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Abstract. A model-based approach to on-line cursive
handwriting analysis and recognition is presented and
evaluated. In this model, on-line handwriting is consid-
ered as a modulation of a simple cycloidal pen motion,
described by two coupled oscillations with a constant
linear drift along the line of the writing. By slow mod-
ulations of the amplitudes and phase lags of the two
oscillators, a general pen trajectory can be efficiently
encoded. These parameters are then quantized into a
small number of values without altering the writing in-
telligibility. A general procedure for the estimation and
quantization of these cycloidal motion parameters for
arbitrary handwriting is presented. The result 1s a dis-
crete motor control representation of the continuous pen
motion, via the quantized levels of the model parame-
ters. This motor control representation enables success-
ful word spotting and matching of cursive scripts. Our
experiments clearly indicate the potential of this dy-
namic representation for complete cursive handwriting
recognition.

1 Introduction

Cursive handwriting is a complex graphic realization
of natural human communication. Its production and
recognition involve a large number of highly cognitive
functions including vision, motor control, and natural
language understanding. Yet the traditional approach
to handwriting recognition has focused so far mostly
on computer vision and computational geometric tech-
niques. The recent emergence of pen computers with
high resolution tablets has made available dynamic (tem-
poral) information as well and created the need for ro-
bust on-line handwriting recognition algorithms. Consid-
erable effort has been spent in the past years on on-line
cursive handwriting recognition (for general reviews see
Plamondon et al. 1989; Plamondon and Leedham 1990;
Tappert et al. 1990), but there are no robust, low error
rate recognition schemes available yet.

Research of the motor aspects of handwriting has
suggested that the pen movements produced during cur-
sive handwriting are the result of ‘motor programs’ con-
trolling the writing apparatus. This view was used for
natural synthesis of cursive handwriting (see e.g., E.
Doojies, pp. 119-130 in Plamondon et al. 1989). There
have been several attempts to construct dynamical mod-
els of handwriting for recognition. Some of these works
are based on a similar approach to ours (e.g., Rumel-
hart 1992). None of the previous works, however, have
actually solved the inverse dynamics problem of ‘reveal-
ing’ the ‘motor code’ used for the production of cursive
handwriting.

Motivated by the oscillatory motion model of hand-
writing, as introduced by, e.g., Hollerbach (1981), we
develop a robust parameter estimation and regulariza-
tion scheme which serves for the analysis, synthesis, and
coding of cursive handwriting. In Hollerbach’s model,
cursive handwriting is described by two independent
oscillatory motions superimposed on a constant linear
drift along the line of writing. When the parameters are
fixed, the result of these dynamics is a cycloidal motion
along the line of the drift (see Fig. 1). By modulations of
the cycloidal motion parameters, arbitrary handwriting
can be generated. The difficulty, however, is to generate
writing by a low rate modulation, much lower than the
original rate of the oscillatory signals. In this work, we
propose an efficient low rate encoding of the cycloidal
motion modulation and demonstrate its utility for robust
synthesis and analysis of the process.

The pen trajectory is discretized in time by consid-
ering only the zero vertical velocity points. In between
these points, the handwriting 1s approximated by an
unconstrained cycloidal motion using the values of the
parameters estimated at the zero vertical velocity points.
Further, we show that the amplitude modulation can be
quantized to a small number of levels (five for the ver-
tical amplitude modulation and three for the horizontal
amplitude modulation), and the results are robust. The
vertical oscillation is described as an almost synchronous
process, i.e. the angular velocity 1s transformed to be



constant. The horizontal oscillation is then described in
terms of its phase lag to the vertical oscillation and thus
becomes synchronous as well. The modeling and estima-
tion processes can be viewed as a many-to-one mapping,
from the continuous pen motion to a discrete set of mo-
tor control symbols. While this dramatically reduces the
coding bit rate, we show that the relevant recognition
information is regularized and preserved.

In Sect. 2, we discuss Hollerbach’s model and demon-
strate its advantages in representing handwriting over
standard geometric techniques. In Sect. 3, we describe
our analysis-by-synthesis methodology and define the
goal to be an efficient motor encoding of the process. In
Sect. 4 we introduce two global transformations: correc-
tion of the writing orientation and slant equalization. We
show that such preprocessing further assists in regular-
izing the process, which simplifies the parameter estima-
tion phase. In Sect. 5 we discuss the model’s parameter
estimation. Sects. 6-8 introduce a series of quantizations
and discretizations of the dynamic parameters, which
both lower the encoding bit rate and improve the read-
ability of the writing. Section 9 summarizes the discrete
representation of the cursive handwriting process and
shows that this representation is stable in the sense that
similar words result in similar motor control symbols.
Finally, we describe word spotting and matching experi-
ments which demonstrate the power of our approach for
recognition.

2 The cycloidal model

Handwriting is generated by the human motor system,
which can be described by a spring muscle model near
equilibrium. This model assumes that the muscle oper-
ates in the linear small deviation regions. Movements are
excited by selecting a pair of agonist-antagonist muscles,
modeled by a spring pair. If we further assume that the
friction is balanced by an equal muscular force, then the
process of handwriting can be approximated by a system
of two orthogonal opposing pairs of ideal springs. In a
general form, the spring muscle system can be described
by the following differential equation

M|E| =k |* 1
My g
where M and K are 2 x 2 matrices that can be diago-
nalized simultaneously. This system can be transformed

to a diagonalized system described by the following de-
coupled equations set

Mxl‘ = I(l,x(xl — l‘) — [(Z,x(x — l‘z) (2)
My = K1 y(y —y) — Koy(y — y2)

where Ky, Ko ., K1y, K2y are the spring constants,
and z1,x2,y1,y2 are the spring equilibrium positions.
Solving these equations with the initial condition that
the system has a constant velocity (drift) in the horizon-
tal direction yields the following parametric form

