that can help in evaluating the control abilities.

• Test of isolated words writing
This test consists of the child writing his 2rst name with
and then without visual feedback. Depending on the
automation level of the writing, some characteristics
of the writing would present signi2cant variations with
or without visual monitoring. In order to increase the
validity of the test, the writing of the word “tintin” is
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Fig. 1. Drawings. (Up) Bender’s 2gure. (Bottom) Meulenbroek’s 2gure.

Table 1
Summary of feature selection

Number of features Khomsi Drawing Rey Words Sentence Total Ratio (%)

Before selection 6 22 27 126 60 241
After exercise-based clustering 2 7 10 23 18 60 24.90
After global clustering 2 6 8 17 12 45 18.67
After forward selection 2 2 4 7 5 20 8.30

also required. This pseudo-name is well known by the
children, and built with two familiar syllables.
Features describing spatial, dynamical variations be-
tween a production condition and another one are com-
puted, e.g. some dimensions of the layouts, their orien-
tation, the average size of letters, the number of pauses,
full times of execution (not in the writing of the 2rst
name because of too much variability).

• Test of sentence writing
The sentence used in this new test is composed of
familiar words and is semantically and syntactically
accessible even to the youngest children: Le chien de
la petite fille joue avec une grosse balle (The dog of
the little girl plays with a large ball). One can also note
the presence of double letters, ss, and ll, that look like
the arcades and garlands often used in the evaluation
tests of the graphomotricity in Social Sciences, e.g. in
Ref. [16]. It was decided that the child would write this
sentence six times under the following conditions:

1. With a model, allowing to check if the child was
able to read and write the sentence.

2. Without the model, testing the memory ability.
3. Again without the model, looking for performance

improvement due to repetition.

4. Without the model with the added task of counting
irregular emitted sounds, testing how a new task
can interact with an automated one.

5. Again without the model with the added task of
counting irregular emitted sounds, observing the
repetition e4ect in a situation of overload.

6. Without the model (as in 2), o4ering another
base-line of comparison with an added task: 3 with
5, 5 with 6 (to compensate for the e4ect due to the
order of the two tests (simple recall, recall with
added task).

Similar features to those of the isolated words writing
are studied.
An overall number of 241 features are extracted (see

Table 1, 1st row). The process we have conceived in
order to select features that are relevant enough to char-
acterize the school level is presented in Section 4. The
experiments have been carried out in two primary schools
in France (Mont-Saint-Aignan, Saint-Etienne-de-Rou-
vray); from now on, we will refer to both schools as
classical schools. There are 2ve school levels, starting at
level one for the youngest children (six years old). We
have considered that a child has a regular schooling if
the child’s age is in concordance with their school level,



1062 C. R�emi et al. / Pattern Recognition 35 (2002) 1059–1069

Table 2
Distribution of tested pupils

Pupils Classical Specialized Total
schools association

With easiness 2 0 2
Regular 153 0 153
With di0culties 8 13 21

and it has never redoubled or jumped a class, and it does
not have a proven problem in oral language or writing. In
addition, layouts of children identi2ed by experts as pre-
senting speech and writing di0culties that have caused
a school delay, were collected in a specialized associa-
tion (ADEPA). For several reasons, e.g. missing values,
about 27% of the recorded material has been discarded.
Table 2 shows how the tested pupils are distributed with
respect to pro2ciency in their scholarship.

3. Drawing strategy recognition based on high-level
descriptors

Meulenbroek’s 2gure contains four straight lines. Ben-
der’s 2gure is composed of a circle and four lines ar-
ranged in such a way that they form a pointed square. By
visual observation of productions, e.g. in Figs. 1(a)–(c),
we can immediately identify these patterns but we are
not able to perceive the order in which they have been
produced. To be reliable, an automatic analysis system
must be able to simultaneously distinguish the spatial
and temporal structuring of the layout. Even though it is
easy to recognize lines or circles within an image, it is
di0cult to associate them with the strokes of a freehand
layout produced in an unexpected order and described
by an ordered points series. For example, during the re-
alization of the drawing depicted in Fig. 1(a), the child
has represented the four segments in 21 strokes (part
of the drawing between two successive pen’s raisings)
in no particular order. The child has 2rst produced seg-
ments S1 and S2 by numerous strokes. Then, he came
back to complete already traced segments. For example,
he sometimes gave up segment S4 to overlap segment
S1. On the other hand, some strokes represent several
segments of Meulenbroek’s 2gure (Fig. 1(a): strokes S1
and S2), preventing to simply assign strokes to segments.
The purpose is to recognize the simple components of

an on-line drawing such as lines or circles. From now
on, we will denote them through models. The recognition
then becomes a problem of feature clustering. Due to an
important inter-writer di4erences in the production, we
cannot use a priori knowledge about the presented model.
So, for each processed layout, hence for each writer, it
is necessary to identify a “germ” for each class based
only on the description. These germs, determined using a

