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Adaptive Fourier modeling for quantification of tremor!
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Abstract

A new computational method for quantification of tremor, the weighted frequency Fourier linear combiner (WFLC), is
presented. This technique rapidly determines the frequency and amplitude of tremor by adjusting its filter weights according to
a gradient search method. It provides continual tracking of frequency and amplitude modulations over the course of a test. By
quantifying time-varying characteristics, the WFLC assists in correctly interpreting the results of spectral analysis, particularly for
recordings exhibiting multiple spectral peaks. It therefore supplements spectral analysis, providing a more accurate picture of
tremor than spectral analysis alone. The method has been incorporated into a desktop tremor measurement system to provide
clinically useful analysis of tremor recorded during handwriting and drawing using a digitizing tablet. Simulated data clearly
demonstrate tracking of variations in frequency and amplitude. Clinical recordings then show specific examples of quantification
of time-varying aspects of tremor. © 1997 Elsevier Science B.V.
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1. Introduction

Tremor is defined as a roughly sinusoidal, or oscilla-
tory, involuntary motion (Elble and Koller, 1990). Clin-
ical classification of tremor is based on the body parts
involved, position of maximum activation, morphology,
and frequency (Reich, 1995). Quantification of tremor
is of clinical interest as an aid to diagnosis and to
evaluate objectively the effect of treatment (Elble,
1986). Handwriting and drawing specimens are often
used to examine tremor. Recording such specimens
using a digitizing tablet has been introduced as one way
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to provide precise quantification (Elble et al., 1990;
Marquardt and Mai, 1994).

Because of its oscillatory characteristic, tremor is well
suited to spectral analysis, the most popular method of
tremor quantification (Wade et al., 1982; Elble and
Koller, 1990). The idea is to calculate a power spectral
density function indicating the signal power at different
frequencies across the spectrum. The dominant fre-
quency of tremor is evident from a visible peak in the
power spectral density, while the average tremor ampli-
tude can be determined from the area under the peak
(Elble et al., 1990).

Fourier’s theorem states that a periodic signal may
be represented as a sum of sine and cosine waves at
different harmonic frequencies, or integer multiples of
the fundamental (lowest) frequency (Boyce and
DiPrima, 1986). This representation, known as a
Fourier series, gives rise to the Fourier transform,
which transforms a signal from the time domain to the
frequency domain. Most spectral analysis techniques
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are based on the fast Fourier transform (FFT) (Op-
penheim and Schaefer, 1989). The popularity of the
FFT algorithm stems largely from its computational
simplicity, allowing inexpensive implementation and
rapid data analysis.

FFT-based spectral methods model the input signal
as a stationary periodic signal, i.e., one whose statisti-
cal characteristics do not change with time. The finite-
length input data sequence is modeled as a periodic
sequence with each period identical to the input se-
quence length (Oppenheim and Schaefer, 1989). Yet
tremor amplitude and frequency are time-varying (EI-
ble and Koller, 1990), often making power spectra
difficult to interpret (Gresty and Buckwell, 1990).
Therefore it is desirable to develop models which do
not assume stationarity, to provide a clearer picture
of individual cases of tremor by quantifying variations
in the signal over time.

Several biomedical applications have been reported
for nonstationary time-frequency analysis techniques
such as the short-time Fourier transform (STFT)
(Jamous et al., 1992), reduced interference distribu-
tions (Wood et al., 1992; Guo et al., 1994), and the
Choi—Williams distribution (Choi and Williams,
1989). The STFT is obtained by segmenting the data
into short sequences assumed to be stationary. The
shorter each data segment, the better the assumption
of stationarity, but frequency resolution is corre-
spondingly reduced (Cohen, 1989). This method is
therefore limited by a tradeoff between time and fre-
quency resolution. Most other time-frequency repre-
sentations are based upon the construction of a joint
time—frequency distribution, a function of both time
and frequency (Cohen, 1989). Although these tech-
niques are often effective in representing general time
varying signals with many component frequencies
(Cohen, 1989), the computational burden is often con-
siderable.

