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Abstract

The paper addresses the issue of the role of non-linear muscle dynamics in determining the

smoothness and invariance of handwriting trajectories. In particular, a speci®c neuromuscular

control model is described that has recently been shown to explain the detailed time course of

hand sti�ness during arm reaching movements. In the paper the model is applied to more

complex handwriting trajectories, with the purpose of verifying to which extent the load

compensation capabilities of the periphery can subserve motor equivalence. Simulations show

the power of the mechanism for movements of ``normal'' speed. For quicker movements

periphery alone is not enough and a central load compensation action is clearly re-

quired. Ó 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The smoothness of hand trajectories, in general, and of cursive handwriting, in
particular, has long been the subject of study and controversy. Is it embedded into
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the motor planning processes or is it a consequence of the dynamics of the neuro-
muscular system? Are the motor plans analogic/smooth or symbolic/discrete? Hu-
man movements are indeed smooth, in the sense that can be described by
mathematical models that maximize some kind of smoothness criterion (Flash and
Hogan, 1985; Uno et al., 1989). On the other hand, the detailed analysis of the speed
pro®le clearly shows that complex movements are segmented into sub-movements
and it is quite tempting to assume that the global observed movement is just an
emergent property, determined by the superposition of individually smooth primi-
tives. In fact, an argument against a dynamic explanation is that it is di�cult to
reconcile it with the observed scale and shift invariance of handwriting patterns: the
dynamic interaction forces in the arm are strongly non-linear and their e�ects are
con®guration-dependent, inducing patterns of anisotropy and deformation that are
not invariant with scaling and shifting.

At the same time, a consistent body of knowledge is being accumulated (Gielen
and Houk, 1987; Lin and Rymer, 1997; Gribble et al., 1998) that emphasizes the
``surprising'' e�ects of the non-linear dynamics of the ``motor servo'' (the muscular
system and the associate segmental re¯ex mechanisms). In fact, most neuromotor
models are based on an explicit/implicit linearity hypothesis that assigns a constant
sti�ness to the muscles, thus posing an unsolvable dilemma: if sti�ness is ``small''
and compatible with physiologic values near equilibrium, then model-driven tra-
jectories tend to be highly distorted; if sti�ness is big enough to counteract the
distorting e�ects of dynamics, then its value turns out to be beyond the normal
physiologic range. On the contrary, the non-linear muscle model used in the paper
can ®t both requirements: small ``real'' sti�ness at rest and high ``virtual'' sti�ness
during the acceleration and deceleration phases, in agreement with the experimental
results of Gomi and Kawato (1996). We show that in this way the system appears
to be, at the same time, highly compliant and rather insensitive to size and time
scaling because it allows a satisfactory partial compensation of the dynamic in-
teractions.

In the paper, we investigate to which extent such non-linear muscle dynamics may
explain, at the same time, the smoothness and size/shift invariance of complex tra-
jectories typical of handwriting patterns.

2. Arm and muscle model

We simulated handwriting movements in the horizontal plane by means of a
planar model of the arm with two degrees of freedom (elbow and shoulder rotation,
respectively) and six muscles: four single-joint muscles (pectoralis, deltoid, long head
of the biceps, lateral head of the triceps) and two double-joint muscles (short head of
the biceps and long head of the triceps). Moment arms of the muscles were assumed
to be constant. The model has been used for the investigation of reaching movements
(Gribble et al., 1998).

The muscle part of the model, illustrated in Fig. 1, is a simpli®ed, lumped-pa-
rameter model that does not reach the level of motor units but still attempts to be
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biologically realistic from the point of view of system dynamics. Its plausibility is
based onto two di�erent lines of evidence: structural/local and behavioral/global.
From the structural point of view, the model attempts to incorporate, separately for
each muscle, a number of non-linear e�ects characterized by experimentally evalu-
ated parameters. From the behavioral point of view, we checked the consistency of a
multiple-muscle system, constructed with such muscular components, with experi-
mental data about end-point impedance, that depend on the global interaction of
whole musculo-skeletal system. As mentioned above, this level of analysis has been
demonstrated to be su�cient to explain the characteristic time-course of arm sti�ness
in reaching movements (Gribble et al., 1998), thus motivating our study of the
smoothness/invariance features of handwriting movements.

