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Abstract

The 2/3 power law, the nonlinear relationship between tangential velocity and radius of
curvature of the endeffector trajectory, has been suggested as a fundamental constraint of
the central nervous system in the formation of rhythmic endpoint trajectories. However,
studies on the 2/3 power law have largely been confined to planar drawing patterns of
relatively small size. With the hypothesis that this strategy overlooks nonlinear effects
that are constitutive in movement generation, the present experiments tested the validity
of the power law in elliptical patterns which were not confined to a planar surface and
which were performed by the unconstrained 7-DOF arm with significant variations in
pattern size and workspace orientation. Data were recorded from five human subjects
where the seven joint angles and the endpoint trajectories were analyzed. Additionally,
an anthropomorphic 7-DOF robot arm served as a “control subject” whose endpoint tra-
jectories were generated on the basis of the human joint angle data, modeled as simple
harmonic oscillations. Analyses of the endpoint trajectories demonstrate that the power
law is systematically violated with increasing pattern size, in both exponent and the
goodness of fit. The origins of these violations can be explained analytically based on
smooth rhythmic trajectory formation and the kinematic structure of the human arm. We
conclude that in unconstrained rhythmic movements, the power law seems to be a by-
product of a movement system that favors smooth trajectories, and that it is unlikely to
serve as a primary movement generating principle. Our data rather suggests that subjects
employed smooth oscillatory pattern generators in joint space to realize the required
movement patterns.

Key words: Human arm movements • Rhythmic coordination • Trajectory formation •
Power law • Smoothness

Invariant features of movement trajectories constitute an important window into under-
standing the fundamental organizing principles of biological motor control and the
physiology of nervous systems. In the present work, we will examine one of these fea-
tures, the 2/3 power law, with the goal of studying the mechanisms of rhythmic
movement generation. Early studies by Viviani and Terzuolo (1980; 1982) on hand-
writing and drawing movements observed that there is a systematic relationship be-
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tween the velocity of the endeffector trajectory and the geometric path1 that it describes.
This observation was quantified by Lacquaniti, Terzuolo, and Viviani (1983) as the “2/3
power law”: the angular velocity a t( ) of the endpoint is proportional to the curvature
c t( ) of the endeffector path by satisfying the power relation:
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The name “2/3 power law” originates from the formulation written in terms of angular
velocity a t( ) and curvature c t( )  with the exponent 2/3. With a view to the data analysis,
however, it is more convenient to use Equation (1) for the tangential velocity v t( )  and
radius of curvature r t( ) with power law exponent ß = 1/3. Hence, to avoid confusion,
we will refer to the 2/3 power law simply as the power law. The factor k in (1) is a pro-
portionality constant, also termed the “velocity gain factor” (Viviani and Cenzato,
1985). To appreciate the appeal of the power law, one needs to emphasize that there ex-
ists no physical reason why movement path and tangential velocity should be related.

Supporting evidence for the power law comes from numerous studies, ranging from
experiments on skill development (Viviani and Schneider, 1991), isometric force trajec-
tories (Massey, Lurito, Pellizzer, and Georgopoulos, 1992), perceptuomotor tasks
(Viviani and Stucchi, 1989; Viviani and Stucchi, 1992; Viviani, Campadelli, and
Mounoud, 1987; Viviani and Mounoud, 1990), and even including results from popula-
tion code activity in the cortex (Schwartz, 1994). Given this converging support, the
power law has become widely accepted as an important invariant in biological move-
ment trajectories and even an evaluation criterion for the “goodness” of models (e.g.,
Harris and Wolpert, 1998).

Yet, several studies showed that the power law does not always hold accurately. For
instance, in more complex (non-elliptical) movement patterns, movement segmentation
needs to be assumed to retain its validity (Viviani and Cenzato, 1985), and even in el-

                                                  
1 It is important to keep in mind that a movement path denotes the spatial realization of a movement, irrespective

of its timing, whereas a movement trajectory includes timing information. The quantitative description of move-
ment paths is the topic of differential geometry (e.g., Morasso, 1983); the radius of curvature is one such quantity.
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liptical patterns systematic deviations can be observed (Wann, Nimmo-Smith, and
Wing, 1988; Osu, 1993). An alternative perspective was taken by Gribble and Ostry
(1996) who demonstrated the validity of the power law but argued that it is primarily
caused by neurophysiological and biomechanic properties and not due to the control
mechanisms of the CNS.

The present study aims to find an explanation for the empirical phenomenon of the
power law. Two hypotheses are examined: i) the power law is an organizational princi-
ple for movement generation, implemented directly by the central nervous system, and
ii) the power law is a by-product of other mechanisms of trajectory formation. For this
purpose, we examined rhythmic elliptical movements performed by the whole arm in
3D. Ellipses have always been patterns that reliably satisfied the power law, or at least
in good approximation. In contrast to previous studies, however, we introduced signifi-
cant size and workspace variations in our experiments. These conditions reveal strong
violations of the power law in large patterns. Kinematic analyses of the human arm and
smoothness arguments will allow us to reconcile our results with previous research,
rendering the power law in rhythmic movement a by-product of smooth oscillatory
trajectory formation in joint space.

Methods and Materials

The following experimental setup is largely the same as previously detailed in Sternad
and Schaal (1999). We will thus describe only novel issues in the Methods and Materials
and, otherwise, refer to this previous work.

Experimental strategy

To present our arguments, the study adopts the following strategy. First, human sub-
jects perform cyclic drawing movements in 3D, i.e., without being constrained by a sur-
face. Importantly, subjects use their whole arm and the patterns are scaled in size, shape
and orientation to examine the influence of the kinematics of the arm on the endpoint
trajectory. Data are recorded from the endpoint and seven joint angles. Second, the joint
angular trajectories are approximated by continuous sine waves, in agreement with
previous findings of Soechting, Lacquaniti, and Terzuolo (1986) and Soechting and
Terzuolo (1986). Third, based on these sinusoidal fits, the human joint movements are
implemented and executed on a 7-DOF anthropomorphic robot arm. Fourth, the hand
paths of the robot produced by this control strategy are recorded in the same way as in
the human experiments and are compared to those of the subjects. This methodology
allows the direct comparison of data from human subjects with data from an artificial
system whose control strategy is known. Using a robot instead of a simulation enables
us to measure the artificial data with exactly the same devices as the human data, such
that both data sets undergo the same distortions from data recording and data process-
ing. In addition, the stringent constraints of an implementation on an actual robot
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helped assure the correctness of our statements and their applicability to a real anthro-
pomorphic movement system.