Another recently developed quantification method
is the weighted—frequency Fourier linear combiner
(WFLC) (Riviere and Thakor, 1996). The WFLC, a
modification of the Fourier linear combiner (Vaz
and Thakor, 1989), is a simple algorithm which oper-
ates completely in the time domain. It continuously
tracks changes over time in signal characteristics, such
as the dominant frequency and its corresponding am-
plitude, and quickly provides a history of tremor fre-
quency and amplitude for clinical evaluation. The
WFLC is capable of supplementing popular spectral
methods by providing additional information regard-
ing the time-varying characteristics of the tremor. We
present the WFLC for quantification of tremor, using
results from simulated data and clinical patient
recordings.

1.1, The weighted—frequency Fourier linear combiner

The WFLC, shown in Fig. 1, is an adaptive signal
processing algorithm. As such, it exhibits time-varying,
self-optimizing performance by adjusting its parameters
online (Widrow and Stearns, 1985). The WFLC al-
gorithm is a frequency-adaptive extension of the
Fourier linear combiner (FLC) (Vaz and Thakor, 1989;
Vaz et al., 1994). It adapts to (i.e. ‘learns’) the changing
amplitude of the input using the least mean square
(LMS) algorithm, a gradient descent method (Appendix
A). The changing frequency of the input is learned
using a modification of the LMS approach (Riviere,
1995). It can be shown that the WFLC frequency
adaptation is a nonlinear phase-lock technique that
compares the phase of the input at each sample with
that of its reference signal, and modifies the frequency
weight wo, accordingly (Riviere, 1995).

Due to its adaptive capabilities, the WFLC can be
used to model a quasi-periodic signal when both ampli-
tude and frequency are unknown and time-varying. The
WFLC is stated as follows:

k
sin(r Y w0’>, l<r<M
X, = st (1a)
cos<(r— M)y w01>, M+1<r<2M
t=1
8k=sk—wzxk (lb)

LMS

Fig. 1. Schematic of WFLC algorithm. The WFLC adaptively creates
a dynamic Fourier series model of any periodic input. The vector x
consists of harmonnic sines and cosines based on the modulated
fundamental frequency w,. These sinusoids are weighted by the
Fourier coefficient vector w and summed to provide a truncated
Fourier series model of the input 5. The weights w, and w are adapted
using the LMS algorithm.
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where w, = [w, -~wy,, )" and x, = [xi,Xaar 7, M is the
filter order, and, u and g, are the adaptive gain
parameters governing convergence rates of amplitude
and frequency, respectively. The WFLC models a
quasi-periodic input signal as a truncated Fourier series
of order, or number of harmonics, M. The WFLC may
be thought of as comparing a reference oscillation with
the input signal, then adjusting the frequency, ampli-
tude, and phase of the reference oscillation until they
match the input. Eq. (la) shows the reference input
vector x,, consisting of sine and cosine waves at each of
the harmonic frequencies wok,2w0k,-~~Mwok. This vector
is the basis of the Fourier representation. The coeffi-
cients of the Fourier series model of the input are the
components of the vector of amplitude adaptive
weights, w,. The running sums in Eq. (1a) preserve the
phase of the frequency-modulated reference sinusoids.
Eq. (1b) computes the filter error ¢, or the difference
between the primary input signal S, and the prediction
obtained from the Fourier model. Once the error is
computed, the adaptive weights are then updated ac-
cordingly in the next two equations. The recursion Eq.
(1c) performs the phase-lock adaptation of the refer-
ence frequency wo,- Eq. ( 1d) is the LMS algorithm used
to estimate the amplitude coefficients, w,, of the
Fourier series. This approach can be shown to minimize
the mean square of the filter error g (Widrow and
Stearns, 1985). The performance and limitations of the
WFLC are discussed in Appendix B.

To estimate tremor amplitude, the WFLC is followed
by a second linear combiner, decoupling the amplitude
estimation from the frequency estimation. This involves
a second set of amplitude weights, W,:

=S, —Wwlx, (3a)
Wi 1 =W+ 20x,8, (3b)

where W, = [W, ", ]". This system uses the same
reference vector x, generated by the WFLC, but makes
its own error computation in Eq. (3a), adjusting the
weights W, accordingly in Eq. (3b), again via the LMS
algorithm, using its own adaptive gain j.