{x(t) = Acos(wy(t —t0) + ¢5) + C(t —tg) (3)
y(t) = B cos(wy(t —tg) + ¢y)

Cycloid par ters: C < Ax Phi=90 Cycloid parameters: C = Ax Phi = 30

Cycloid parameters: C > Ax Phi=0 Cycloid parameters: C < Ax Phi = -60

Fig. 1. Various cycloidal writing curves

The angular velocities w, and w, are determined by
the ratios between the spring constants and masses.
A, B,C, ¢z, ¢y, 1o are the integration parameters deter-
mined by the initial conditions. This set describes two
independent oscillatory motions, superimposed on a lin-
ear constant drift along the line of writing, generating
cycloids. Different cycloidal trajectories can be achieved
by changing the spring constants and zero settings at
the appropriate time. The relationship between the hor-
izontal amplitude modulation A;(t), the horizontal drift
C, and the phase lag, ¢(t) = ¢5(t) — ¢, (1), controls the
letter corner shape (cusp), as demonstrated in Fig. 1.

We further restrict the model by assuming that the
angular velocities are tied, i.e. wy(t) = wy(t)éw(t), and
that ¢,(t) = 0. These assumptions are not too restric-
tive, as will be shown later. With these assumptions,
the equations governing the oscillations in the velocity
domain can be written as

Valt) = A (0)sin ()t — 1) +6W)+C
V(1) = 4, (tsin (w(1)(t = o))

where ty is the writing onset time, A,(¢) and Ay(¢)
are the horizontal and the vertical instantaneous am-
plitude modulations, w(t) is the instantaneous angular
velocity, ¢(¢) is the horizontal phase lag, and C' is the
horizontal drift velocity. By definition, the oscillation

phase 6(¢) = fotw(t)dt Is monotonic in time. Hence, the
time parameterization of the velocity equations can be
changed, using the chain rule, % = %g—g, to phase

parameterization of the following form

{ Vi (0) = Az () sin(0 + 6(6)) + C [ 77] (5)
Vy(0) = Ay () sin(0)

As already demonstrated, different cycloid parame-
ters yield different letter forms. The transition from one
letter to another can be achieved by a gradual change
in the parameter space. A smooth pen trajectory can
be obtained in this way. Standard differential geome-
try parameterizations (e.g., curvature versus arc-length),
however, have difficulties expressing infinite curvature
(corners), which are handled naturally in our model.
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Fig. 2. A synthetic cycloid and its curvature

Fig. 3. A discrete controlled system that maps motor control sym-
bols to pen trajectories

This problem is demonstrated in Fig. 2. In this simple
example, a cycloid trajectory was produced by setting
the parameters A,(t) = Ay(¢t) = C = 1 and gradually
changing ¢(t) from 0° to +180° . The resulting tra-
jectory after integration of the velocities is a smooth
curve which has the form of the letter w. However, the
curvature diverges at the middle cusp.

3 Methodology

Using the velocity equation presented in the previous
section, handwriting can be represented as a slowly
varying dynamical system whose control parameters are
the cycloidal parameters A,(t), A,(t), and ¢(¢). In this
work, it is shown that these dynamical parameters have
an efficient discrete coding that can be represented by
a discretely controlled, dynamical system. The inputs
to this system are motor control symbols which define
the instantaneous cycloidal parameters. These parame-
ters change only at restricted times. Our motor system
‘translates’ these motor control symbols to continuous
arm movements. An illustration of this system is given
in Fig. 3 where the system 1s denoted by H and the
control symbols by (z;, y;).

Decoding and recognition, as implied by this model,
are done by solving an inverse dynamics problem. The
following sections describe our solution to this inverse
problem. A series of parameter estimation schemes that
reveal the discrete control symbols is presented. Each
stage 1n the process is verified via an analysis-by-
synthesis technique. This technique uses the estimated
parameters and the underlying model to reconstruct the
trajectory. At every stage the synthesized curve is ex-
amined to determine whether the relevant recognition
information is preserved. The result is a mechanism that
maps the continuous pen trajectories to the discrete mo-
tor control symbols. A more systematic approach which
uses control theoretical schemes is being developed.

4 Global transformations

On-line handwriting need not be oriented horizontally,
and usually the handwriting is slanted. In this section
normalization processes that eliminate different writ-
ing orientations and writing slants are described. These
transformations are performed prior to any modeling to
make the input scheme more robust. In this process, we
do not estimate any of the dynamic parameters but use
the general form of the dynamic equations.

4.1 Correction of the writing orientation

On-line handwriting is sampled in a general uncon-
strained position. This results in a nonhorizontal di-
rection of writing. Even when the writing direction is
horizontal, there are position variations due to the os-
cillations; thus, the general orientation is defined as
the average slope of the trajectory. Robust statistic
estimation (Wald 1940) is used to estimate the gen-
eral orientation, rather than a simple linear regres-
sion, since there are measurement errors both in the
vertical and the horizontal pen positions. The sam-
pled points (X(4), Y (¢)) are randomly divided into pairs
{(X(24),Y(2ir)), (X (2 + 1), Y (245 + 1))}, such that
X(2ir + 1) > X(2ir). The estimated writing orientation
15 {Y(2i+1)-Y(2ig)} .
s W = %:{X(zikH)—X(zik)}' The angle of the writ-
ing direction « is tan_lw, and the velocity vectors are
rotated as follows

{ Vi) = V(1) co.s(oz)
Vy/(t) = —Vy(t)sin(a)

_|_
_|_

4.2 Slant equalization

Handwriting is normally slanted. In the spring muscle
model, this implies that the spring pairs are not orthog-
onal and only the general (1) is valid. The amount of
coupling can be estimated by measuring the correlation
between the horizontal and vertical velocities. Remov-
ing the slant 1s equivalent to decoupling the oscillation
equations. This decoupling is desired since it is a writer-
dependent property which does not contain any context
information. The decoupling enables an independent es-
timation of the oscillation parameters for the phase-lag
reqularization stage, described in Sect. 7, and simplifies
the estimation scheme.