Hough transform, as described by Illingworth and Kittler
[17], Yuen et al. [18], will provide the parameters for
the clustering initialization step. A germ will be a model
considered as a potential starting point (kernel) during the
clustering stage. The second di0culty lies in the possibly
poor layout quality. For example, in Bender’s 2gures,
freehand circles sometimes present linear parts with a
length similar to the sides of the square (Fig. 1(b)). To
overcome this di0culty, all the features describing the
circle must be 2rst labelled.
Concerning strokes with several models, one can no-

tice that model changes involve the most important an-
gular variations occurring in a low speed part (valley in
the speed curve). Consequently, an angular variation is
signi2cant only if the two following conditions are sat-
is2ed: it happens when the speed is low, and it has the
greatest value in this part of low speed.

3.1. Segmentation

A segmentation method has been developed according
to these conditions. It is based upon the determination of
the eigenvector related to the principal axis of the set of
points. In this method, the scatter matrix associated with
the points between the last retained point and the cur-
rently processed point is computed. The eigenvector cor-
responding to the largest eigenvalue of this matrix is then
determined. At each point, the method gives estimated
parameters (aT ; bT ; cT ) de2ning the normalized equation
of the optimal straight line describing all the points of
each segment. Using a constant sampling frequency, lo-
cal accumulations of points occur at low speed. We must
introduce a weighting factor deriving from the distance
of two consecutive points. Thus, the criterion to be min-
imized is

CT =̂
1
LT

T∑
t=1

pt[aT xt + bTyt + cT ]
2; (1)

where pt is the distance between the two last points, and
LT =̂

∑T
t=1 pt is the developed distance up to time T .

Inside each stroke of Bender’s 2gure, themodel change
is based on the estimation of the circle parameters com-
puted using all the points from the last retained one. The
circle parameters, i.e. the centre (x0T ; y0T ) and the radius
rT , is processed using a least-squares method minimizing

CT =
1
LT

T∑
t=1

pt[(xt − x0T )2 + (yt − y0T )2 − r2T ]2; (2)

where pt is another weighting factor.
The estimation-detection process is initialized using

the three 2rst points of each new segment. The centre co-
ordinates and the radius are analytically computed from
these points and are used as initial parameters values.
For the two patterns, the model change is decided

by thresholding the local speed (less than), the angle
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Fig. 2. Searching for germs in Bender’s 2gure. (Left and Right) Hough spaces. (Centre) Identi2ed models in the drawing.

variation (greater than) and the distance from the last
retained point (greater than).

3.2. Straight lines identi9cation

We obtain from the segmentation stage, a drawing
coded by a list of segments. We then have to select a
list of germs for the clustering step. This selection uses
a Hough Transform to identify the four main directions
in the drawing. In this context, each accumulator in the
Hough space is incremented by the length of each corre-
sponding segment and depends on the sum of lengths of
all the related segments.
The parameters (�; �) of the four main directions are

iteratively identi2ed, neglecting an area around each al-
ready obtained peak, avoiding the use of a Fuzzy Hough
Transform proposed by Han [19].When several segments
have incremented an accumulator, we choose as germ the
longest segment. Fig. 2 (right) shows the peaks obtained
in the Hough space and the four identi2ed germs, from
the child’s production presented in Fig. 1(a). In Bender’s
2gure, the method is applied for the four lines of the
square, when the circle has already been identi2ed. The
non-labelled segments in the drawing must be associated
with one of these classes. Due to the small number of
segments, a non-supervised clustering is performed us-
ing the k-means algorithm, as described in Ref. [20].
To compute the dissimilarity between two segments si

and sj we de2ne the following distance:

d(si; sj)=
√
(�′i − �′j)2 + (�′i − �′j)2 (3)

where �′= � 2 and �′=� arctan(�′2 + ��′) allowing to
decrease within class variance.
The four germs are taken as kernel for the initial

classes. Each segment is then assigned to the class mini-
mizing the distance d. In the following iterations, centres
of gravity of classes are chosen as kernels.
This method has been tested on a set of 111 chil-

dren’s drawings for Meulenbroek’s 2gure. In 110 draw-
ings (99.09%), the segment models have been correctly

identi2ed inside the drawing. In the only case of failure,
only a segment, describing a small stroke added by the
child to join S3 to S2, was misclassi2ed (in S4 class
instead of S3).