The system output consists of time histories of funda-
mental frequency and amplitude of tremor over the
course of each test. The fundamental frequency Jo, 18
obtained from the frequency weight, Wo,-

W
fo, =5, )

A periodogram (Kay, 1988) of the first 32 samples of
s, 1s used to initialize Wy, The effective tremor ampli-
tude g; of the ith harmonic is

N
a, =W+ Wi, (5)

If desired, the effective peak-to-peak tremor amplitude
may be obtained by multiplying a; by 2. For clinical
use, the mean and standard deviation of the frequency
and amplitude results may also be calculated.

2. Experimental methods

A SummaSketch digitizing tablet (Summagraphics,
Seymour, CT) with a two-button stylus was used to
collect data. The stylus resembles a pen. Digitizing
tablet operation was described by Elble et al. (1990).
The data sampling rate of the tablet is 116 Hz. This
sampling rate avoids aliasing, since the highest frequen-
cies of pathological hand tremor are between 12 and 15
Hz, and normal handwriting and drawing frequencies
are no higher than 6 Hz (Elble et al., 1990). The
resolution of the tablet is 400 lines per cm, with accu-
racy of +0.004 cm. Data for the study were transmit-
ted in binary format to an IBM-compatible PC, via a
driver written in Microsoft Quick Basic. The data were
then processed by the WFLC program, written in Bor-
land Turbo C. The tremor quantification package in-
cludes a graphics routine which presents the frequency
and amplitude histories on the computer screen and
printer.

To avoid biased frequency estimates from the colored
voluntary motion, the data were first highpass filtered
using filtfilt, a forward-backward filtering technique
featuring zero phase shift, available in Matlab (The
Math Works, Natick, MA). The filter was a 1000-order
Hamming-windowed finite impulse response highpass
with linear phase (designed using the Matlab command
firl). The cutoff frequency of 1 Hz was chosen to
preserve the frequency range of pathological tremor,
which is typically 2 Hz or greater (Elble and Koller,
1990). The first 2 s of each recording were set aside to
allow the adaptive algorithm to learn the tremor char-
acteristics, and therefore not included in the figures.
The following parameter values were used: u = 0.06,
Ho=12x10"7, i=015, M= 1. The results presented
are the tremor frequency fﬂk and the amplitude a, (Egs.
(4) and (5)).

To demonstrate the WFLC in a simple fashion, the
technique was first tested on two synthetic data sets
described below. The system was then tested using
clinical data recorded as described above. The subjects
were a man, age 68, with Parkinsonian tremor, and a
man, age 84, with essential tremor. The essential tremor
subject drew an Archimedes spiral on the digitizing
tablet. He was observed to ensure that no cycle of the
spiral was drawn faster than 1 Hz. The Parkinsonian
subject rested the pen on the tablet. The subjects gave
written consent according to a protocol approved by
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the Joint Committee on Clinical Investigation of the
Johns Hopkins Medical Institutions. Additional data,
from a patient with advanced essential tremor, display-
ing spontaneous changes in frequency, was provided by
Dr R.J. Elble. This patient wrote a series of cursive /’s
on a digitizing tablet. The sampling rate for this data
was 169 Hz, and, 4= 0.1 was used.

3. Synthetic data
3.1. Data set 1

The first data set was used to test tracking of large
changes in tremor frequency and amplitude by the
WFLC. The basic model used to simulate tremor was
similar to that of Gresty and Buckwell (1990):

7. = K(1 +n, ) cos2nfk + bn, ), (6

incorporating bandwidth limited noise components, #,
and #n, filtered —20 dB down at 1.2 Hz. The noise
magnitudes were limited to avoid phase reversal. The
Gresty and Buckwell model was expanded to also in-
clude deterministic components, ¢, and ¢, which mod-
ulated the signal amplitude and frequency. The tremor
signal was therefore simulated in the following way:

si=K( +n, +¢&,)cosQnafk +bn, + ¢ ). (7)

The parameters used were: K=0.56 cm, f=3 Hz,
and b=0.15. ¢, modulated the carrier frequency to
approximately 5 Hz by the end of the data set.