Participants

Five volunteers from our laboratory (2 female, 3 male) participated in the experiment.
Their age ranged between 24 and 38 years. All of them were right-handed and did not
report any previous arm injuries. The experiments had been approved by the ethics
committee and subjects gave their informed consent prior to their inclusion in the
study.

Data Recording

Data recording is identical to our previous study (Sternad and Schaal, 1999). In brief, six
color markers attached to the subjects’ arms were recorded at 60Hz with a color-vision
based motion analysis system (QuickMag, Japan). The arrangement of the markers was
such that joint angular data could be reconstructed robustly, and that 3D endeffector
data was directly available, too.

Robot

As described in Sternad and Schaal (1999), we employed an anthropomorphic robot
arm as a control subject. The arm has seven degrees of freedom (DOF) in a configura-
tion that mimics a human arm with a 3-DOF shoulder joint, a 1-DOF elbow, and a 3-
DOF wrist joint. For control, the robot employs kinematic trajectory plans (joint posi-
tion, velocity, and acceleration), converts those to joint torques by an inverse dynamics
model based on estimated parameters (An, Atkeson, and Hollerbach, 1988), and exe-
cutes the torque commands in conjunction with a low gain PID controller. The lengths
of the arm segments correspond to those of a tall human being with a total arm length
of 0.94 m (shoulder to fingertip).

Procedure of the human experiments

After the subject was seated, he/she was instructed to draw a series of ellipses with
his/her dominant arm in the transversal and frontal plane. The experimenter demon-
strated the elliptic patterns in their orientation with respect to the body and their ap-
proximate size. No extrinsic constraints were given that would confine the ellipse to a
plane. A first set of transversal ellipses was drawn so that the long axis of the ellipse
was approximately parallel to the x-axis (Figure 1). A second set of transversal ellipses
was drawn in a diagonal orientation with the long axis pointing approximately from the
center of the chest 45 degrees to the right in the x-y plane. This diagonal orientation was
chosen because joint limits are not so easily encountered as in other orientations
(Viviani and Schneider, 1991). Frontal ellipses were drawn in vertical and horizontal
orientations, i.e., as a “standing” or a “lying” ellipse. The experimental trials were per-
formed in four blocks, each consisting of 10 trials, which were counterbalanced across
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participants. In one block, all elliptic patterns were performed in the same orientation
and with approximately the same eccentricity, but at approximately five different sizes.
Prior to the actual data collection, participants were asked to explore their workspace
and practice different sizes of ellipses with the only constraint that for the largest pat-
terns they should avoid to get into extreme ranges of motion. The first trial of each
block started with an intermediate-sized ellipse followed by ellipses in the following
sequence of sizes (1 denotes the smallest and 5 denotes the largest ellipse, 3 is the inter-
mediate size): 3-4-5-3-2-1-5-4-1-2. This staggered order was chosen because participants
could and should not remember the absolute sizes of the ellipses. By going through dif-
ferent sizes in this step-like fashion all subjects could produce a roughly uniform distri-
bution of different ellipses between a maximal and minimal size. Emphasis was placed
on that throughout the duration of one trial the patterns should be consistent in size
and frequency. For the actual data collection, subjects started the pattern, then they
closed their eyes2 to avoid visual orientation in Cartesian coordinates and, while con-
tinuing the pattern, they verbally signaled to the experimenter when they were ready
for data recording. Data collection for one trial lasted for 15 seconds. Participants could
rest their arms between trials whenever they needed. The total experiment lasted ap-
proximately 30 minutes.

Data analysis

Data filtering

The three-dimensional trajectories of each marker were low-pass filtered using a zero-
lag second-order Butterworth filter with a 4.5Hz cutoff frequency. For the analysis of
the endpoint trajectory, the corresponding endpoint marker was additionally high-pass
filtered with a second-order zero-lag Butterworth filter (cutoff frequency 0.3 Hz). This
filter eliminated slow drifts of the drawing pattern due to the blindfolded pattern exe-
cution. After filtering, the first and last 60 data points of each trial were discarded to
eliminate distortions from digital filter onsets. Smooth differentiable trajectories of each
marker were obtained by a minimum jerk spline approximation, adapted from Wada
and Kawato (1994). The reconstructed trajectories were guaranteed to lie within 0.01 m
Euclidean distance from the measured trajectory; on average, they were within
0.001–0.002 m distance. The choice of all filter cutoff frequencies was the result of a pilot
experiment using the robot arm. As the robot generated elliptical patterns, its finger tip
data were recorded with the QuickMag system, a procedure that is obviously contami-
nated with some measurement noise. In addition, the joint angle data of the robot were
recorded with high resolution optical encoders, i.e., with very little measurement noise,
such that the “true” finger tip position could be calculated from the known forward

                                                  
2 In a pilot study three subjects executed the same set of elliptic movement patterns with the one difference that

they were not asked to close their eyes. While the results on the main dependent measures did not differ from the
ones of the reported experiment, the subjects reported a tendency to orient their patterns towards objects in the
laboratory, i.e., walls, closets, or other planar objects. To avoid any contamination from such external influences,
we opted to instruct them to close their eyes.
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kinematics model of the robot. By comparing the results of the power law analyses, per-
formed on the QuickMag recordings of the finger tip, with the power law analyses per-
formed on the low-noise robot endpoint trajectories calculated from the joint angles, the
filter cutoffs applied to the vision-based recordings were adjusted to obtain a maximal
matching of the data.
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Figure 1: a) The coordinate system used for joint angles: Shoulder Flexion-Extension (SFE) is the angle
between the z-axis and the projection of the upper arm onto the sagittal plane; Shoulder Adduction-
Abduction (SAA) is the angle between the upper arm and the projection of the upper arm onto the sagit-
tal plane; Humeral Rotation (HR) is the torsion angle about the upper arm; Elbow Flexion-Extension
(EFE) is the angle between upper and forearm in the plane spanned by the two limb segments; Wrist Su-
pination-Pronation (WSP) is the torsion angle about the forearm. b) The wrist angles are defined relative
to a nominal posture of the forearm and hand: the nominal posture is the forearm hanging straight down
while the palm is parallel to the sagittal plane and facing towards the body. Wrist Flexion-Extension
(WFE) is the angle enclosed between the hand and the projection of the hand onto the sagittal plane;
Wrist Adduction-Abduction (WAA) is the angle between the z-axis and the projection of the hand onto
the sagittal plane.