The decoupling can be viewed as a transformation
from a nonorthogonal to an orthogonal coordinate sys-
tem in which one of the axes is the direction of writing.
The horizontal velocity after slant equalization (denoted
by (N/x) is statistically uncorrelated with the vertical ve-
locity Vy (f/x — Vy). Therefore, the original velocity
can be written as V,(¢) = Vy + A(t)Vy(t). Assuming
stationarity, this requirement means that E(f/x Vy) =0
and A(t) = A. If we assume that the slant is almost
constant, then the stationarity assumption holds. The



Fig. 4. The result of the slant equalization process

mazimum likelihood estimator for A, assuming that the
measurement noise is gaussian, is

E(VaVy) _ St VeV, (1)
E(VyVy) il V()W (1)

A= (7)
There are writers whose writing slant changes signif-
icantly even within a single word. For those writers,
the projection coefficient A(t) is estimated locally. We
assume though that along a short interval the slant
is constant (local stationarity assumption). In order to
estimate A(tg) we compute the short time correlation
between V,(t) and V,(¢) after multiplying them by a
window centered at ¢g

Alto) = Z%l Ve (1) Vy ()W (to — 1)
ooy VgV (W (to — 1)

where W is a Hanning window®, frequently used in short
time Fourier analysis applications (Oppenheim and
Schafer 1975). We empirically set the width of the win-
dow to contain about 5 cycles of V,. After finding A(t)
(or A if we assume a constant slant) the horizontal veloc-
ity after slant equalization is f/x(t) =V (1) — A(t)Vy(t)
The slant equalization process is depicted in Fig. 4,
where the original handwriting is shown with the hand-
writing after slant equalization with a stationary slant
assumption.

(8)

5 Estimating the model parameters

The cycloidal (4) is too general. The problem of estimat-
ing its continuous parameters is ill-defined since there
are more parameters than observations. Therefore, we
would like to constrain the values of the parameters
while preserving the intelligibility of the handwriting. It
is shown in this section that by restricting the values
of the parameters, a compact coding of the dynamics is
achieved while preserving intelligibility.

Assuming that the model is a good approximation of
the true dynamics, then the horizontal drift, C', can be
estimated as follows, C' = % Zf\;l Vi (n), where N is the
number of digitized points. Under the model assump-
tions, ' converges to C' and is an unbiased estimator. In
order to check the assumption that C' is really constant
we calculated it for different words and locally within a

1 Hanning window of length N is defined as Wranning(n) =

L (1 - cos(222)).

word using a sliding window. The small variations in the
estimator C' indicate that our assumption is correct. At
this point we perform one more normalization by divid-
ing the velocities Vi (¢) and V,(¢) by C. The result is a
set of normalized equations with C' = 1. Henceforth, the
constant drift is subtracted from the horizontal velocity
and it is added whenever the spatial signal is recon-
structed. Integration of the normalized set results in a
fixed height handwriting, independent of its original size.
The normalizations and transformations presented so far
are supported by physiological experiments (Hogan and
Flash 1987; Lacquniti 1989) that show evidence of spa-
tial and temporal invariance of the motor system.

We assume that the cycloidal trajectory describes the
natural pen motion between the velocity zero-crossings
and changes in the dynamical parameters occur at the
zero-crossings only, to keep the continuity. This assump-
tion implies that the angular velocities wy(t),wy(t) and
the amplitude modulation A,(t), A,(t) are almost con-
stant between consecutive zero-crossings. A good ap-
proximation can be achieved by identifying the veloc-
ity zero-crossings, setting the local angular velocities to
match the time between two consecutive zero-crossings,
and setting the velocities to values such that the to-
tal pen displacement between two zero-crossings is pre-
served. Denote by t¥ and ¢/ the ith zero-crossing of the
horizontal and vertical locations, and by LY and LY the
horizontal and vertical progression during the ¢th inter-
val (after subtracting the horizontal drift), respectively.
The estimated amplitudes are

G e o Linm
tf+1 Af Sm(ﬁ(t —t7))dt = Lf = A7 = 34T, 1T
t? Y : s LYx

S A sin (= (t = )t = L = Af = 7,0

The angular velocities are set independently and the
phase lag, ¢(t), is currently set to 0. The result of this
process is a compact representation of the writing pro-
cess, demonstrated by the resynthesized curve which is
similar to the original, as shown in Fig. 5.

At this stage we can represent the writing process as
two statistically independent, single-dimensional, oscilla-
tory movements. Free oscillatory movement is assumed
between consecutive zero-crossings, while switching of
the dynamic parameters occurs only at these points.

Each of the original sampled points, denoted by
(z,y), is quantized to 8 bits. Quantizing the amplitudes
and the zero-crossings indices to 8 bits reduces the num-
ber of bits needed to represent the curve, as shown in
Fig. 13. The original code length is indexed as stage 1.
Stage 2 1s the velocity approximation described in this
section. The total description length of the trajectory at
this point is reduced by a factor of 7.

6 Amplitude modulation discretization

The amplitudes A, (¢), A,(t) define the vertical and hori-
zontal scale of the letters. From measurements of written
words, the possible values of these amplitudes appear to
be limited to a few typical values with small variations.