3.3. Circle and square identi9cation

The circle is not always drawn by a single stroke but
is generally described by several bows. So, we have
chosen to de2ne a germ in order to simplify the circle
recognition. This germ is also determined using a Hough
Transform. The m to 1 Hough Transform increments the
cell (x0; y0; r) containing the current tree points, where
(x0; y0) are centre co-ordinates of the circle returned by
the segmentation step for each bow and r its radius. Each
cell is incremented by the length of the current segment.
The longest segment corresponding to the highest peak
is selected as a germ. Fig. 2 (left) shows the Hough
space and the circle germ identi2ed from the layout of
Fig. 1(a). In order to determine the bows belonging to
the class de2ned by the germ, we use a set of rules based
on both spatial and temporal information of the drawing.
Once the features describing the circle are isolated, the

segments models (S1; S2; S3, and S4) that de2ne the
square sides of Fig. 1 (model) have to be recognized. The
method described in the previous subsection has been
used. Fig. 2 shows a drawing, the peaks obtained in the
Hough space and the identi2ed germs: circle C, square
composed of S1; S2; S3, and S4. This method has been
tested on a set of 120 children’s drawings for Bender’s
2gure. In 95% of cases, the components of the draw-
ing have been correctly identi2ed within the layout. The
method failed only for six drawings. Three failures were
due to the quality of the layout, e.g. the child drew a tri-
angle rather than a square as shown in Fig. 1(c). Three
other cases of failure were caused by too small features,
preventing to locate the junction between the circle and
the square. Two di0cult but correctly recognized draw-
ings are shown in Fig. 1(a) and (b). In Fig. 1(b), the
drawing was realized in two strokes: one for the circle
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Fig. 3. Meulenbroek’s 2gure. (Left) Main observed strategies. (Right) Percentage of children adopting the strategies by school level.

and another one for the square. In this case, 2ve items
were enough to describe the layout. The production of
Fig. 1(a) required 20 features including 9 for the con-
struction of the square and 11 for the circle. During the
description phase, this drawing was coded with 58 items.

3.4. Analysis of the grammar of action

The adopted order to draw components of a layout
is relevant from the psychologist’s point of view. It is
assumed to show the strategy followed by the child
during his drawing. Numerous works in Social Sciences
attempted to characterize the strategies employed by
children to copy some relatively simple geometrical 2g-
ures (e.g. Goodnow and Levine [1], Ninio and Lieblich
[2], Simner [3], Thomassen et al. [10], or Vinter [21]).
Most of the authors, who have focused on this problem,
refer to the term “grammar of action”. This expression
was de2ned to describe some motor production rules
that would be generally used when producing drawings
or 2rst letters. These rules determine a priori probabili-
ties of action alternation or action sequences. So, they
allow the prediction of the starting point location, the
order and the direction of the strokes construction.
As part of validating the automatic analysis system,

we have tried to determine if such rules would govern
the way of constructing the 2gures suggested in the pro-
tocol, and if they must be retained as features for the
following work. For example, three main strategies are
employed to draw Meulenbroek’s 2gure, as depicted in
Fig. 3 (left). The percentage of children adopting each
of these strategies, is shown in Fig. 3 (right) according
to the school level. The use frequency of strategy 2A is
relatively stable. 1A is the main strategy for youngest
children. It is then replaced by 3A with a drawing seg-
ment by segment, in more than 50% of cases.
The inversion of the tendencies for the prominent

strategies is observed in the vicinity of the level three,
which corresponds to children being eight-nine years

old. Surveys have shown that radical changes on the
level of the graphomotricity would occur during this
period, e.g. in Ref. [5]. The same analysis has been
done with Bender’s 2gure for the drawing of which four
main strategies are identi2ed, showing that the proposed
descriptors have to (and will) be taken into account.