Joint angle reconstruction

The six measured markers allowed an analytically well-defined reconstruction of the
joint trajectories of the subjects, employing the biomechanically derived coordinate
system of Wood et al. (1989). Figure 1 illustrates this coordinate system. Based on the
finding that cyclic drawing patterns are produced by approximately sinusoidal oscilla-
tions in joint space (Guzman, Kelso, and Buchanan, 1997; Soechting et al., 1986; Soecht-
ing and Terzuolo, 1986; Buchanan, Kelso, and Guzman, 1997) the seven joint angle tra-
jectories were fitted with sinusoids. The fundamental frequency of each pattern was
determined from the fundamental peak of the FFT analysis of the endpoint trajectory.
Since the patterns were performed stably over the 15 second trials, this fundamental
frequency f  must coincide with the fundamental frequency of each DOF. Given the
fundamental frequency, the amplitudes and phases of the sinusoidal fits of the joint
trajectories were approximated by a linear regression of the coefficients a0, a1, and a2 of
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the equation θ ω ω( ) sin cost a a t a t= + +0 1 2 , where ω = π2 f . The amplitude and phase of

each DOF can be determined from these coefficients as A a a= +1
2

2
2  and

ϕ = arctan( / )a a1 2 . Consequently, a complete approximation of each trial was obtained in
terms of sinusoidal joint motion, together with a coefficient of determination indicating
the quality of fit of each sinusoid.

Descriptive measures of the endpoint trajectory

Frequency. The mean period or frequency of one trial was computed from the funda-
mental frequency of the FFT analysis of the endpoint trajectory.

Perimeter. To quantify the pattern size the mean perimeter of each ellipse was com-
puted by summing over the Euclidean distances of subsequent data points and dividing
by the number of elliptical cycles per trial. The number of repeated cycles was obtained
from the fundamental frequency of the FFT analysis of each pattern and the trial dura-
tion.

Planarity. The planarity of the elliptic patterns was defined as the magnitude of the
movement orthogonal to the major and minor axes of the elliptical pattern, thus quanti-
fying the ellipse’s deviation from its two dimensional extent. Therefore, large values of
planarity corresponded to large deviations from the 2D extent. For this calculation, the
patterns were first split into trajectory pieces of one period duration. Second, the co-
variance matrix and its eigenvalues were determined for each trajectory piece using the
x, y, and z values of all sampled data points of the segment. Third, the square root of the
smallest eigenvalue captures the deviation from strictly two-dimensional performance.
Finally, the planarity estimate of one trial was obtained from the average over all single
cycle values. Performing the calculations on a cycle-by-cycle basis was necessary to
avoid noise effects from slow drifts in the subjects’ performance. Although the smallest
eigenvalue is generally vulnerable to noise, the calculated values from the present data
set nevertheless provide a reliable indicator for planarity (for more details see Sternad
and Schaal, 1999).

Power law exponent. The radius of curvature and the tangential velocity of the ellipti-
cal patterns were calculated according to the standard formulae in Equation (1). More
critical is the estimation of the velocity gain factor k and the exponent β of the power
law. Two different methods were used. First we followed the typical procedure of de-
termining the exponent from a log-log regression (e.g., Lacquaniti et al., 1983). While
this is a common analysis technique to extract exponential coefficients, there is an im-
portant statistical issue to be considered especially when the exact magnitude of the lin-
earized fit of the exponent is important. A regression on the log-log data is inherently
biased since it de-emphasizes the error of data points at the higher values of the vari-
ables (see also Elzinga, 1985). In the present case, it underestimates errors at higher tan-
gential velocities. This can be readily appreciated when one compares the cost functions
for the nonlinear regression with the one for the log-log regression. While in the nonlin-
ear case the cost function Jnonlinear  is the regular squared deviation between predicted v̂i

and actual tangential velocities vi :
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where N denotes the number of data points in one trial.
To minimize Jlog , v v̂  is optimized towards one, where the log function equals zero.

This entails that for larger v , a larger error in v̂  will be tolerated since it is not the ab-
solute error as in Equation (2) but rather the relative error that is minimized. Con-
versely, for small v  only an unproportionally small error in v̂  will be tolerated. Statisti-
cally, minimization of Equation (3) assumes that the data have an error component that
is log-normally distributed, i.e., the smaller v , the smaller the error, and vice versa.
From our point of view, it is unclear whether this assumption is justified for power law
data: for instance, some results in the literature argue in favor of increasing variance
with increasing force production (Newell and Carlton, 1988), while others report more
variability in low velocity regions of the trajectory (Haggard and Richardson, 1996). For
this reason, we also analyzed the untransformed data directly by using the nonlinear
Levenberg-Marquardt least-squares regression (Press, Flannery, Teukolsky, and Vetter-
ling, 1989). In the result section, it will be demonstrated that the two different data
analysis techniques can have a profound impact on the quality of fit of the power law.

Data modeling and robot implementation

In order to replicate the human data with the anthropomorphic robot, the 10 trials of
each subject from one set of different sized patterns were sorted according to their mean
perimeters. For each joint angle θi  a weighted regression analysis was performed
(Myers, 1990), regressing each of the three parameters of the sinusoid, i.e., frequency ƒ,
amplitude A, phase ϕ, against the perimeter p, thus resulting in:

θ ϕ

ϕ

i t p A p f p t p

A p d d p

f p b b p

p c c p

, sin( ) = ( ) π ( ) + ( )( )
( ) = +

( ) = +

( ) = +

2

0 1

0 1

0 1

,  where

where d0, d1, b0, b1, c0, and c1 are the linear regression parameters. Using weighted regres-
sion analyses was necessary since the parameters of the sinusoidal fits for the different-
sized joint trajectories had different variances. A non-weighted regression over such
data would violate the linear regression model that assumes equal variance in all data
points. Weighted regression multiplies the input and output of each data point i with a
weight wi i=1 σ , where σ i  is the standard deviation of the ith data point (e.g., Schaal
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and Atkeson, 1998). After this transformation, the regression analysis proceeds as usual.
In the present case, since the true standard deviations of the sinusoidal fit parameters
are not easily obtained from the nonlinear equations for A a a= +1

2
2
2  and

ϕ = arctan( / )a a1 2  (see section “Joint angle reconstruction”), we used the square root of
the coefficient of determination of the sinusoidal fit as a weight, i.e., w Ri i= 2 , assuming
that it approximately reflects the reciprocal of the standard deviation of the coefficients
of the sinusoidal fits. Thus, the weighted regression de-emphasized the influence of
data points stemming from sinusoidal fits with low coefficients of determination.