Fig. 5. The original and the reconstructed handwriting after am-
plitudes coding

H

Fig. 6. Illustration of the vertical positions as a function of time

We assume statistical independence of the amplitude
values and perform discretization separately for the hor-
izontal and vertical velocities. Nevertheless strong cor-
relations remain between the velocities, which can be
reduced in later stages.

6.1 Vertical amplitude discretization

Examination of the vertical velocity dynamics reveals

the following:

e There is a virtual center of the vertical move-
ments. The pen trajectory is approximately symmet-
ric around this center.

e The vertical velocity zero-crossings occur while the
pen is at almost fixed vertical levels, which correspond
to high, normal and small modulation values.

These observations are presented in Fig. 6, where the

vertical position is plotted as a function of time. Us-

ing this apparent quantization we allow five possible
pen positions, denoted by Hy, - --, Hs, which satisfy the
symmetry constraints, %(Hl + Hs) = %(Hz + H,) = Hs.

Let, o = Hz—Hl = H5—H4 andﬁ: H3—H2 =

H, — Hs (Fig. 6). Then, the possible curve lengths are,

Oa aaﬁa a+6a a+26a 26a 2(0[—1_6)

The five-level description is a qualitative view. The
levels achieved at the vertical velocity zero-crossings
vary around Hy, ..., Hs. The variation around each level
is approximated by a normal distribution with an un-
known common variance. The distributions around the
levels are assumed to be fixed and characteristic for each
writer. Let I (I; € 1,...,5) be the level indicator, i.e.,
the index of the level obtained at the ¢th zero-crossing.
We need to estimate concurrently the five mean levels
Hy,..., Hy, their common variance o, and the indicators
I;. Yet the observed data are just the actual levels, L(?),
which are composed of the ‘true’ levels, Hy,, and an ob-
servation gaussian noise &, L(t) = Hy, +& (£ ~ N(0,0)).

® & b NoN & ®
—

—
)
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Time (msec x 10)

Fig. 7. The original and the quantized vertical velocity (top), the
original handwriting (bottom left), and the reconstructed hand-
writing after quantization of the horizontal and vertical amplitudes
(bottom right)

Therefore, the complete data consist of the sequence
of levels and indicators {I;, L(¢)}, while the observed
data (also termed incomplete data) are just the sequence
of levels, L(t). The task of estimating the parameter
{H;,c} is a classical situation of mazimum likelihood
parameters estimation from incomplete data, commonly
solved by the EM algorithm (Dempster et al. 1977). A
full description of the use of EM in our case is given
in the Appendix. The handwriting synthesized from the
quantized amplitudes is depicted in Fig. 7.

6.2 Horwzontal amplitude discretization

The quantization of the horizontal progression between
two consecutive velocity zero-crossings is simpler. In gen-
eral, there are three types of letters, thin (like 1), normal
(n), and fat (o). These typical levels can be found using
a standard scalar quantization technique.

7 Horizontal phase lag regularization

After performing slant equalization, the velocities V(%)
and V,(t) are approximately statistically uncorrelated.
Since w, & w,, the two velocities can be statistically
uncorrelated if the phase lag between V, and Vj is £90°
on the average. Thus, the horizontal velocity, V., is close
to its local extrema, while Vj, is near zero, and vice versa.
Since the phase lag changes continuously, a change from
a positive phase lag to a negative one (or vice versa)
must pass through 0°. There are places of local halt
in both velocities, so a zero phase lag is also common.
When the phase lag 1s 0°, the vertical and horizontal
oscillations become coherent, and their zero-crossings
occur at about the same time. These observations are
supported by empirical evidence, as shown in Fig. §,
where the horizontal and the vertical velocities of the
word shown in Fig. 6 are plotted. Note that the phase lag
1s likely to be £90° or 0°. This phenomenon supports our
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Fig. 8. The horizontal and the vertical velocities of the word shown
in Fig. 4 (after removing the slant)
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Fig. 9. The possible phase-lagrelations and the corresponding spa-
tial curves

discrete dynamical approach, and the phase lag between
the oscillations is discretized to £90° or 0°. We now
describe how the best discrete phase-lag trajectory is
found.

Examining the cycloidal model for each Roman cur-
sive letter reveals that the horizontal to vertical angular

velocity ratio is at most 2, i.e., max {Z—m, Z—y} < 2. Thus,
Y x

for English cursive handwriting the ratio z—; is restricted

to the range [1,2]. Combining the angular velocity ratio

limitations with the discrete set of possible phase-lags
implies that the possible angular velocity ratios are: 1:1,
1:2,2:1, 2:3, and 3:2. Four of these cases are plotted in
Fig. 9 with the corresponding spatial curves, assuming
that the horizontal drift is zero. The vertical velocity V,,
is plotted with a solid line and the horizontal velocity
Ve with a dotted line.

We view the vertical velocity V;, as a ‘master clock’,
where the zero-crossings are the clock onset times. V,
is viewed as a ‘slave clock’ whose pace varies around
the ‘master clock’. The rate ratio between the clocks
is limited to at most 2. Thus, V, induces a grid for V;
zero-crossings. The grid is composed of V}, zero-crossings
and multiples of quarters of the zero-crossings (the bold
circles and the grey rectangles in Fig. 10). V, zero-
crossings occur on a subset of the grid. The phase tra-
jectory is defined over a subset of this grid, which is
consistent with the discrete phase constraints and the
angular velocities ratio limit. The allowed transitions
for one grid point are plotted by dashed lines in Fig.
10. For each two allowed grid points the phase trajec-
tory is calculated. For example, if ¢; and ¢; are two
grid points and there is a Vj zero-crossing at ?; where
t; <t < tj, then the horizontal velocity phase along the
time interval [¢;, ¢;] should meet the following conditions:

Fig. 10. Phase lag trajectory optimization by dynamic program-
ming. Vg is approximated by limiting its zero-crossings to a grid
which is denoted in the figure by bold circles (V, zero-crossings)
and grey rectangles

0:(t;) = 2mn, 0, (1) = 27(n + %) , 0:(t;) = 2m(n + %)
The phase trajectory is linearly interpolated between
the induced grid points. Hence, the phase along the time
interval [t;,¢;] is

0 (t B 2mn 4+ %ttk_—ttll i <t <ig
T - t—1
27T7l—|—%—|—%t]_tkk tk§t<t]'

If there is no V), zero-crossing between the grid points or
there are two V), zero-crossings, the V, phase lag changes
linearly between the zero-crossings. In those cases, the
phase trajectory along the grid points is

t—t;
ti—t;

0,(t) =2mn+ =

Given the horizontal phase lag and assuming that the
amplitude modulation is constant along one grid in-
terval, the amplitudes that will preserve the horizontal
progression are calculated. Denoting by L the horizon-
tal progression, the approximated horizontal amplitude
modulation along the time interval [t;,¢;] is

;o L
05 Tty .
T sin(6:(1)) dt

and the approximation error along this interval is

ErrOrApprox([ti; t]]) = /t ’ (V(t) - A;,] sin (617 (t))>2dt

B

Formally, let the set of possible grid points be

T = {ti,ts,...,txy}. We are looking for a subset
T = {til,ti2, .. ~,tiK} C T such that all the pairs
ti;,ti;,, are allowed, with the minimal induced approx-

1mation error

T = arg TH/lclI% Z Error appros( [tij , tij+1])
i;eT’

For each grid point ¢; a set of allowed previous grid points

Sy, 1s defined. The accumulated error at the grid point

t; can be calculated by dynamic programming using the

following local minimization,

Error(t;) = tnelgtl {Error(t;) + Error approe ([ti, £5])}
¢ 7
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Fig.11. The horizontal and vertical velocities and the recon-
structed handwriting after phase-lag regularization

An illustration of the optimization process is depicted
in Fig. 10. The best phase trajectory is found by back-
tracking from the best grid point of the last V, zero-
crossing. The result of this process is plotted in Fig.
11. This process ‘ties’ the two oscillations and repre-
sents the horizontal oscillations in terms of the vertical
oscillations. Therefore, only the vertical velocity zero-
crossings have to be located in the estimation process.
This further reduces the number of bits needed to code
the handwriting trajectory as indicated by stage 5 in
Fig. 13. Since the horizontal oscillations are less stable
and more noisy, this scheme avoids many of the problems
encountered when estimating the horizontal parameters
directly.

8 Angular velocity regularization

Until now the original angular velocities of the verti-
cal oscillations were preserved. Hence, in order to re-
construct the velocities, the exact timing of the zero-
crossings 1s kept. Our experiments reveal that all writers
have their own typical angular velocity for the oscil-
lations. These findings seem to be in contradiction to
previous experiments, where it has been shown that a
tendency exists for spatial characteristics to be more in-
variant than the temporal characteristics (Teulings et al.
1986, Thomassen and 1986) and to Hollerbach’s claim
that both the amplitudes and the angular velocity are
scaled during the writing of tall letters like 1. For the
purpose of representing handwriting as the output of a
discrete, controlled, oscillatory system, fixing the angu-
lar velocity does not incur difficulties, and the approx-
imated velocities preserve the context as shown in Fig.
12. Fixing the angular velocity can also be seen as a
basic writing thythm which may actually be supported
by neurobiological evidence (Bergman et al. 1990). Since
the horizontal oscillations are derived from the vertical
oscillations by changing the phase lag, fixing the verti-
cal angular velocity implies that the angular velocities
of both the vertical and the horizontal oscillations are
fixed. The angular velocity variations for each writer are
small except in short intervals, where the writer hesi-
tates or stops. The total halt intervals can be omitted
or used for natural segmentation. The angular velocity
is fixed to its typical value, and the time between two
consecutive zero-crossings becomes constant.

The amplitudes are modified so that the total verti-
cal and horizontal progressions are preserved. Since the

Amplitude
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Fig. 12. The original and the reconstructed handwriting after an-
gular velocity regularization (top figures) and the final vertical ve-
locity (bottom figure)

horizontal and vertical progressions are quantized dis-
crete values, the time scaling implies that the possible
amplitudes are discrete as well. The time scaling can be
viewed as a change in parameterization of the oscillation
equations from time to phase, as denoted by (5). As-
suming that the angular velocity, w, is almost constant
implies that j—g 1s almost constant as well. The normal-
ized dynamic equations which describe the handwriting
become

Az (0)sin(f 4+ ¢(6)) + 1
Ay (6)sin(8)

—
S S
N N
D D
R
(I

9)

where ¢(0) € {-90°,0°,90°}, A,(0) € {AL, A2 A3},
and A4,(0) € {A;,A;,AS,A;,A;}. The result of this
process is shown in Fig. 12 where the original script and
reconstructed script (after all stages including angular
regularization) are plotted together with the synchro-
nized vertical velocity. Note that the vertical velocity
attains only a few discrete values at the maximal points
of the oscillations. The number of bits needed to encode
the writing curves is reduced after this final stage by a
factor of about 100 compared with the original encoding
of the writing curves (stage 6 in Fig. 13).

The synthesized velocities are not ‘natural’ due to
the switching scheme of the velocity parameters, which
results in very large accelerations at the zero-crossings.
Our simple synthesis scheme was used in order to verify
our assumption that cursive handwriting can be repre-
sented as the output of a discrete, controlled system.
Other synthesis schemes can be applied to yield more
‘natural’ velocities. For example the principle of mini-
mal jerk by Hogan and Flash (1987) can be used for
synthesis.