The main features of the model can be summarized as follows:
1. Muscle force is decomposed into a non-controllable passive component and a

controllable active component:

fm � fp � fa: �1�
2. The passive component is modeled for simplicity as a linear spring. 1

3. The active component is modeled as the cascade of three mechanisms: (i) a con-
trollable force generation system, which depends of the muscle activation A(t)
and is compatible with the family of k-models (Feldman and Levin, 1995); (ii)
a mechanism of graded force development, which takes into account the dynamics
of fused tetanus formation; (iii) a non-linear force±velocity relationship which is
related to the well known HillÕs law.

4. The force generation mechanism is modeled as follows:

Fig. 1. Simulation model of the muscles. The model has four inputs (the command variable lambda, the

parameters, the length of the muscle and its speed of contraction) and one output (the force).

1 The rest-lengths were chosen as the lengths of the muscles for a reference arm posture (shoulder angle:

45o; elbow angle: 90o). The sti�ness coe�cients were assumed to depend linearly upon the cross-sectional

areas of the muscles: 36.5 N/m (short head of the biceps), 190.0 N/m (long head of the biceps), 258.5 N/m

(deltoid and pectoralis), 209.0 N/m (lateral head of the triceps), 116.3 N/m (long head of the triceps).

V. Sanguineti et al. / Acta Psychologica 100 (1998) 217±227 219



f � q�ecA ÿ 1�; �2�
where c is a universal parameter that characterizes the ``muscle tissue'' and is the
same for all the muscles, whereas q is speci®c for each muscle and is assumed to
depend linearly on the physiological cross-sectional area. 2 The exponential form of
the function incorporates the size principle, which is known to characterize the re-
cruitment of motor units during the graded build-up of muscle force. The muscle
activation variable A(t) is a function of muscle length l, its rate of change dl/dt, and
the controllable neural input k:

A�t� � �l�t ÿ d� ÿ k�t� � ldl�t ÿ d�=dt��; �3�

where [ ]� is a ramp function (it clips the output to 0 for negative inputs), d is the
delay of the segmental tonic and phasic re¯exes, 3 and l is the gain of the phasic
segmental re¯ex; 4 k is the centrally speci®ed rest-length of a muscle.

5. The mechanism of graded force development is approximated, for simplicity, by
means of a low-pass ®lter, characterized by a time constant of 15 ms (it yields a
``tetanic fusion`` of about 60 ms.).

6. The force±velocity relationship is approximated by a sigmoid, in agreement with
the experimental data of Joyce and Rack (1969).

The dynamic model of the whole arm translates the muscle force vector fm into the
corresponding joint torque vector sm according to the moment-arm matrix Jm:
s� (Jm)T fm. This vector is balanced with the internal load (due to inertial torques)
and the external load (due to friction of the of the pen with the writing surface,
disturbances, etc.). The combined equation can then be written as follows:

I�q�d2q=dt2 � C�q; dq=dt�dq=dt � �Js�Tf load � �Jm�Tf m; �4�

I is the inertial matrix, C the Coriolis matrix, q is the vector of joint angles; Js is the
``spatial'' Jacobian matrix that maps end-e�ector forces into joint torques and is a
function of q; Jm is the ``muscle'' Jacobian matrix and is constant in our case for the
simplifying assumption about the moment arms of the muscles. The mechanical
parameters of the arm, which determine the values of I, C, Js, Jm, are compatible
with typical human data (Winters and Woo, 1990). In the simulations we assumed
that the pen friction can be neglected.

2 According to empirical force-length data (Feldman and Orlovsky, 1972), c can be ®tted with the value

0.112 mmÿ1. In agreement with Winters and Woo (1990), the following estimates of cross-sectional areas

were used: short head of the bicepts 2.1 cm2; long head of the biceps 11 cm2; deltoid and pectoralis 14.9

cm2; lateral head of the triceps 12.1 cm2; long head of the triceps 6.7 cm2. The associated conversion factor

has been chosen to be 25 N/cm2 in order to ®t empirical measurements of arm sti�ness (Tsuji et al., 1995)
3 The estimate of d is 25 ms, in agreement with the unloading response of human arm muscles (Houk

and Rymer, 1981).
4 The estimate of l is 0.06 s, in order to ®t measured values of joint viscosity (Tsuji et al., 1995).
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2.1. Motor commands

According to the structure of k-models, the motor command vector k(t) has two
components: a reciprocal component kR and a co-contraction or co-activation
component kC. The reciprocal command corresponds to the ideal or equilibrium
trajectory, expressed in muscle coordinates. If this command is produced with very
small speed and acceleration, then the left-hand side of Eq. (4) is almost null, i.e.
the system ``slides'' on the ideal path while remaining close to equilibrium: fm�0
and thus kR� leq (according to Eqs. (2) and (3)). This vector (6-dimensional in our
case) is completely speci®ed by the vector of free variables (2-dimensional in our
case). Reciprocal commands of antagonistic muscles will vary over time in
opposite directions whereas the commands of synergistic muscles will tend to co-
vary.