As result of these regressions, we obtained linear scaling relations of how the joint
angle motions, i.e., their frequency, amplitude, and phasing, varied as a function of the
pattern size. From these scaling relations, we chose five sets of parameters to generate
the desired joint positions, velocities, and accelerations for five pattern sizes for every
subject in every experimental condition. The five parameter sets were picked equidis-
tant between the values for the smallest and the largest perimeter (see also results). This
kinematic description of joint motion sufficed to repeat the patterns with the anthropo-
morphic robot arm by using it as desired trajectory input for an inverse model in con-
junction with a PD controller. We recorded the Cartesian finger tip movement of the ro-
bot with the QuickMag vision system for 15 s for each movement pattern. Thus, the
pattern realized by the robot could be analyzed in the same way as the human data.

Results

Human Data

Descriptive measures

A first set of analyses extracted the relevant kinematic variables to describe the subjects’
performance across the experimental conditions. In accordance with the instructions,
subjects traced ellipses over a large range of different sizes yielding an approximately
even distribution of mean perimeters ranging between 0.21 to 2.23 m. Typical realiza-
tions of such patterns were illustrated in previous work (Sternad and Schaal, 1999). In
general, subjects traced proper elliptical patterns in the smaller size conditions, while
for some workspace locations the large patterns show distortions from elliptical (for an
explanation, see Sternad and Schaal, 1999). Figure 2a plots the measure of planarity as a
function of the mean perimeter of each trial. With increasing pattern size, the planarity
measure increased, indicating that large ellipses increasingly deviated from a strictly
planar shape, i.e., had a significant 3D structure. Figure 2b illustrates the temporal de-
pendency of the elliptical patterns on the mean perimeter. In all subjects, the mean fre-
quency of the elliptical patterns decreased with increasing pattern size, but it decreased
much more slowly than the mean perimeter increased. Similar observations have been
reported in previous studies (Viviani and Cenzato, 1985; Viviani and Flash, 1995; Vivi-
ani and Schneider, 1991).
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Figure 2: Kinematic descriptors obtained for all trials in human (*) and robot (o) data. a) Planarity per trial
versus mean perimeter, b) Mean frequency per trial versus mean perimeter.

Power law fits

The endpoint trajectories of human data were used to determine the coefficients of the
power law. Figure 3a-d illustrate the results of the power law fits for one representative
subject performing the four different pattern orientations. Each panel shows the results
for the β coefficients of 10 trials, estimated with the nonlinear regression (see methods),
and graphed as a function of the mean perimeter of each trial. To illustrate the quality
of the power law fit, the coefficients of “non-determination”, (1-R2), are included to
provide a “confidence band” of ± 0.5 (1-R2) around the β values. It is important to note

that these “confidence bands” are not a confidence measure of each β value, but rather a
confidence measure of the entire power law fit. Thus, Figure 3 superimposes two quan-
tities in one graph to allow inspecting the quality of the power law fits at one glance3.
Figure 3a shows the “confidence points” for each trial with “+” signs, while in the other
charts they were omitted for reasons of clarity. In order to capture the trend of the
power law fits as a function of pattern size, we fitted polynomials of maximally second
order to the β values and the R2 –values by using a stepwise regression, thus obtaining

β and R2 –values as functions of the perimeter p:

β = + + = + +a a p a p R b b p b p0 1 2
2 2

0 1 2
2and (4)

                                                  
3 Using a Bayesian nonlinear regression procedure, we also calculated the confidence bands on the β values. Across

all subjects and conditions, these confidence bands were very narrow and they would not be recognizable in
Figure 3. Also, the confidence bands of the β values are not what is relevant for our analysis: the confidence band
on a regression parameter can be very narrow even if the regression analysis is not significant. The confidence
band of the regression parameters is typically determined by the leverage that the data provide to determine the
parameters accurately, while the quality of the regression is determined by the suitability of the model that was
fitted to the data. The latter point is what we pursue in our analyses: a statement about the suitability of the
power law model for rhythmic movement generation.
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Figure 3: Estimates of the coefficient ß of the power law as a function of the mean perimeter of each trial.
To indicate the quality of the regressions, a “confidence band” of β +/- 0.5*(1-R2) is added in each graph.
The data points of ß and R2 were interpolated by polynomial regressions to visualize the trend of the
data. For comparison the dimmed horizontal line indicates the power law coefficient ß = 1/3. Panels a) -
d) illustrate data from one human subject in the four different experimental conditions, panels e) - h)
show the corresponding robot results.

The results of these regressions are added as solid lines in Figure 3 to depict the trends
of the data more clearly. Using a stepwise regression ensured that all fits of the trends in
Equation (4) were significant at a level of p<0.05. Across all subjects and conditions, we
obtained 20 such fits of the parameter trends (one for each condition for each subject).
Out of these 20 fits, 18 had a significant linear or quadratic trend in the β values. In the
two cases where the stepwise regression favored a constant fit, there was a significant
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deviation of the β values from the target value 1/3 (tested by t-tests with a 0.05 signifi-
cance level). Additionally, 13 out of 20 fits had a significant linear or quadratic trend in
the R2–values. These trends give statistical evidence that the size variations of the ellip-
tic patterns had a significant impact on the quality of the power law fits.

As a summary result of the power law fits across all subjects and experimental con-
ditions, two main observations can be discerned: for small pattern sizes, the power law
coefficient β is close to the expected 1/3, for larger pattern sizes, however, the fit con-
tinuously degrades. This degradation is indicated as either an increasing deviation from
the target value 1/3, or an increasingly worse fit of the power law coefficients, i.e.,
lower R2 –values expressed in the widening of the confidence band in Figure 3. It
should be emphasized that the degradation of the power law fits is often so severe, e.g.,
on the order of 30-40% difference from the original value 1/3, that it is not possible to
dismiss it as a tolerable variation of an empirically determined law of human move-
ment coordination.