For data set 1, the frequency error, or difference
between the true frequency and WFLC frequency esti-
mate, was

. bdn
fk—f+ﬂ dk

1dg,  wo,

2r dk 2m°

8)

The error between the WFLC frequency estimate and
the deterministic part of the input frequency was

f=(f+%%>—‘2—n ©)
The amplitude error was

de=a, —K(1+n, +&,) (10)
with deterministic component

Gy, = i, — K(1+¢,,). (1
3.2. Data set 2

The purpose of the second data set was to test the
behavior of the WFLC when multiple tremor frequen-
cies were present. Two separate tremor signals were
generated according to the Gresty and Buckwell (1990)
model (6), at f=3 Hz and /=5 Hz, respectively. The

following parameters were used: K= 0.42 cm, b= 0.15.
These were then added to produce data set 2, contain-
ing two simultaneous oscillations: s, =1,{3 Hz} +
7,{5 Hz}. The duration of each synthetic data set was
60 s.

4. Results
4.1. Synthetic data

Results for synthetic data set 1 are presented in Fig.
2. The WFLC signal model clearly tracked the signal
frequency as it modulated from 3 to 5 Hz. The mean
frequency error was —0.007 Hz. The algorithm also
modeled the amplitude-modulating effects of both the
noise n, and the deterministic component ¢,,, with mean
amplitude error of 0.2% of the average input amplitude.
The error values are summarized in Table 1.

The results for synthetic data set 2, shown in Fig. 3,
demonstrate the behavior of the system when two
sinusoids of roughly equal power are present, as shown
in the spectral density of Fig. 3(d). The WFLC is
designed to model a single oscillation, whose frequency
may be modulating (Section 2). For data set 2 the error
gradient had a local minimum at each of the two
sinusoids, and since they had approximately equal
power, the WFLC converged to the frequency nearest
its initial value. As Fig. 3(b) shows, the algorithm
tended to the lower frequency of the two sinusoids. The
WFLC results in Fig. 3(b) do not reflect any modula-
tion of the signal from 3-5 Hz during the test. Since
the two frequencies in question are not harmonics, this
indicates that the multiple peaks in the spectrum of Fig.
3(d) are due to independent simultaneous oscillations.

Note the similarity between the power spectral densi-
ties in Fig. 2(d), and Fig. 3(d), despite the large differ-
ence in the actual signals. Despite their similar power
spectra, the WFLC distinguished between the two sig-
nals, data sets 1 and 2, by displaying their time-varying
frequency characteristics in Fig. 2(b) and Fig. 3(b).

4.2. Patient recordings

Figs. 4-6 present clinical examples of tremor
quantified using the WFLC. The subject with Parkinso-
nian tremor produced the results shown in Fig. 4. As is
common in Parkinsonian tremor (Lakie and Mutch,
1989), this recording shows almost no frequency modu-
lation. The algorithm identified the tremor frequency of
~ 4 Hz, as reflected in Fig. 4(b).

Results from the first subject with essential tremor
are displayed in Fig. 5. As shown in Fig. 5(d), this
recording exhibited two prominent spectral peaks at
1.50 and 5.00 Hz. The latter frequency is not a har-
monic, or multiple, of the former. Since the WFLC is
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Fig. 2. Results for synthetic data set 1. Carrier frequency changes from 3 to 5 Hz during the test. (a) High-pass filtered input to WFLC. (b)
Frequency results. Mean = 4.1 Hz, S.D. = 1.0 Hz. (c) Amplitude results. Mean = 0.54 c¢m, S.D. = 0.16 cm. (d) Power spectral density via FFT.

designed to model a single nonstationary oscillation,
the frequency weight tracks the single dominant fre-
quency at each step. It therefore clarifies, in Fig. 5(b),

Table 1
WFLC frequency and amplitude error for simulated tremor (data set
1, Fig. 2)

Parameter Mean Error S.D
Frequency (Hz)
Overall —0.007 0.275
Deterministic component —0.007 0.076
Amplitude (% of input)
Overall 0.2 12.7
Deterministic component —35 21.2

Amplitude error is presented as a percentage of the average input
amplitude.

that in this test the spectral peak at 5 Hz is not due
to modulation of the lower frequency oscillation dur-
ing the test, but rather to a separate oscillation. If a
modulation to 5 Hz had occurred, it would be
reflected in the WFLC frequency results, as in Fig.
2(b).