4. School level recognition

In order to validate the whole procedure, we present
in this section the process which led to the classi2cation
of children. We recall that we have mixed pupils com-
ing from two classical schools and one specialized as-
sociation where children with known writing di0culties
are placed. There are 2ve school levels, starting at level
one for the youngest children (six years old). Table 2
shows how these pupils are distributed with respect to
pro2ciency in their scholarship. We have used the 153
regular children with no particular di0culties in a pro-
cess of feature selection as well as in the design of a
classi2er aiming at detecting a school level.

4.1. Feature subset selection

In spite of the fact that most of the 241 processed fea-
tures are either not useful or redundant for the character-
ization of the school levels, we and the psychologists did
not want all the processed features of the same to be dis-
carded. That is the reason why we have decided to select
the most pertinent features in three di4erent steps.

4.1.1. Test-based clustering
The 2rst step consisted in performing 2ve di4erent

correlation analysis of the features to make sure that ev-
ery test will be represented in the reduced feature space.
Since the age of the children could be an hidden fac-
tor which characterizes the school level, we have 2rst
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standardized each feature Pi with respect to the levels as
follows:

P′i (x)=
Pi(x)− E(Pi |C(x))
Var(Pi |C(x))1=2 ; (4)

where C(x) represents the school level of a child x; E(|)
and Var(|) the conditional expected value and the con-
ditional variance, respectively.
Then, a hierarchical clustering method, e.g. Jain and

Dubes [22], has been applied according to:

• an agglomerative measure for groups: the unweighted
pair group method averages (UPGMA)

• a dissimilarity index between individual features: the
Euclidean distance which has been chosen because it
is known to be related to correlation between features

d2(P′i ; P′j)=2n(1− Corr(Pi; Pj)); (5)

where n is the dimension of each feature vector, namely
the number of children.

For each obtained hierarchy, a partition of compact
clusters of features is chosen with respect to the increase
of the agglomerative measure and common sense as well.
The nearest feature of each cluster centre is selected as
a pertinent one and the other ones are discarded. Fig. 4
shows the clustering results obtained in the case of the
Rey exercise: 10 compact clusters of features are de-
tected, therefore 10 features are selected from the 27
original ones. At the end of this test-based step, only 60
features have remained from the 241 original ones repre-
senting a compression rate of more than 75% (see Table
1 for details).

4.1.2. Global clustering
The same clustering method has been applied to the

remaining features in order to check whether some fea-
tures from di4erent tests are similar or not. It occurred
for some features of same nature, e.g. the pen pressure,
whatever the test: Drawing, Words or Sentence writing.
As we could expect, according to the agglomerative mea-
sure we used, this global clustering also has resulted in
grouping features issued from the same test but at a lower
level than the one obtained in the previous phase. 45 fea-
tures have been selected from this step. Every test is still
represented by several features (see details in Table 1).
The remaining features relate to: spatial structure, pen an-
gle and pressure, production strategy, speed, movement
accuracy.

4.1.3. Forward selection
Next, we aimed at 2nding the most relevant subset

of features to separate the 2ve school levels. Di4erent
approaches (e.g. Fukunaga [23]) allow to 2nd the best
combination of features according to a class-separation
criterion generally based on within-class, between-class

and mixture-class covariance matrices. We have chosen
the Wilks criterion, to be minimized, de2ned as

Wilks=det(W )=det(V ); (6)

whereW and V are the within-class and the mixture-class
covariance matrices, a class being a school level.
Instead of performing an exhaustive search of the

optimal subset of features, with respect to the chosen cri-
terion, or using branch and bound approach as proposed
by Narendra and Fukunaga [24] we rather use a stepwise
search known as forward selection, e.g. Devijver and
Kittler [25]. The values of the Wilks criterion we ob-
tained for the 45 ordered subsets of features are plotted
in Fig. 5 (left). For 20 features, one can notice a change
in curvature and the Wilks criterion value falls down
under 0.05; so it seemed to be a good choice. As a 2nal
result of feature selection, we performed again hierarchi-
cal clustering on the 20 selected features. The resulting
hierarchy is shown in Fig. 5 (right). It can be seen that
no grouping occurs below a relatively high value (13.5)
of the agglomerative measure and all the features were
grouped in the same cluster below a value which is
close to the former (17:5). Therefore, the selected fea-
tures are clearly di4erent and our choice was relevant.
It is worth noting that every kind of exercises (Khomsi,
Drawing, Rey, Words, Sentence writing) is represented
in the last set of selected features by more than one
feature, see Table 1. This con2rms the psychologist’s
point of view, claiming that every type of exercise is
useful.