Power law fits: Log-log or Nonlinear Regression?

In the Method section, we mentioned that our data analyses employed nonlinear re-
gression techniques to extract the coefficients of the power law, while most previous in-
vestigations made use of log-log regressions. Appendix A provides empirical evidence
that the log-log regression systematically underestimates the absolute deviations from the
coefficient 1/3, such that care must be taken in interpreting the absolute values of pre-
vious power law studies that employed log-log regressions. However, the trends of
degradation of the power law with larger patterns size remains the same in both analy-
sis techniques.

Joint angle trajectories

In addition to the analysis of the endpoint trajectories, we further investigated the joint
angle trajectories of the human subjects that generated the endpoint trajectories. Similar
to previous results by Soechting and Terzuolo (1986) and Buchanan et al. (1997), all time
series of the seven joint angles were sufficiently regular to allow their fitting by sinu-
soids. Table 1 lists the R2-values across all subjects in the four pattern orientations. To
better reflect the dependency of the R2-values on the joint angular amplitudes, the R2-
values were binned according to amplitude ranges. For each bin, the median and inter-
quartile range is shown as a robust statistic for the mean and the standard deviation.
Robust statistics had to be used in this case because the distribution of R2-values in each
bin deviated significantly from a normal distribution.

Amplitude Range [rad] 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7

Median of R2

(Interquartile Range)

0.62
(0.38)

0.83
(0.21)

0.86
(0.15)

0.87
(0.14)

0.91
(0.14)

0.96
(0.08)

0.86
(0.17)

Table 1: Median and interquartile range of R2 –values of sinusoidal fits binned into 0.1 intervals of the
amplitude of the angular motion. The interquartile range gives the distance between the lower and upper
quartile and represents a robust statistic for the standard deviation (e.g., Huber, 1981).
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Except for very small joint angular amplitudes, the R2-values of sinusoidal fits were
always highly significant, expressed by R2–values greater than 0.8. The fact that larger
joint angle amplitudes have higher R2-values is largely due to our recording technique:
Since the markers attached to the subjects’ arms are necessarily offset from the neutral
axis of the joint, even single DOF movement can cause displacements in several mark-
ers which will be interpreted as if several DOF’s were moving. This spurious movement
reduces the signal-to-noise ratio, particularly for small angular amplitudes. In some tri-
als, a slow drift in frequency also contributed to a reduction of the R2, although the
pattern was otherwise approximately sinusoidal. Despite these data contaminations, it
was always possible to faithfully reproduce the main effects of the human movement
with the sinusoidal model, as subsequent results will demonstrate. Apart from the ob-
servation that the angular motions of WSP, WFE, and WAA (cf. Figure 1) had generally
lower amplitudes, we could not find any particular preference in subjects as to which
DOF’s contributed most to the patterns. A more detailed discussion of how to generate
joint angle trajectories from marker data can be found in previous work (Sternad and
Schaal, 1999).
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Figure 4: Representative set of amplitudes of the seven joint angles versus their corresponding mean pe-
rimeter from one subject performing a block of trials in the transversal-oblique pattern orientation.

Data modeling and robot implementation

After fitting the amplitude, frequency and phase parameters for each DOF of each ex-
perimental trial, one more step was performed before the modeled data were imple-
mented on the robot arm. To avoid an exact replication of each trial but rather to im-
plement one subject’s generic drawing strategy, the sinusoidal parameter sets across all
pattern sizes were interpolated by linear regression for each subject. Figure 4 shows the
amplitude values and regression lines obtained from one representative subject as a
function of the mean perimeter. The linear scaling in Figure 4 was observed in all sub-
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jects. The phase differences between joint oscillations were determined pairwise be-
tween the shoulder angle and the six other DOF’s, respectively. Importantly, the pair-
wise phase differences did not change across the different pattern sizes: out of a total of
140 linear regressions for the phase offset as a function of the perimeter (7 DOFs x 4
conditions x 5 subjects), only 4 linear fits showed a statistically significant linear trend (p
< 0.05). The scaling of the frequency as a function of the mean perimeter was already
presented in Figure 2b.

The modeled set of joint trajectories of the human data were implemented on the ro-
bot arm which then “mimicked” each of the five subjects. It is important to emphasize
that the endpoint trajectories of the robot were recorded and processed in exactly the
same way as the human data, yielding an analogous set of dependent variables with the
same kind of measurement noise. The measures of mean perimeter, planarity and mean
frequency of the robot’s ellipses performed at five pattern sizes were calculated. The re-
sults are shown in Figure 2a and b superimposed on the human data. There is hardly
any visible difference between the human data and the robot data, except that the robot
data show slightly smaller values of planarity since this measure captures to some ex-
tent the variability of the experimental patterns.
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Power law fits

Figure 3e-h depicts the results of the power law fits when the robot mimicked the pat-
terns of the subject displayed in Figure 3a-d. There is a remarkable similarity between
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the trends of the β coefficients between the robot and the human data. As in the human
data, for small perimeter values, ß=1/3 was produced quite accurately, but, as in the
human subjects, the same deterioration of the power law fits are apparent for increasing
pattern size. The similarity of the trends of the human and robot data is summarized in
Figure 5. To generate this graph, we plotted the coefficients of the polynomial fits for
the trends of the ß and the R2-values of the robot versus the corresponding coefficients
from the human subjects (cf. Equation (4)). For every subject and every experimental
condition, we obtained a set of polynomial coefficients: a a a b b bh h h h h h

0 1 2 0 1 2, , , , ,  for the human
subject, and the corresponding a a a b b br r r r r r

0 1 2 0 1 2, , , , ,  for the robot. Figure 5 plots these coeffi-
cients pooled across all subjects and all conditions in a pairwise fashion as
( , ),( , ),( , ),( , ),( , ),( , )a a a a a a b b b b b bh r h r h r h r h r h r

0 0 1 1 2 2 0 0 1 1 2 2 . The clustering of the degrading power law
fits around identity line confirms that the robot data generated power law fits with the
same main features as the human data.