The co-activation component, on the contrary, is a command with the same sign
for all the muscles, agonists and antagonists. (It is subtracted from kR in all cases.)
Mathematically, it must satisfy the homogeneous equation (Jm)T fm� 0: the motor
torque vector must be null although the muscle forces are not. In algebraic terms, we
can say that the force vector due to co-activation commands must span the so-called
kernel-space of Jm

5 and since this matrix is assumed to be constant, it turns out that
in our model the co-activation vector is proportional to a constant vector. The
meaning of this vector is the relative ``mixing'' proportions of muscle forces con-
sistent with equilibrium in di�erent parts of the work-space. 6 In the simulations, the
vector was modulated by a single parameter or scalar co-activation command; the
value was chosen in such a way to limit the corresponding muscle forces to a level
comparable with the peak load-related forces and thus it was increased for quicker
movements.

Let us now suppose that an equilibrium trajectory has been chosen, including its
shape and timing: from this, the reciprocal time-varying command vector is directly
obtained and the chosen co-contraction vector is then subtracted, thus producing the
total command level of k(t). The real trajectory can be computed by integrating Eq.
(4) and it will necessarily di�er from the virtual trajectory because it is such a dif-
ference that is the causal element for the generation of the muscle forces required for
counteracting the internal and external loads. For the purpose of this paper, the
equilibrium trajectory was chosen on purpose to be non-smooth, in order to test to
which extent muscle dynamics might carry out, at the same time, a smoothing and
load compensation action.

5 This is a geometric statement, independent of the muscle model.
6 It should be noted that although the co-activation force vector fm has a constant direction, for the

assumption about the moment-arms of the muscles, the corresponding command vector kC changes

direction with di�erent levels of co-activation level, as a consequence of the non-linearity of Eq. (2).
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3. Simulation results

In the simulation experiments that involved handwriting, the equilibrium-trajec-
tory was determined by sub-sampling a digitized handwritten trace, such as an l-
shape, thus yielding a small number of via-points uniformly spaced in time (about 5
points per stroke). The command pattern was then constructed as a linear polygon
and each side was sampled at constant speed, providing a non-smooth command
structure as regards both shape and timing. Moreover, this command was scaled in
space and time, in order to test the size/time scaling invariance of the control
mechanism. The simulations were not meant to demonstrate that the brain con-
structs the motor command in this way but rather to explore the smoothness/in-
variance issue. For this reason, it is convenient to test the system with non-smooth
command patterns and the procedure above is just a simple method to generate
them.

In the simulations, with increasing values of speed we also increased the level of
co-contraction, in agreement with Bennett et al. (1992), Gribble et al. (1998).

Figs. 2 and 3 illustrate an example, representative of the di�erent simulations. Fig.
2 is related to the movement at normal speed (total duration of the input command is
2 s). The top panel shows the command pattern (thick line) and the resulting output
trajectory, which is smoothed and only slightly distorted. Note that the two axes are
in meters and so this particular example refers to a very large movement, with the
purpose to exaggerate the dynamic e�ects. However, for this timing the results are
very similar also for centimeter-size letters. The bottom panel shows, for the same
movement, the corresponding speed pro®le: the three peaks, which are typical for
this type of letter, are an emergent property of the model dynamics because the
command variables have as many sharp transients as the via-points (15 in this case).
Very similar results are obtained if the number of via points is changed. 7 Fig. 3
shows the output trajectories produced with the same command pattern but di�erent
speed (the total duration of the command is 1 s in the top panel and 0.5 s in the
bottom panel): the distortion of the output trajectory increases with speed.

In general, the results can be summarized as follows:
1. In all cases, the trajectories are smooth and the general structure of the speed

pro®le is compatible with the characteristic succession of velocity peaks (one
per stroke). This is remarkable because the command pattern is non-smooth
and is composed of a larger set of via-points.

2. For movements with standard speed (which corresponds to a duration of each
underlying stroke of about 700±800 ms) the recorded trajectory is rather similar
to the equilibrium trajectory, irrespective of the spatial scaling of the command
pattern.