4.2. Classi9cation

Based on the p=20 selected features, a classi2er
can be designed. We have chosen to present here the
simplest geometric classi2er derived from linear dis-
criminant analysis. It consists in classifying an unknown
p-dimensional pattern vector x to the closest class ac-
cording to the following distance measure:

d2(x; !i)= (x − mi)tW−1(x − mi); (7)

where mi is the mean vector of class !i and W repre-
sents the within-class covariance matrix. The classi2er
design simply consists in learning these parameters from
a reference set, here regular pupils.
For classifying regular pupils, a leave-one-out or

one-fold cross-validation procedure has been imple-
mented. It consists in classifying each of the n samples
by a classi2er that has been designed with the other
n − 1 samples. Thus, every sample is classi2ed without
contributing to the classi2er’s parameters. Another ad-
vantage of such a scheme lies in the use of a maximum
number of samples for each classi2er. Classi2cation
results are given in Table 3 in terms of a confusion
matrix that is close to be a band-matrix. In addition, it
gives the correct classi2cation rates Pc obtained for each



1066 C. R�emi et al. / Pattern Recognition 35 (2002) 1059–1069

Fig. 4. Crown of Rey features clustering. (Top) Hierarchy. (Bottom) Marginal increase of the agglomerative measure.

Fig. 5. Features subset selection. (Left) Forward selection. (Right) Selected features clustering attempt.

Table 3
Classi2cation of regular pupils

From=To Level 1 Level 2 Level 3 Level 4 Level 5 Pc–1st (%) Pc–2nd (%)

Level 1 10 2 1 0 0 76.92 76.92
Level 2 2 24 3 1 0 80.00 90.00
Level 3 0 3 25 7 2 67.57 89.19
Level 4 0 0 8 22 6 61.11 94.44
Level 5 0 0 5 6 26 70.27 83.78
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Table 4
Classi2cation of children having di0culties. Classical schools—specialized association

From=To Level 1 Level 2 Level 3 Level 4 Level 5

Level 1 0 0 0 0 0
Level 2 1–0 1–0 0 0 0
Level 3 0 0–2 0 0 0
Level 4 0 0 1–0 2–1 0
Level 5 0–1 0–6 1–1 1–0 1–2

level when the right level has been selected in the 2rst
position or in the second one. We obtained a satisfactory
overall rate of correct classi2ed children as 69.93%,
respectively, 88.24%. The rates range from 61.11% to
80% in the 2rst case, whereas they range from 76.92%
to 94.44% in the second one. The gain particularly oc-
curs for medium-level, con2rming that so-aged children
face noticeable changes in their graphomotricity levels
as pointed out by Zesiger [5]. It is worth noting that mis-
classi2ed pupils have been either up classi2ed or under
classi2ed in relatively same proportion. Unfortunately,
it has not been possible to discuss the discordant assign-
ments with the teachers or psychologists for con2dential
considerations.
Results obtained for the 21 children with well-known

di0culties are given in Table 4. Let us emphasize that no
child has been up classi2ed. 66.67% of them have been
under classi2ed and 33.33% have been classi2ed in the
level they really were. Most of these pupils were coming
from the classical schools, representing half of the eight
children coming from these schools to be classi2ed. Does
this mean that the classi2er is less reliable for classical
schools or that the di0culties a child might have in a
classical school are not so severe? The other half of such
children have been classi2ed, as expected, in a lower
level: three in an immediate lower level and one by two
levels. This is a good result because it must be rare, in
classical schooling, that a pupil of a particular school
level could have so many di0culties that it would be
considered as a child being in a two or more lower level.
Only three of the thirteen pupils (# 23%) coming from the
specialized association have been assigned to the level
they were. Let us underline that this is a lower number
than in the case of classical schools. Three pupils have
been under classi2ed by one or two levels, i.e. having
a regular behaviour. The other seven (55%) have been
assigned to a lower level with a higher di4erence. Since
such a specialized association follows up children with
so many di0culties that they are placed out of classical
schooling, it is not surprising that most of them are so
under classi2ed.
The two children with particular easiness were issued

from level three and 2ve, respectively. They both have
been successfully assigned to the upper level (level 2ve).