Discussion

With the goal of investigating the generative mechanisms of rhythmic arm movements,
the present experiment tested the validity of the 2/3 power law in unconstrained arm
movements where subjects perform large-scale elliptic patterns in 3D involving the
whole arm. Elliptic patterns were chosen because they are the simplest rhythmic traces,
and small ellipses drawn in 2D have been repeatedly analyzed in the literature on the
power law. Patterns of 10 different sizes were performed by five human subjects in
three different areas of the workspace. Each trial was analyzed in terms of the trajecotry
of the finger tip and the arm’s seven joint angle trajectories that were involved in the
pattern realization. By modeling the joint angle trajectories with simple sinusoidal fits,
we could replicate the subjects’ movements on a 7-DOF anthropomorphic robot arm.
Comparative analyses of the endpoint trajectories of human and robot performance
converged to one common result: while for small pattern sizes the power law is satis-
fied accurately, it is increasingly compromised for larger patterns, where up to 30-40%
difference from the coefficients of the original law were observed. Therefore we con-
clude that the power law is an unlikely candidate for explaining rhythmic movement
generation in human motor control.

At first glance, one may suspect that the observed deviations from the power law
could be due to an incorrect extraction of the relation between velocity and curvature.
Viviani and Cenzato (Viviani and Cenzato, 1985) already emphasized that the power
law is only valid within appropriately defined movement segments. This point was the
subject of a previous study that addressed the issue of segmentation in similar elliptical
patterns as in the present experiment (Sternad and Schaal, 1999). The results gave
strong evidence against the hypothesis that elliptical patterns are composed of multiple
movement segments, and dismissed several criteria that had been previously suggested
to delineate movement segments. Thus, it is necessary to resort to another line of argu-
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ments to account for our findings. In the following, we will develop an argument that
the power law is an epiphenomenon of smooth oscillatory trajectory generation in joint
space, at least for unconstrained rhythmic movement.

The power law as an expression of smoothness

Our first and major hypothesis is that the power law is effectively an expression of
smoothness of endpoint trajectories. A similar argument was presented in Todorov and
Jordan (1998), however, with the difference that their experiments addressed the tracing
of discrete paths in 2D and 3D, and modeled them using a complex optimization crite-
rion, the constrained minimum jerk. As will be shown in the following, a simpler
smoothness criterion can account for our data.

For the purpose of our argument, smoothness is defined as low power in the higher
frequency components of the endpoint trajectory. For example, a harmonic oscillation is
maximally smooth and is equivalent to a rhythmic minimum jerk trajectory. There ex-
ists a tight connection between the power law and harmonic oscillations: two or three
orthogonally arranged sinusoids with a phase shift in a Lissajous plot trace out a planar
ellipse whose velocity-curvature relation satisfies the power law exactly (Lacquaniti et
al., 1983, Morasso, 1983, Soechting and Terzuolo, 1986). Evidently, both the power law
and minimum jerk model are equally fulfilled in this case, a fact that also hints at a close
connection between minimum jerk and the power law (Viviani and Flash, 1995,
Todorov and Jordan, 1998). Next we will discuss the power law as a smoothness defini-
tion in the context of our data.

Following Lacquaniti et al. (1983), an alternative method to visualize the realization
of the power law in the data is to plot tangential velocity v against the radius of curva-
ture r raised to the power 1/3 (referred to as v-r plot). This way of graphing assumes
that the exponential relation is satisfied and thereby affords inspection of the time
course of the parameter k throughout the periodic pattern. If the power law is satisfied,
the velocity gain factor is constant and the data lie on a straight line through the origin;
the slope of the line expresses the velocity gain factor k. Figure 6 shows v-r plots for
three exemplary large-size patterns. Clearly, the power law is violated throughout the
rhythmic trace in a systematic fashion. Figure 6a is typical for patterns in the frontal
plane, Figure 6b is primarily observed in horizontal ellipses in the transversal plane,
and Figure 6c is common in transversal oblique patterns. Figure 6d-f depict the corre-
sponding robot trials. Importantly, the robot, although explicitly driven by joint-space
sinusoids alone, reproduces strikingly similar distortion features as found in the human
subjects4. Applying our smoothness criterion, we can explain how these complex
structures arise. A discussion of how such distortions affect the 3D realization of the el-
liptical patterns as well as a geometric interpretation for these distortions was already
presented in previous work (Sternad and Schaal, 1999).

                                                  
4 It is also noteworthy that the deviation of the data from a straight line happens in the high velocity areas, exactly

those areas that would be de-emphasized by log-log regressions of the power law coefficients (cf. Appendix A).
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Figure 6: Tangential velocity versus radius of curvature to the power 1/3 for three typical cases of power
law degradation. a)-c) human trials; d)-f) corresponding robot trials.

If the power law, as expressed in Equation (1), is an explicit constraint in the CNS for
the generation of rhythmic movement trajectories in Cartesian space, there are two al-
ternatives for its implementation: 1) the power law relation is somehow implemented
directly in the neural substrate, i.e., some set of neurons realize Equation (1) and are
used in movement planning, or 2) the power law is implemented indirectly. The latter
can be achieved by maximizing the smoothness of Cartesian trajectories, equivalent to
minimizing higher frequency components of the endpoint trajectory or to minimizing
jerk. Such a process automatically leads to trajectories that conform with the power law,
as mentioned above. However, since our data demonstrate a deviation from the power
law for large patterns, neither of these solutions seems to be used by our subjects.

Yet, why are there so many studies that show that the power law is obeyed, includ-
ing our results for small patterns? As laid out formally in Appendix B, it is possible to
reconcile all observations about the power law if, for rhythmic movements, smoothness
is implemented in intrinsic, e.g., joint space, coordinates. For small patterns, smoothness
in intrinsic coordinates is equivalent to smoothness in Cartesian coordinates because the
transformation between joint coordinates and extrinsic endpoint coordinates is ap-
proximately linear. Thus, the power law will be satisfied for small patterns. For larger
patterns, smoothness in joint coordinates no longer results in smoothness in extrinsic
coordinates as the nonlinearities added by the kinematic transformation become in-
creasingly larger. It is these nonlinearities that cause deviations from the power law.
The relevance and primary contribution of joint space trajectories to endpoint move-
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ments is supported by the fact that joint trajectories can be fitted with high significance
by simple sinusoids that subsequently capture the major features of human data. Fur-
ther, the linear scaling of the amplitudes of the joint space sinusoids as a function of
pattern size (Figure 4) indicate the primary role of joint space in movement generation.