7 If sub-sampling is exaggerated, the resulting curve is distorted, but this is not dependent on the muscle

model per se. It only says that the motor command must contain enough information about the desired

trajectory to allow a suitable interpolation mechanism to reconstruct it. The rule of thumb is to have about

®ve via-points per stroke.
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Fig. 2. Simulation of an l-shaped trajectory for normal speed (command duration 2 s). Top panel:

equilibrium trajectory (thick line) and output trajectory (thin line). Bottom panel: speed pro®le of the

output trajectory.
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Fig. 3. Simulation of an l-shaped trajectory at high speed: equilibrium trajectory (thick line) and output

trajectory (thin line). Top panel: total command duration� 1 s; bottom panel: total command dura-

tion� 0.5 s.
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3. For faster movements (less than 500 ms per stroke), the discrepancy between the
equilibrium and output trajectories becomes signi®cant as well as the dependence
on the spatial scaling of the command pattern.

Thus, it appears that for normal speed movements the non-linear characteristics of
the neuromuscular machinery are capable to ®lter out the non-smoothness of the
command patterns and, at the same time, to compensate the dynamic e�ects of the
load, thus inducing the invariant spatio-temporal features. It is important to note
that a linear muscle model with the same level of rest-sti�ness would violate such
invariance, exhibiting a much greater discrepancy between equilibrium and output
trajectory even at low speed, as demonstrated by Gomi and Kawato (1996). How-
ever, the mechanism is functional up to a point: if the load is too big then the causal
relationship between the motor command and the actual trajectory is lost and some
additional mechanism must come into play.

4. Discussion

The simulation results are consistent with the claim (Gribble et al., 1998) that
contrary to what had been suggested in other studies (Latash and Gottlieb, 1991;
Gomi and Kawato, 1996), the equilibrium trajectory required for a desired hand-
written trace is not a complicated non-monotonically distorted path, at least for
normal movements that imply moderate amounts of dynamic disturbances. The non-
linear dynamics of the muscles behaves as a non-linear ®lter that compensates, at
least partially, the non-linear e�ects of the internal and external loads, thus allowing
a signi®cant degree of motor equivalence in the space domain. Thus, answering the
question posed by the paper, we suggest that the observed smoothness is at least
partially a direct consequence of the dynamic interactions in the muscles and asso-
ciated segmental re¯exes. However, the simulations also show that beyond a certain
speed such a mechanism becomes insu�cient, suggesting that the timing structure of
the recorded movements cannot be determined solely by periphery but must some-
how be an intrinsic property of the central command patterns. In any case, we are
not suggesting that for most normal movements, involvement of the central nervous
system is not necessary. We simply observe that the system can ignore internal and
external loads most of the time, while focusing its computational power on the basic
spatio-temporal sketch of the desired trajectories: the muscle properties are good
enough to smooth out the command patterns and compensate most of the loads,
while providing a good level of invariance.

All together, we can say, in contrast to what is supported by some authors, that
smoothness and motor equivalence is not the result of a direct optimization process
but is the emergent property of the interplay between peripheral features (the ®l-
tering/load-compensation properties of the neuromuscular actuators ± for slow
movements) and central mechanisms (the linear superposition of primitives and the
extra load compensation ± at high speed).

In fact, the intrinsic motor discretization of complex handwritten shapes into
sequences of simple submotions is not ruled out by the simulations but, on the
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contrary, provides a natural ground of complementarity between peripheral and
central mechanisms. The central nature of the segmentation is consistent, on the one
hand, with the phasic, burst-like nature of many neurons of the motor cortex (Fetz et
al., 1980) and, on the other, with the irregularity of unnaturally slow movements
(Vallbo and Wessberg, 1993). Moreover, the stroke-segmentation of handwritten
traces is quite compatible with the quantization of human motion that characterizes
accurate reaching movements (Burdet and Milner, 1998). Such movements, in
agreement with the early observations of Woodwarth (1899), are composed of two
di�erent phases, an approach and an adjustment phase, with a speed±accuracy trade-
o� that has been characterized in a quantitative way by Fitts (1954). The underlying
discrete nature of the centrally generated commands is strongly suggested by the
clearly segmented structure of arm movements in infants (von Hofsten, 1991): with
ontogenetic development and learning, the blending algorithm is optimized, while
preserving the same basic primitives.

As regards the load compensation at high speed, we argued elsewhere (Morasso
and Sanguineti, 1997) that it is not appropriate to consider it in terms of equilibrium
trajectory but as an independent mechanism probably related to the cerebellar
machinery, which operates in parallel and additively with respect to the cortico-
spinal machinery responsible of crafting the equilibrium trajectories.
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