5. Conclusion

This paper presents a contribution to the detection of
graphomotor di0culties involving disorders of the writ-
ing in children. It is based on the analysis of geomet-
rical layouts and textual production by schoolchildren,
from both a space-time and a structural approach. We
aimed at objectifying and standardizing the methodology
adopted for such an analysis. In order to underline some
properties of layouts, describing the automation level of
the graphic activity, an experimental protocol has been
de2ned. Containing exercises, like copying 2gures or
writing sentences under di4erent conditions, this protocol
results in a large amount of acquired data. Therefore,
we aimed at building a tool for the automatic extraction
of high-level descriptors and the selection of relevant
features.
For the 2rst objective, we have presented a method al-

lowing the analysis of the spatio-temporal structuring of
drawings. It 2rst consists in modelling the layout with
simple geometric elements like segments of straight lines
or bows of circles. Then, a clustering step allows the
identi2cation of more complex patterns like circles or
squares. We have shown that the temporal structuring of
drawings (Bender and Meulenbroek’s 2gures) can help
in estimating the handwriting skill level children have
reached. Let us emphasize that the method allows to
quickly have dynamic information which the human be-
ing cannot reach during a simple visual monitoring of
the children production. A medium-term objective is to
extend these methods on a production of writing.
The second purpose was to determine which features

can help to distinguish between the children having writ-
ing di0culties and others. An exploratory analysis of the
data, using an ascending hierarchical clustering and a
sequential forward selection procedure, enabled us
to identify a signi2cantly reduced number of rele-
vant features (about 8%). These features describe
the automation level of the children graphic activity.
A very simple classi2cation test showed that these
primitives, in most of cases, provide the school level
of the children having a regular schooling. Further-
more, assignments of children, having di0culties, to
their level seldom occur, and to higher one never
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occur. These results are promising. The resulting
tool could be very helpful to the early detection of
children presenting di0culties, the follow-up of their
progression in order to prevent school failures.

Acknowledgments

The authors wish to thank the R�egion Haute-Norman-
die for the 2nancial support of this work, the school Jules
Ferry of Saint-Etienne-du Rouvray, l’�ecole du village
in Mont-Saint-Aignan, the APEDA association, and all
the children having realized the tests. Useful comments
and suggestions given by unknown referees are sincerely
acknowledged.

References

[1] J.J. Goodnow, R.A. Levine, The grammar of action:
sequence and syntax in children’s copying behavior,
Cognitive Psychol. 4 (1973) 82–98.

[2] A. Ninio, A. Lieblich, The grammar of action: phrase
structure in children’s copying, Child Development 47
(1976) 846–849.

[3] M. Simner, The grammar of action and children’s printing,
Developmental Psychol. 17 (6) (1981) 866–871.

[4] B.C.M. Smits-Engelsman, G.P. Van Galen, S.J.
Portier, Psychomotor development of handwriting: a
cross-sectional and longitudinal study, in: C. Faure
et al., (Eds.), Advances in Handwriting & Drawing: a
Multidisciplinary Approach, Europia, France, 1994.

[5] P. Zesiger, Ecrire, approaches cognitive, neuropsycho-
logique et d&eveloppementale, Coll. Psychologie et sciences
de la pens&ee, Presses Universitaires de France, Suisse,
1995.

[6] L. Hamstra-Bletz, A.W. BlLote, A longitudinal study on
dysgraphic handwriting in primary school, J. Learning
Disabilities 26 (10) (1993) 689–699.

[7] C. R&emi, M. Amara, P. Courtellemont, D. de Brucq,
D. Mellier, P. Largy, An experimental program for the
automatic study of handwriting learning at elementary
school, Proceedings of the Eighth Biennial Conference
of the International Graphonomics Society, Genoa, Italy,
1997.

[8] M. Amara, P. Courtellemont, D. de Brucq, R. Devinoy,
P. Wallon, C. Mesmin, An analysis software tool for
handwriting: writing and drawing application, Proceedings

of the Eighth Biennial Conference of the International
Graphonomics Society, Genoa, Italy, 1997, pp. 107–108.