Fig. 6 presents results from a patient with advanced
essential tremor. In some severe cases essential tremor
has been found to exhibit unusual spontaneous fre-
quency modulations (Elble and Koller, 1990), as Fig.
6(a) shows. These modulations are reflected in the
WFLC frequency results in Fig. 6(b). The power spec-
trum exhibits numerous peaks from 1.5 to 8.5 Hz
The frequency history in Fig. 6(b) covers almost this
entire range, suggesting that the multiple spectral
peaks are due to frequency modulation of the tremor
during the test, rather than to multiple simultaneous
oscillations.
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Fig. 3. Results for synthetic data set 2. This set consists of two simultaneous sine waves: one at 3 Hz and one at 5 Hz. (a) High-pass filtered input
to WFLC. (b) Frequency results. Mean = 35 Hz, S.D. = 0.2 Hz. (¢) Amplitude results. Mean = 0.49 cm, S.D. = 0.24 cm. (d) Power spectral density

via FFT.
5. Discussion

Existing quantitative methods for signal analysis in-
clude the FFT, STFT, autoregressive (AR) estimators,
wavelet transforms, and time—frequency (¢—f") distribu-
tions. The FFT and STFT are limited by a tradeoff in
resolution between time and frequency (Cohen, 1989).
The FFT and AR methods are not suited to nonsta-
tionarity. AR estimators offer high frequency resolu-
tion, but depend on a priori knowledge of model order,
which is difficult to obtain. Too large a model order
can cause spurious spectral peaks (Kay, 1988). Wavelet
analysis, decomposing a signal onto basis functions,
offers good time resolution at high frequencies, and
good frequency resolution at low frequencies (Mallat,
1989). It handles nonstationarity, but depends upon
prior selection of a proper wavelet prototype. The
current theory provides no clear answer as to what

family of wavelets is best for a given application. 7—f
distributions represent nonstationary signals, but can
exhibit spurious spectral content due to cross terms
(Cohen, 1989).

The WFLC possesses a number of beneficial charac-
teristics. It is computationaly simple, operates in the
time domain, offers high resolution, and is well suited
to nonstationary spectral analysis, explicitly presenting
variations in frequency and amplitude. As a real-time
tracking algorithm, the WFLC requires some time to
adapt to changes in signal characteristics, converging
according to Eq. (B-1) and Eq. (B-2). It cannot respond
instantaneously to changes in the input; however, it
does not suffer from cross terms.

Unlike most other methods, the WFLC is designed
to represent only a single nonstationary oscillation.
This simplifies clinical interpretation, as often only one
oscillation of interest is present. However, when multi-
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Fig. 4. Sample from patient with Parkinsonian tremor. Subject rested pen on tablet. (a) High-pass filtered input to WFLC. (b) Frequency results.
Mean = 4.0 Hz, S.D. =0.1 Hz. (c) Amplitude results. Mean =0.23 c¢cm, S.D. = 0.08 cm. (d) Power spectral density via FFT.

ple oscillators are present, the WFLC cannot model
both. Oscillations other than the primary one iden-
tified by the WFLC can be seen in the suggested
companion FFT, as presented in each of the data
figures. Alternatively, if the number of oscillations
present is known, multiple WFLCs may be initialized
at different frequencies, and allowed to track the mul-
tiple independent oscillations. If two oscillations are
close in frequency, small g, values should be used,
and a long duration will be needed for convergence.

The WFLC is an adaptive signal processing tech-
nique that learns input signal characteristics over
time. The rate of adaptation can be modified easily by
changing the adaptive gain parameters of the filter.
High adaptive gains offer faster convergence and bet-
ter tracking of modulation of tremor frequency and
amplitude, but produce greater susceptibility to noise
and artifacts. Low adaptive gains are less susceptible

to noise, but also less capable of tracking signal mod-
ulation. If rapid tracking of signal modulation is de-
sired, care should be taken to avoid voluntary motion
in the frequency range of tremor, e.g. by ensuring an
Archimedes spiral is drawn slowly.