9 The discrete control representation

So far, we have introduced a dynamic model which de-
scribes the velocities of a cursive writing process as a
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Fig. 13. The number of bits needed to encode cursive handwriting
along the various stages

constrained modulation of underlying oscillatory pro-
cesses. The imposed limitations on the dynamical con-
trol parameters result in a good approximation which is
similar to the original. We then introduced a series of
transformations which led to synchronous oscillations.
As a result, a many-to-one mapping from the continu-
ous velocities Vi (), V; () to a discrete symbol set was
generated. This set is composed of a cartesian product
of the discrete vertical and horizontal amplitude modu-
lation values and the phase-lag orientation between the
horizontal and vertical velocities.

Tracking the number of bits that are needed to en-
code the velocities (Fig. 13) reveals that the discretiza-
tion and regularization processes gradually reduce the
bit rate. This indicates that our discrete controlled sys-
tem representation is well suited for compression and
recognition applications. The transformation closes part
of the gap between different writing styles and different
writers. Keeping track of the transformations themselves
can be used for writer identification. Here we introduce
one possible discrete representation of the resulting dis-
crete control. Our representation does not correspond
directly to the original dynamic parameters but rather
involves a one-to-one transformation of them.

Further, we describe the two discrete control pro-
cesses as the output of two synchronized stochastic au-
tomata. The output can be written in two rows. The
first row describes the appropriate vertical level (which
can be one of 5 values) each time Vj(¢) = 0. Whenever
there is a vertical velocity zero-crossing, the correspond-
ing automaton outputs a symbol which is the index of
the level obtained at the zero-crossing. Similarly, the
second automaton outputs a symbol when a horizontal
velocity zero-crossing occurs. This symbol corresponds
to the horizontal amplitude modulation for the next in-
terval. Special care is taken when tracking the discrete
control of the horizontal oscillations, since the phase 1s
not explicit but changes its state implicitly. Yet if the
initial horizontal oscillation phase is known, then the
total phase trajectory can be reconstructed from this
information. The first output symbol of the horizontal
automaton is the initial phase denoted by =£. Since the
oscillation processes are synchronized by the angular ve-
locity regularization, we only need to record the order of
the automata output. When the two automata output
symbols at the same time, it means that the oscilla-
tion phases became coherent; otherwise, there is a £90°
phase lag. The angular velocity ratio limitation implies
that each of the automata can output at most two con-

secutive symbols, while the other automaton is silent.
The following is an example for such a representation
for the same word (‘toccata’) written twice.

L2502040,44,,20 40 34 442, ,44,,42, 44, 42, 4,2, 5,2, 44,42, 4,2
+222,,1,,23,2,,30,3010,23030111330300200, 20202020300 2002030

L2502,40,442, 4 344,142, 4,442, 4, 442, 4,2, 5,24, 442, 4, 2
+122,,1,,132,,3.,30,1,13,,3,1,233,,1,,132,,21,3,,2.,30,1,,232,.2,,30

Note that the discrete representation is almost the
same, and that simple rules may be found to match
the two sequences. In fact, in this example, if we omit
the horizontal (lower) output and squeeze the gaps for
the vertical (upper) one, then the upper sequences for
the two words are identical. This implies that much of
the information is embedded in the vertical oscillations.
We use this observation in a rudimentary spotting and
matching experiment to conclude this paper.

10 Word spotting and matching experiments

In order to test our representation, some rudimentary
experiments were performed. We describe two of them
in this section. Only a small amount of data was col-
lected, so the experiments are restricted to nonpara-
metric schemes. The first scheme is based on learning
vector quantization (LVQ) which is essentially a static
template matching. The second scheme is based on dy-
namic programming and called dynamic time warping
(DTW). The second scheme was compared with direct
DTW on the original handwriting velocities to check the
robustness of our discrete representation.

10.1 Word spotting by learning vector quantization

A set of 10 words, all beginning with the letter sequence
com was collected. Another set of 10 words with other
letters without the sequence com but with the sequences
co and om was also collected. A third set which included
the sequence com and other sequences was used as a test
set. A nonparametric method based on LVQ (Kohonen
1989) was developed for word spotting.

During the estimation process, there were false detec-
tions and misses of zero-crossings. This affects directly
the output of the automata. Deletion and insertion of
symbols may occur. In order to overcome this difficulty,
the spotting algorithm should be made locally shift toler-
ant. Shift tolerance is achieved by training the classifier
on ‘windowed’ parts of the sequences (McDermott and

Katagiri 1991). Denote a sequence by {Si}f\;l where N is
the length of the sequence. Each sequence is divided into
L overlapping sequences, S' = {Si}f\;L-H. A two-class
LVQ was trained for each chopped sequence, by building
a vector set (also termed codebook) for each position

i€ {l,....,N—L+1}. Denote by M the number of
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Fig. 14. A reconstructed handwriting and the corresponding spot-
ting score of the word-part com

code vectors for each position, then the total number of
code vectors 1s M L.

A compound distance was developed in order to com-
pare different sequences. First, the outputs of the vertical
automaton are compared by calculating the Fuclidean
distance between the chopped sequences. Then the ver-
tical automaton outputs are used to divide the hor-
izontal automaton output into blocks. The horizontal
output symbols between two consecutive vertical au-
tomaton outputs are gathered into one block. Denote
the discrete output times of the vertical automaton by
i1,19,...,1g and the horizontal output symbols by X;.
The kth horizontal block is By = {X; | iz < j < ip41}-
The compound distance (denoted by D, for each class
¢) is the sum of the vertical symbol distance and the
horizontal block distance

De({Si ), {71 = DAY} YD) +D({X3},{X?})

N—-L+1

= > I -y ||2+Z||Bi1

i=1 i=1

- B |,

Spotting was tested on more than 30 words. The closest
code vector for each class within each position was found
for all the chopped sequences. Let D.(l) be the distance
for class ¢ (¢ = 1,2) at the [th position. An activation is
defined for each window position using these distances
as follows

Ll Dy 1 Di_.(I)
Acll) = IZ;ZC 1D §D0(1)+D1(1)

For words that contain the word-part com, there is a
window position with close vectors from the code; hence,
Dy(l) is small compared with D;(!), and the activation
is high. For random strings, the distances are about the
same, hence the score fluctuates about 0.5.