The 2/3 power law as by-product of smooth trajectories

Taken together, the above arguments make it unlikely that the power law—a law relat-
ing the geometric path and the timing of the endeffector trajectory—is a first-order crite-
rion for the generation of rhythmic movements. Rather, we agree with Todorov and
Jordan (1998) that it seems to be a by-product of smooth trajectories. Smoothness is a
topic that has been predominant in many approaches to motor control (Flash and Ho-
gan, 1985; Uno, Kawato, and Suzuki, 1989; Todorov and Jordan, 1998; Viviani and
Schneider, 1991; Viviani and Flash, 1995). Yet, whether smoothness is implemented in
intrinsic or extrinsic coordinates and based on kinematic or dynamic criteria remains a
topic of current research (e.g., Harris and Wolpert, 1998). Our suggestion that uncon-
strained rhythmic movement favors smoothness in joint space is in agreement with
previous work. Smoothness in joint space corresponds to minimum jerk movements in
joint space, which is a first order approximation to the minimum torque change crite-
rion, as long as the movement is not too fast (Uno et al., 1989). Despite this correspon-
dence, caution is necessary in generalizing our results to discrete movements. Rhythmic
and discrete movement may not share the same movement generating principles—after
all, rhythmic movement is phylogenetically older than discrete movement and could
employ different neural circuits.

Returning to the discussion of smoothness in the context of the power law, it can
nicely be illustrated how directly a smoothness criterion can lead to the generation of
the power law. In simulating movements with a two-joint arm using the λ-version of
the equilibrium point hypothesis, Gribble and Ostry (1996) argued that limb dynamics,
muscle mechanics, and physiology contribute significantly to producing the power law.
Although their planned, or virtual trajectory consisted of 36 via points traversed at a
constant speed across an elliptic path, the actual trajectory realized by the simulation sat-
isfied the power law. What the authors effectively demonstrated is that the arm, muscle,
and λ-dynamics have one common effect: they act as low-pass filters. Low-pass filtering
takes away higher frequency components in the resulting movement, i.e., it increases
smoothness. As demonstrated in Appendix B, a strong enough filter will cause the
power law to emerge.

To demonstrate that this effect does not require the simulation of a complex biome-
chanically validated arm we repeated Gribble and Ostry’s experiment in a highly sim-
plified way. A 0.6 s periodic movement was generated using 36 via points with equal
distance in time and space along the perimeter of a planar ellipse with a 0.2 m major
axis and a 0.1 m minor axis. These measurements exactly replicated Gribble and Ostry’s
parameters. By linearly interpolating between these via point, we generated a desired
trajectory for a simulated point mass of 1 kg weight for a 500 Hz control loop; the linear
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interpolation resembles the constant velocity shifts of the λ-trajectories. The point mass
was controlled to stay on the desired trajectory with a PD controller, using a propor-
tional gain of 50, and a velocity gain of 5. Note that the desired velocity along the trajec-
tory was assumed to be zero, hence realizing a pure damping term. Thus, we effectively
used a constant tangential velocity trajectory as the tracking input for an elliptical path.
Figure 7a shows the results of this simulation, illustrating the via points (stars) together
with the path traced out by the point mass (shown as the bold solid line). As in Gribble
and Ostry (1996), the trajectory realized by the controller has a smaller perimeter than
the desired trajectory; our PD gains were chosen to quantitatively reproduce this scal-
ing. Figure 7b depicts the corresponding v-r plots: while the via-point trajectory does
not obey the power law (the slope is zero and does not pass through the origin), the
point mass’ trajectory achieves an exponent ß = 0.327, i.e., an almost perfect power law
fit.
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Figure 7: a) Desired and realized elliptical trajectories for point mass and Butterworth filter; b) v-r plots
corresponding to the trajectories in a).

Yet, the same effect can be achieved in an even more straightforward way: we simply
passed the desired trajectory through a 4-th order Butterworth filter with 2.5 Hz cutoff
frequency. These results are also presented in Figure 7 by the thin solid line. The power
law fit for this smoothed trajectory was ß = 0.328.

We conclude that any kind of mechanism that generates smooth rhythmic trajectories
is likely to display the phenomenon of the power law. This, however, does not imply
that the power law is directly used as a movement generating principle. By investigat-
ing different pattern and workspace conditions we demonstrated that the power law is
systematically influenced by such conditions showing that it is not a primary factor in
movement generation. For unconstrained rhythmic movement, smooth oscillatory pat-
tern generators in joint space seem to be the most parsimonious account for all observed
movement features, including the power law.
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Appendix A — Log-log or Nonlinear Regression for Power Law Fits?

In the methods section, we pointed at a potential problem when extracting exponents
from log-log transformed data and showed that there are significant statistical differ-
ences between a regression on untransformed and on double-logged data. In a log-log
regression, errors associated with higher tangential velocities are underestimated, or,
alternatively, the assumption about a log-normal distribution of errors needs to be satis-
fied. This assumption has never been validated for power law studies, and opposing re-
sults have been published on the variability of endpoint trajectories (e.g., Haggard and
Richardson, 1996; Newell and Carlton, 1988). Thus, applying a log-log regression carries
the potential danger of distorting the power law fit results.

Given that the long series of studies on the power law exclusively used the log-log
method, it is worthwhile to examine the kind of bias introduced by such regressions.
Figure 8 compares the results of the two different fitting methods applied to the trials of
one experimental condition which was already depicted in Figure 3d. The two fitting
methods result in clearly different estimates for both the power law coefficient and the
coefficient of determination of the regression. While the trend of degradation of the
power law fit as a function of perimeter is preserved in both fitting methods, it is ap-
parent that in Figure 8b the linear log-log regression generates coefficients ß that lie
closer to the “desired” value 1/3. Further, the R2 –values of the fit are generally larger
such that the band delineated by the coefficient of non-determination, 1- R2, is narrower.
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Figure 8: Power law fits for the trials of the experimental condition from Figure 3d (see caption and leg-
end in Figure 3 for explanations of the plots), a) using nonlinear Levenberg-Marquardt regression; b) us-
ing linear log-log regression.
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To demonstrate that this exemplary trend towards a better power law fit is not a sin-
gular result, we quantified the bias for all trials and subjects and calculated the mean
difference between nonlinear and log-log regressions as ∆β β β= − − −nonlinear 1 3 1 3/ /log

and ∆R R Rnonlinear
2 2 2= − log . Note that ∆β  uses the absolute deviation from the ideal value