Slow amplitude modulation is present in some cases
of tremor. This produces a low spectral sideband, but
the slow amplitude change is likely to be lost with the
highpass prefilter used in these experiments. If detec-
tion of such a sideband in the WFLC results is de-
sired, careful restriction of the voluntary motion will
allow the use of a much lower prefilter cutoff fre-
quency, preserving the slow oscillation in the ampli-
tude weights (part (c¢) of each figure). Parkinsonian
resting tremor often exhibits this sort of slow ampli-
tude modulation. Since voluntary motion is zero by
definition in this case, the highpass prefilter may be
omitted altogether.
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Fig. 5. Sample from male patient with essential tremor. Subject drew an Archimedes spiral. (a) High-pass filtered input to WFLC. (b) Frequency
results. Mean = 2.1 Hz, S.D.=0.2 Hz. (c) Amplitude results. Mean =0.17 cm, S.D. = 0.10 cm. (d) Power spectral density via FFT.

While the present work analyzes displacement data
obtained with a digitizing tablet, the WFLC is equally
suited to processing tremor recordings from other
sources, such as accelerometers, and of other quantities,
such as velocity and acceleration. The algorithm is
computationally simple, and provides clinical results
rapidly. Because it continuously tracks changes in
tremor frequency and amplitude, the WFLC is well
suited to processing long term recordings (Tyrer and
Bond, 1974; Redmond and Hegge, 1985). It can also be
used in real time as a rehabilitative tremor-reducing aid
for computer input using a mouse, digitizing tablet, or
pen interface (Riviere and Thakor, 1996).

Temporal variation in tremor frequency often takes
the form of frequency modulation, or ‘jitter,” around a
constant ‘carrier frequency’ (Gresty and Buckwell,
1990), but sometimes includes larger frequency modula-
tion, which might be described as a change in the

carrier frequency itself. An extreme example of the
latter is presented in Elble et al. (1990), in which the
tremor frequency changes spontaneously from 4.2 to
7.2 Hz. The WFLC is designed to track changes in
carrier frequency, rather than rapid jitter about the
carrier frequency. This characteristic is exemplified by
the standard deviation of the frequency error from
simulated data set 1 (Table 1). The capability of the
WFLC to detect changes in frequency is demonstrated
via simulation in Fig. 2(b). Another example of this can
be seen in Fig. 6, where the dominant tremor frequency
is rapidly changing. FFT-based spectral analysis of
tremor reflects the presence of multiple frequency com-
ponents (Fig. 2(d), Fig. 3(d), Fig. 5(d) and Fig. 6(d)),
but it does not indicate the frequency variation over
time in the signal (Cohen, 1989), whereas the WFLC
quantifies this frequency modulation (Fig. 2(b) and Fig.
6(b)), or the lack of it (Fig. 3(b) and Fig. 5(b)). Sub-
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Fig. 6. Sample from patient with advanced essential tremor. Subject drew a series of cursive I's. (a) High-pass filtered input to WFLC. (b)
Frequency results. Mean = 4.5 Hz, S.D. = 1.5 Hz. (¢c) Amplitude results. Mean = 0.42 cm, S.D. =0.22 cm. (d) Power spectral density via FFT.

stantial changes in tremor frequency during brief
recordings are somewhat rare (Riley and Rosen, 1987)
(e.g. Fig. 4). Therefore, the larger the standard devia-
tion of the WFLC frequency output, the more likely the
tremor is either a relatively unusual case containing
multiple oscillations or more rapid modulation, as in
Fig. 6, or possibly multiple oscillations whose ampli-
tudes vary such that none are consistently dominant.

The WFLC is particularly useful when spectral anal-
ysis of tremor exhibits multiple peaks. The presence of
multiple spectral peaks has sometimes been interpreted
to indicate the presence of multiple independent tremor
mechanisms (Findley et al., 1981). Gresty and Buckwell
(1990) pointed out that this is often done in error, since
multiple peaks may be due to modulation of a single
tremor mechanism. Fourier analysis decomposes a sig-
nal into individual frequency components, but it does
not indicate when a given frequency occurred (Cohen,
1989). Signals strongly different in time may exhibit

almost identical power spectra. As seen in Fig. 2(d) and
Fig. 3(d), a single oscillation modulating from one
frequency to another is difficult to distinguish from two
independent oscillations solely on the basis of spectral
analysis. By quantifying the time-varying characteristics
of the tremor signal, the WFLC correctly interprets the
results of spectral analysis. Combining the WFLC with
the FFT for analysis of tremor provides not only a
power spectrum, but also graphical and statistical infor-
mation about variations in tremor frequency and am-
plitude, producing a more accurate picture of tremor
than the FFT alone.
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Appendix A. The Least-mean-square Algorithm