[9] C. Marquardt, N. Mai, A computational procedure for
movement analysis in handwriting, J. Neurosci. Methods
52 (1994) 39–45.

[10] A.J.W.M Thomassen, R. Meulenbroek, M.P.E. Hoofs,
Economy and anticipation in graphic stroke sequences,
Human Movement Sci. (1992) 120–135.

[11] J. Ziviani, Some elaborations on handwriting speed in 7 to
14 years olds, Perceptual Motor Skills 58 (1984) 535–539.

[12] A. Khomsi, Les troubles cognitifs de la scolarit&e ou
la galaxie DYS, in: D. Gaonac’h, C. Golder (Eds.),
Manuel de psychologie pour les enseignants: de l’enfant
[a l’adolescent, Hachette, France, 1995.

[13] L. Bender, Un test visuo-moteur, Presses Universitaires
de France, France, 1957.

[14] R. Meulenbroek, A.J.W.M. Thomassen, Exploitation of
elasticity as bio-mechanical property in the production
of graphic stroke sequences, Acta Psychol. 82 (1993)
313–327.

[15] A. Rey, Test de copie d’une 2gure complexe, Manuel,
Edition du Centre de Psychologie Appliqu&ee, Paris,
France, 1945.

[16] C. Faure, P. Keuss, G. Lorette, A. Vinter, Advances in
Handwriting & Drawing: a Multidisciplinary Approach,
Europia, France, 1994.

[17] J. Illingworth, J. Kittler, A survey of the Hough transform,
Computer Vision, Graphics and Image Processing 44
(1988) 87–116.

[18] H.K. Yuen, J. Princen, J. Illingworth, J. Kittler, Compara-
tive study of Hough transform for circle 2nding, Computer
vision, Graphics Image Process. 8 (1) (1990) 71–77.

[19] J.H. Han, L.T. Koczy, T. Poston, Fuzzy hough transform,
Pattern Recognition Lett. 15 (1994) 649–658.

[20] J.D. Jobson, Applied multivariate data analysis: cate-
gorical and multivariate methods, Springer, New York,
1992.

[21] A. Vinter, Hierarchy among graphic production rules:
a developmental approach, in: C. Faure et al. (Eds.),
Advances in Handwriting & Drawing: a Multidisci-
plinary Approach, Europia, France, 1994, pp. 275–289.

[22] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data,
Prentice-Hall, Englewood Cli4s, NJ, 1988.

[23] K. Fukunaga, Introduction to Statistical Pattern Recogni-
tion, Academic Press, San Diego, CA, 1990.

[24] P.N. Narendra, K. Fukunaga, A branch and bound algo-
rithm to feature subset selection, IEEE Trans. Comput.
26 (1977) 917–922.

[25] P.A. Devijver, J. Kittler, Pattern Recognition: a Statistical
Approach, Prentice-Hall, Englewood Cli4s, NJ, 1982.

About the Author—CELINE REMI is a Ph.D. student in the Computer Science and Image Processing Laboratory (PSI-La3i) of
the University of Rouen. Her research deals with the automatic analysis of grapho-motricity in the child, in collaboration with the
PSY-CO laboratory (Child Psychology) of the University of Rouen. C&eline REMI is currently temporary Assistant Professor in the
University of the Antilles, in Martinique.

About the Author—CARL FRELICOT received his Engineer degree in Computer Science and his Ph.D. degree in Systems Control
from the University of Technology of Compi[egne, France, in 1988 and 1992, respectively. He is currently an Assistant Professor
in the Computer Science Department at the University of La Rochelle, France, where he joined the Computer Vision Laboratory
(L3i) in 1993. His research covers several aspects of Pattern Recognition for Image Analysis, and focuses on classi2cation using
statistical, pretopological and fuzzy approaches.



C. R�emi et al. / Pattern Recognition 35 (2002) 1059–1069 1069

About the Author—PIERRE COURTELLEMONT is currently a Professor in the Computer Science Department of the University
of La Rochelle, France, since 1998. He manages the Image Analysis and Computer Graphics group of the laboratory L3i (Computer
Science Laboratory). He was 2rst an Assistant Professor in the university of Rouen, France, since obtaining his Ph.D. degree
in Signal Processing, in 1989. His 2elds of research are mainly Image Processing and Information Theory with applications in
Handwriting Recognition, Document Analysis, and Processing of space-time signals.