1/3 such that it can directly serve to compare the statistical bias in both regression tech-
niques. As Figure 9 summarizes, ∆β  is positive for the four experimental pattern ori-
entations, implying that the log-log regression consistently produces a result that is bi-
ased towards the value 1/3. This is accompanied by a higher R2  of the log-log regres-
sion, recognizable from the consistently negative mean values of ∆R2 . All mean values
of ∆β  and ∆R2  in Figure 9 are significantly different from zero according to a two-tailed
t-test (p<0.05). Thus, in both statistics the log-log regression is biased towards a better fit
of the power law and is thus likely to favor too optimistic interpretations of power law
data.
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Figure 9: Power law fits of human data contrasting the results of nonlinear and log-log regression. Cate-
gorized by experimental condition, the bars show the mean and standard deviations of the differences in
ß and R2 –values, defined as: ∆R R Rnonlinear

2 2 2= − log  and ∆β β β= − − −nonlinear 1 3 1 3/ /log .

Appendix B—The Relation between Power Law and Smoothness

Assume ß = 1/3 (as is done in the v-r plots), and solve Equation (1) for the velocity gain
factor k, then the following equation is obtained:

k t
v t

r t
v t c t t t( ) = ( )

( )
= ( ) ( ) = ( ) × ( )1 3

1 3 1 3

/
/ ˙ ˙̇x x (5)

The expression on the right is obtained by substituting all variables according to the
definitions in Equation (1). Note that k is now written as a time varying quantity and
the following analysis will discuss the temporal dependence of k as an alternative way
to explore conditions when the power law is achieved.

Since the experimental test patterns are periodic, it is possible to represent the end-
point trajectory x(t) by a finite Fourier series of some order n:
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After differentiation with respect to time to obtain velocities and accelerations, Equation
(5) can be rewritten for the general case of 3D periodic patterns:

k t t t t( ) = ( ) × ( ) = ( ) + ( )˙ ˙̇ , , ,x x f A f A
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For notational convenience, all Fourier coefficients above are summarized in the matri-
ces A and Φ. Ignoring the complexity of the equations for the moment, it is interesting
to note that Equation (7) can be decomposed into a time-independent term f1 and a time
varying part f2 . Importantly, this decomposition allows to distinguish two possible
strategies if the power law were used as a movement generating principle. To obtain a
time-independent, i.e., constant, k, a first strategy can exploit the fact that f2  vanishes if
x(t) is purely harmonic, i.e., for n = 1. From our definition of smoothness, this solution is
optimally smooth. Such a harmonic solution, however, has an additional property.
While it is evident that two sinusoids of the same frequency and with a non-zero phase
offset generate a 2D ellipse when arranged in orthogonal dimensions, also three dimen-
sional orthogonal oscillations of the same frequency can only produce planar ellipsoids
in the higher dimensional space. In comparison, the results of the human and robot data
show that the performed larger patterns had a 3D extension—as apparent in the in-
creasing planarity measure with larger perimeter (see Figure 2a). This precludes that
our subjects used the harmonic solution.
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As soon as x(t) has higher frequency components, i.e., is less smooth according to our
smoothness definition, f2  will add time-dependent variations to the slope of the v-r plot.
Since f2  has Fourier terms up to order 2n-1, the Euclidean norm in Equation (7) can in-
crease the frequency content in k up to the order 2*(2n-1). Thus, the time course of k can
become very complex, as it depends in subtle ways on the phases Φ and amplitudes A.
For the case of higher frequency components there is theoretically a second solution
how Equation (7) can still produce a constant k without the necessity of optimal
smoothness. It is possible for f2  to vanish if the higher-order Fourier terms in f2  cancel
each other. However, this solution requires precise adjustment of many parameters and
is evidently a special case. It is highly improbable that this special solution is found by
chance. Since our data show that the higher Fourier terms add strong time variation in
the v-r plot, the special solution to achieve the power law is apparently not employed
by our subjects.

In sum, if the power law were a direct criterion that the CNS uses for movement gen-
eration in Cartesian space, then trajectory generation must follow either one of the two
strategies above. The “pure harmonic” solution is optimally smooth but can only pro-
duce planar patterns, while the “special solution” can lead to 3D patterns without nec-
essarily being smooth. As it remains fact that a lot of data in the literature, including our
results on small patterns, satisfy the power law, how can these observations be recon-
ciled with our data and analyses?

Smooth trajectories in intrinsic space can violate the power law

We pursue the hypothesis that the harmonic solution is relevant despite the fact that
larger pattern produce a reduced quality of power law fits. To develop this argument,
we will focus on the robot data since they allow direct insight into why the power law
can be violated even if trajectory generation is smooth. As the robot generates move-
ment from nothing but continuous sinusoidal oscillations in a 7-DOF joint space, tra-
jectories are optimally smooth in intrinsic space. The joint space trajectories are trans-
formed by the forward kinematics of the robot arm into an endpoint trajectory in Carte-
sian coordinates. For small pattern sizes, the forward kinematics fkin  is approximately
linear:
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where J( )θ0  is the Jacobian of the forward kinematics. The capitalized subscripts refer
to the individual joint angles and the subscript “0” denotes the constant offsets in each
of the oscillations. Thus, for small patterns, the endpoint trajectory becomes a linear
combination of sinusoids with different phases and amplitudes, but identical frequency
ω. According to the laws of trigonometry, this linear combination results in an endpoint
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trajectory that remains purely harmonic and thus optimally smooth. Following the ar-
gument above, the power law must be fulfilled.

However, if the amplitudes of the joint oscillations are increased to realize large el-
liptical patterns, the nonlinearities of the forward kinematics come into play. Forward
kinematic transformations consist of a series of multiplication of rotation matrices, each
of which changes its coefficients according to the current joint angles. Thus, the sinusoi-
dal joint trajectories are multiplied with other sinusoidal elements. Such highly nonlin-
ear combinations of sinusoids result in an endpoint trajectory that has higher frequency
components and becomes less smooth. According to Equation (7), higher frequency
components will effect that the velocity gain factor of the power is no longer constant,
and the power law fit should deteriorate, as observed in our robot data. Given the
striking similarity of the human and the robot data, we believe that this reasoning
equally holds for the deterioration of the power law fits in our human data.
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