The least-mean-square (LMS) algorithm (Widrow
and Stearns, 1985) is a simple adaptive signal process-
ing method. It is most commonly used in an ‘adaptive
linear combiner’ architecture, so named because the
filter output is a linear combination of the reference
inputs. The LMS algorithm is an iterative gradient
search method, which adjusts its filter weights at each
time step to optimize its performance. Given a desired
response s, and a reference input vector x, composed of
signals Xy,5e X241, the filter error is

b = S — Wi, (A-1)

Holding the weights constant and assuming s, x,, and
& wide sense stationary, the mean square error (MSE)
is

¢ = E[e2] = E[s2] + wRw — 2E[s,x[]w (A-2)

where E[-] denotes expected value, and R = E[x.x[].
The MSE ¢ is minimized at the point where its gradient
is zero:

FE
— =2Rw —2E[s,x,]=0 (A-3)

w
The optimum weight vector w*, which results in the
minimum error, is then w* =R~ 'E[s,x,]. This vector,
not known a priori, is the goal of the iterative gradient
search.

The gradient search method commonly used is a
steepest descent approach, in which the weights are
adjusted in the decreasing direction of the gradient:

¢

Wk~1:Wk—ﬂ5w-
k

The LMS algorithm simplifies the gradient search by
using the instantaneous squared error &; as an estimate
of &. The LMS gradient search iteration which adjusts
the filter weights is then

oe;

Wk+1:”’k_/‘a7 (A-4)
k

which from (A-1) is
Wiy 1 = Wi+ 206X (A-5)

The LMS algorithm can be shown to be stable for
(Widrow and Stearns, 1985)

0 <—l- A-6
<u [R] (A-6)

where tr[-] indicates the matrix trace.

Appendix B. Performance of the WFLC

The frequency adaptation of the WFLC uses a non-
linear phase-lock technique (Viterbi, 1966), hence it is
not possibie to define a time constant for frequency
adaptation. In the absence of noise, the frequency
convergence behavior of the algorithm is described
approximately by the following expression for the
change in the frequency weight wo, at time & (Riviere,
1995): :

2poup . ( (Wo ))
Wo o1 — Wy = ——=P_ in( tan | =% (B-1)
0, +1 0, //12+W%k u

N

where, u, and p are the adaptive gains for frequency
and amplitude, respectively, p is the power of the input
oscillation being modeled, and wok is the error, or
difference, in frequency between the input oscillation
and the WFLC model at time k. Assuming frequency
convergence, the convergence time constant for the
amplitude weights, w,, is (Vaz and Thakor, 1989):

1
T,= o (B-2)
The same holds for #,, with j substituted for .

The ability of the WFLC to respond to rapid fre-
quency shifts therefore depends upon the selected adap-
tive gain parameters, the input power, and the
frequency error, or size of the shift (B1). Detection of
oscillation components requires sufficient duration for
convergence to occur. The frequency convergence be-
havior of the WFLC can be seen in Fig. 6(b) in the
frequency increase from roughly 4-7.5 Hz between 3.5
and 4 s. The frequency convergence rate can be in-
creased by increasing u,, but should be kept well below
2/p, where p is the input power (Riviere, 1995). As an
adaptive modeling algorithm, once convergence occurs,
WFLC results are independent of data record length
for stationary input.

References

Boyce, W. and DiPrima, R. (1986) Elementary Differential Equations
and Boundary Value Problems, Wiley, New York, 654 pp.

Choi, H.I. and Williams, W.J. (1989) Improved time—frequency
representation of multicomponent signals using exponential ker-
nels, IEEE Trans. Acoust. Speech Signal Process, 37: 862-871.

Cohen, L. (1989) Time-frequency distributions-a review, Proc. IEEE,
77 941-981.

Elble, R.J. (1986) Physiologic and essential tremor, Neurology, 36:
225-231.




C.N. Riviere et al. /Journal of Neuroscience Methods 74 (1997) 77-87 87

Elble, R.J., Sinha, R. and Higgins, C. (1990) Quantification of tremor
with a digitizing tablet, J. Neurosci. Methods, 32: 193-198.