The result of spotting in the word shortcoming is
shown in Fig. 14, where the reconstructed word is plot-
ted together with the corresponding spotting score. The
sharp peak occurs in the last part of the learned word-
part com since the accumulated activation scores are
calculated backward.

10.2 Word matching by dynamic time warping

DTW (Sankoff and Kruskal 1983) is a well-known tech-
nique for string matching, when the strings are corrupted
by a noisy channel that can omit, insert, or substitute

symbols. If the strings are over a finite alphabet, then the
distance between two strings is defined as the minimal
number of string modifications (deletions, insertions, or
substitutions) on one string that make it equal to the
other. This is a symmetric distance since a deletion of
a symbol in the first string is equivalent to an insertion
of the symbol in the proper place of the second string.
The optimal sequence of operations can be obtained via
dynamic programming. Substitutions can be performed
by successive insertions and deletions, hence the distance
D between strings 51,5 up to place ¢; in string S; and
place ¢ in string S5 1s,

D51752 (il - 1, iz) + Cdel

PN
S8 f2) = min {Dsl,SQ(il, ir — 1) + Cing

(10)

where Cye and Cing are the costs of a deletion and an
insertion. The total distance between two strings is the
accumulated distance at the last two symbols in the
strings, D(S1,52) 2 Ds, 5, (| 1 |,] 2 |)-

When the strings’ alphabet is an infinite set a slightly
different scheme is applied. Usually the square distance,
denoted by || -||5, is used to measure the distance be-
tween symbols. The distance between two strings is

Dys, 5,(i1,12) =

Dsy s, (in = 1,ia) + || S1(d1), Sa2(i2) |,
min ¢ Ds; s, (11,72 = 1) + || S1(21), Sa(i2) ||, (11)
Dsy .5, (11 = 1az = 1) + | S1(i1), Sa(ia) I,

Based on the distance Dg, s, a forward distance matriz
M/ is defined, where MZ»{]» = Ds, s,(4,7). Therefore,
the (4,) element in the matrix represents the distance
between the two strings from the start up to place ¢ in
S; and j in Ss. Let S| = €0 51,57 = €053 be two
pseudo-strings, where € represents the null symbol and
o represents concatenation. We define the matrix A/
as the distance matrix between S and S%. Denote the
length of the sequences by Ny = [S]| and Na = |5}
and assume that N7 > No. We want to spot occurrences
of the string S» in S7. The following scheme builds the
distance matrix: Initialize M 0=0:0<i< N, le.
the strmg Sy can start anywhere in S7. The rest of the
matrix is computed by the recursion (11). The values
MfN are the distances (number of string operations
needed) when the string S; ends in location ¢ in S7. The
smaller MZ»{N2 18, the more likely that the string S, ends

in location ¢ in S;. We can define a backward distance
similarly

D51752 (il + 1, iz) + Cdel

.. 12
Ds, 5,(11,72 + 1) + Cing (12)

D51752 (il, iz) = mm{

The backward distance matriz M° is defined based on
this distance. The symmetric distance between strings 53
and Ss for a position centered around the ¢th symbol in

S1is SDg, 5,(1) = Mb M, + sz+ ~, . - This distance

measures the number of insertion and deletlon operations
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Fig.15. The DTW spotting distance for the word-part com in the
words locomotion (/eft) and symbiotic (right)

needed to transform part of string S, centered around
i, to 52.

Based on the distances SD(¢), spotting occurrences
of the sequence representing the word-part com is per-
formed. The results of this method are similar to the re-
sults of the LV(@Q-based method. Since the DTW process
can accommodate for local displacements by extra in-
sertions or deletions at the ends of the string, the match
is also good (small distance) around the best spotted
place. A typical result is shown in Fig. 15 for the words
locomotion and symbiotic. Note that the best distance
for the word locomotion was 0, i.e. a perfect match was
found !

Another experiment using DTW was performed on
complete words. It tested the discrimination ability of
the discrete representation by performing word match-
ing based on discrete DTW versus a continuous domain
DTW. A continuous domain DTW was performed by
applying the distance defined in (11) on the original hor-
izontal and vertical velocities. Five different words were
collected, each written twice (by a single author): bifo-
cal dignify horizon quantum wolfish. The estima-
tion process was applied to each of the words. The hori-
zontal and vertical velocities were kept after finding the
best affine transformation between each pair of words.

The distance was calculated by initializing M({o =0 and
MZ{]» =0 (1 <i< Ny, 1<j< N;)and defining the dis-
tance for complete strings as Dg, s, (| S1],| S2 |). The
results of the discrete and continuous DTW are shown
in Fig. 16. There, the distance between two words 5;, .S;
is denoted by a rectangle. Larger rectangles indicate
larger distances. The ‘ideal’ distance matrix should be
all black except for a 2 x 2 block diagonal. The distances
for both experiments were normalized to have the same
average. Clearly, the matching based on the discrete rep-
resentation outperforms the continuous, indicating the
robustness of our representation.

11 Conclusions and future research

Although the 1dea that the pen movements in the pro-
duction of cursive script are the result of a simple ‘mo-
tor program’ is quite old, revealing this ‘motor code’ is
a difficult inverse-dynamic problem. In this paper, we
present a robust scheme which transforms the continu-
ous pen movements into discrete motor control symbols.
These symbols can be interpreted as a possible high

Fig.16. Comparison of DTW on the discrete representation
(right) and on the original writing velocities (left)

level coding of the motor system. The relationship be-
tween this representation and the actual cognitive rep-
resentation of handwriting remains open, though there
is some psychophysical experimental evidence linking
the recognition time to the writing time for handwrit-
ing (Frederiksen and Kroll 1976). The discrete motor
control representation largely reduces the variability in
different writing styles and writer specific effects. The
rudimentary recognition experiments that we performed
indicate the potential of this representation for cursive
recognition tasks, which is our primary goal. Since dif-
ferent writing styles are transformed to the same repre-
sentation, the transformation itself can be used for text
independent writer identification and verification tasks.

12 Appendix

We assume that there is a virtual center for the vertical movements
and that the amplitudes are symmetric about this center. The
problem becomes similar to a mixture density estimation, but it
is more involved since the parameters are tied via the symmetry
constraints. The five levels correspond to five normal distributions
with unknown means and a common variance. Initially, each level
is chosen by the a priori probability P;. We need to estimate the
parameters H; and find the most probable level indices Iy, when
the available observations are the noisy vertical positions at the
Zero-crossings.

Let MéHi and denote the stochastic levels by Y; ~ N(u;,0)
(¢ € ({1,...,5}). At each of the zero-crossings one of the levels

is chosen with probability P; (Z?zl P; = 1). The observed in-
formation is a noisy sample of the chosen level. We would like to
estimate concurrently the vertical amplitude parameters and the
levels obtained at the zero-crossings. Denote the parameter set by
O = {{0;},0} = {{Pi},{wi},c}. The joint distribution of the
levels Y is Z ~ Z?zl P;N(pi;0). The symmetry constraints im-
ply that pus = 2us — p1 and ps = 2u3 — po. The complete data
are denoted by (Y, I) = ({Vi},{I+}) where I; is the index of the
chosen level at time ¢, and Y; is the observed level value at that
time. Let It(i) be the levels indicator vector due to the index I,
e, It(:) = 1if Iy = ¢ and I; (1) = 0 otherwise. The likelihood of

an observation sequence {Y:};_, is

T
logLo(Y) = logZ P, N(Yi;nr1,,0)
t=1

T 5
= Z Z I(i)log PN (Ye; i, o)

t=1 =1

(13)



The first step in each EM iterationis to find the expectation of
(13) using the current estimation of the parameter set denoted by
0, = {{Pil} s {u}} ,ol } The following weights are calculated

using the current parameters

L Yumnd :
NAL ple”7( o)
Wi()ZE(L () | Yv,01) = 7 (14)

s pro- 3D
1=1"1

The second stage of each FM iteration maximizes the current set
of parameters, denoted by Q(©@;@1), using the expectation of (13)

mgxQ(O:01) = max D ) Wili)
k2

t

1/Y: — w; 2
. (logPi —logo — 3 (t—m) ) + Const
o

Taking the partial derivative of (15) with respect to P; under the

(15)

constraint that Z?_l P; =1 and equating it to zero results in the

5w

following estimator, P; = <—<—<&<————. The estimation of the
2202 )

current optimal level averages p; is more complicated due to the
symmetry constraints. We rewrite Equ. (15) by substituting the
symmetry constraints. Therefore, the explicit form for Q is

Q(©;01) =Const + Z Z Wi (7) (log P; — logo)—
D3 (M) - o
ZZ_: %Wt(G —9) (714 - (252 - M))2

Define w; = Zt Wi (t) f}nd Xi= Zt VV.i(t)Yt' Mln.lmlzlng (16) with
respect to po, p1, p2 yields the following set of linear equations

powo — X0 — (212 — po)ws + x4 =0
piwl — x1 — (2p2 — p1)ws + x3 =0
powz — x2 + 2(2p2 — po)ws — 2x4 +2(2u2 — p1)ws —2x3 =0

These equations are explicitly solved using the symmetry con-
straints, to obtain the new values for u; as follows

Dé4W4w0w1 + dwqwzwy + 4wz wowi + 4wy wows +
w2 Wo W1 + w4 wr w1 + w4 wo wa + w2 wo w3

po =D (dwswaxi + 2wdwax2 + 2wiwix2 — 4wy wa X4 —
X4 wowi — waw2xse + dwiwsxs + 4Xows w1+
dwzxowi + dwswaxo + xow2 w1 + w3 w2 Xo)

p1 =D Quwiwaxe + dwiwaxi + dwiwox1 — wawa X3+
dwows x4 — wawox3 + dwsgwsxo + wsgw2 x1+
worwo X1 + dwawox1 — 4w wo X3 + 2ws wo X2)

pe =D~ (wswsx2 + 2wswsxo + 2wswa x1 + w3 wox2+
2wawo X1 + 2wows x4 + 2wi wox3 + wswi X2t
2xowawl + wiwo X2 + 2wl wa X3 + 2wi wo X4)

M3 = 2po — p1 oy pa = 2p2 — o
Finally, the new variance is estimated using the new means,

>, Wi (Yi=p)?

D W)
1,0

gence, which normally occurs within a few iterations. The final
welights W;(¢) correspond to the posterior probability that at time

2 _

¢ = . This process is iterated until conver-

t the pen was at the vertical position H;. Choosing the maximal
value as the indicator of the level is the mazimum a posteriori de-
cision. This process can be performed on-line on a word basis or

11

off-line for several words. In the latter case, the estimated a priori
probabilities P; reflect the stationary probability to be at position
H;. These probabilities are influenced by the motor characteristics
of the handwriting as well as by the linguistic characteristics.
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