Elble, R.J. and Koller, W.C. (1990) Tremor, Johns Hopkins Univer-
sity Press, Baltimore, 204 pp.

Findley, L.J., Gresty M.A. and Halmagyi GM. (1981) Tremor, the
cogwheel phenomenon and clonus in Parkinson’s disease, J. Neu-
rol. Neurosurg. Psychiatry., 44: 534-546.

Gresty, M. and Buckwell, D. (1990) Spectral analysis of tremor
understanding the results, Electroencephalogr. Clin. Neurophys-
iol., 53: 976-981.

Guo, Z., Durand, L.-G. and Lee, H.C. (1994) Comparison of time—
frequency distribution techniques for analysis of simulated
Doppler ultrasound signals of the femoral artery, IEEE Trans.
Biomed. Eng., 41: 332-342.

Jamous, G., Durand, L.-G., Langlois, Y .E., Lanthier, T., Pibarot, P.
and Carioto, S. (1992) Optimal time-window duration for com-
puting time/frequency representations of normal phonocardio-
grams in dogs, Med. Biol. Eng. Comput., 30: 503-508.

Kay, S. (1988) Modern Spectral Estimation, Prentice Hall, Engle-
wood Cliffs, N.J., 543 pp.

Lakie, M. and Mutch, W.J. (1989) Finger tremor in Parkinson’s
disease, J. Neurol. Neurosurg. Psychiatry, 52: 392-394.

Mallat, S.G. (1989) A theory of multiresolution signal decomposition:
the wavelet representation, IEEE Trans. Pattern Anal. Mach.
Intell., 2: 674-693.

Marquardt, C. and Mai N. (1994) A computational procedure for
movement analysis in handwriting, J Neurosci. Methods, 52:
39-45.

Oppenheim, A.V. and Schaefer, R.-W. (1989) Discrete-Time Signal
Processing, Prentice Hall, Englewood Cliffs, N.J., 879 pp.

Redmond, D.P. and Hegge, F.N. (1985) Observations on the design
and specification of a wrist-worn activity monitoring system,

Behav. Res. Methods Inst. Comput., 17: 659-669.

Reich, S.G. (1995) Common disorders of movement tremor and
Parkinson’s Disease. In L.R. Barker, J.R. Burton, and P.D. Zieve
(Eds.), Principles of Ambulatory Medicine, fourth edition,
Williams and Wilkins, Baltimore, pp. 1217-1229.

Riley, P.O. and Rosen, M.J. (1987) Evaluating manual control
devices for those with tremor disability, J. Rehab. Res. Dev., 24:
99-110.

Riviere, C.N. (1995) Adaptive suppression of tremor for improved
human-machine control, Ph.D. dissertation, Johns Hopkins Uni-
versity, Baltimore, MD.

Riviere, C.N. and Thakor, N.V. (1996) Modeling and canceling
tremor in human-machine interfaces, IEEE Eng. Med. Biol. Mag,.,
15(3): 29-36.

Tyrer, P.J. and Bond, A.J. (1974) Diurnal variation in physiological
tremor, Electroencephalogr. Clin. Neurophysiol., 37: 35-40.
Vaz, C.A. and Thakor, N.V. (1989) Adaptive Fourier estimation of
time varying evoked potentials, IEEE Trans. Biomed. Eng., 36:

448455,

Vaz, C., Kong, X. and Thakor, N. (1994) An adaptive estimation of
periodic signals using a Fourier Linear Combiner, IEEE Trans.
Signal Process, 42: 1-10.

Viterbi, A.J. (1966) Principles of Coherent Communication, Mc-
Graw-Hill, New York, 321 pp.

Wade, P., Gresty, M.A. and Findley, L.J. (1982) A normative study
of postural tremor of the hand, Arch. Neurol., 39: 358-362.
Widrow, B. and Stearns, S.D. (1985) Adaptive Signal Processing,

Prentice-Hall, Englewood Cliffs, N.J., 474 pp.

Wood, J.C., Buda, A.J. and Barry, D.T. (1992) Time-frequency
transforms: a new approach to first heart sound frequency analy-
sis, IEEE Trans. Biomed. Eng., 39: 728-739.



