
BiologicalCyberneticsc Springer-Verlag 1994Dynamical encoding of cursive handwritingY. Singer, N. TishbyInstitute of Computer Science and Center for Neural Computation, The Hebrew University, Jerusalem 91904, IsraelReceived:13 April 1993 / Accepted in revised form: 18 February 1994Abstract. A model-based approach to on-line cursivehandwriting analysis and recognition is presented andevaluated. In this model, on-line handwriting is consid-ered as a modulation of a simple cycloidal pen motion,described by two coupled oscillations with a constantlinear drift along the line of the writing. By slow mod-ulations of the amplitudes and phase lags of the twooscillators, a general pen trajectory can be e�cientlyencoded. These parameters are then quantized into asmall number of values without altering the writing in-telligibility. A general procedure for the estimation andquantization of these cycloidal motion parameters forarbitrary handwriting is presented. The result is a dis-crete motor control representation of the continuous penmotion, via the quantized levels of the model parame-ters. This motor control representation enables success-ful word spotting and matching of cursive scripts. Ourexperiments clearly indicate the potential of this dy-namic representation for complete cursive handwritingrecognition.1 IntroductionCursive handwriting is a complex graphic realizationof natural human communication. Its production andrecognition involve a large number of highly cognitivefunctions including vision, motor control, and naturallanguage understanding. Yet the traditional approachto handwriting recognition has focused so far mostlyon computer vision and computational geometric tech-niques. The recent emergence of pen computers withhigh resolution tablets has made available dynamic (tem-poral) information as well and created the need for ro-bust on-line handwriting recognition algorithms.Consid-erable e�ort has been spent in the past years on on-linecursive handwriting recognition (for general reviews seePlamondon et al. 1989; Plamondon and Leedham 1990;Tappert et al. 1990), but there are no robust, low errorrate recognition schemes available yet.

Research of the motor aspects of handwriting hassuggested that the pen movements produced during cur-sive handwriting are the result of `motor programs' con-trolling the writing apparatus. This view was used fornatural synthesis of cursive handwriting (see e.g., E.Doojies, pp. 119{130 in Plamondon et al. 1989). Therehave been several attempts to construct dynamical mod-els of handwriting for recognition. Some of these worksare based on a similar approach to ours (e.g., Rumel-hart 1992). None of the previous works, however, haveactually solved the inverse dynamics problem of `reveal-ing' the `motor code' used for the production of cursivehandwriting.Motivated by the oscillatory motion model of hand-writing, as introduced by, e.g., Hollerbach (1981), wedevelop a robust parameter estimation and regulariza-tion scheme which serves for the analysis, synthesis, andcoding of cursive handwriting. In Hollerbach's model,cursive handwriting is described by two independentoscillatory motions superimposed on a constant lineardrift along the line of writing. When the parameters are�xed, the result of these dynamics is a cycloidal motionalong the line of the drift (see Fig. 1). By modulations ofthe cycloidal motion parameters, arbitrary handwritingcan be generated. The di�culty, however, is to generatewriting by a low rate modulation, much lower than theoriginal rate of the oscillatory signals. In this work, wepropose an e�cient low rate encoding of the cycloidalmotionmodulation and demonstrate its utility for robustsynthesis and analysis of the process.The pen trajectory is discretized in time by consid-ering only the zero vertical velocity points. In betweenthese points, the handwriting is approximated by anunconstrained cycloidal motion using the values of theparameters estimated at the zero vertical velocity points.Further, we show that the amplitude modulation can bequantized to a small number of levels (�ve for the ver-tical amplitude modulation and three for the horizontalamplitude modulation), and the results are robust. Thevertical oscillation is described as an almost synchronousprocess, i.e. the angular velocity is transformed to be



2constant. The horizontal oscillation is then described interms of its phase lag to the vertical oscillation and thusbecomes synchronous as well. The modeling and estima-tion processes can be viewed as a many-to-one mapping,from the continuous pen motion to a discrete set of mo-tor control symbols. While this dramatically reduces thecoding bit rate, we show that the relevant recognitioninformation is regularized and preserved.In Sect. 2, we discuss Hollerbach's model and demon-strate its advantages in representing handwriting overstandard geometric techniques. In Sect. 3, we describeour analysis-by-synthesis methodology and de�ne thegoal to be an e�cient motor encoding of the process. InSect. 4 we introduce two global transformations: correc-tion of the writing orientation and slant equalization. Weshow that such preprocessing further assists in regular-izing the process, which simpli�es the parameter estima-tion phase. In Sect. 5 we discuss the model's parameterestimation. Sects. 6-8 introduce a series of quantizationsand discretizations of the dynamic parameters, whichboth lower the encoding bit rate and improve the read-ability of the writing. Section 9 summarizes the discreterepresentation of the cursive handwriting process andshows that this representation is stable in the sense thatsimilar words result in similar motor control symbols.Finally, we describe word spotting and matching experi-ments which demonstrate the power of our approach forrecognition.2 The cycloidal modelHandwriting is generated by the human motor system,which can be described by a spring muscle model nearequilibrium. This model assumes that the muscle oper-ates in the linear small deviation regions. Movements areexcited by selecting a pair of agonist-antagonist muscles,modeled by a spring pair. If we further assume that thefriction is balanced by an equal muscular force, then theprocess of handwriting can be approximated by a systemof two orthogonal opposing pairs of ideal springs. In ageneral form, the spring muscle system can be describedby the following di�erential equationM � �x�y � = �K �xy � (1)where M and K are 2 � 2 matrices that can be diago-nalized simultaneously. This system can be transformedto a diagonalized system described by the following de-coupled equations set�Mx�x = K1;x(x1 � x)�K2;x(x� x2)My�y = K1;y(y1 � y) �K2;y(y � y2) (2)where K1;x;K2;x;K1;y;K2;y are the spring constants,and x1; x2; y1; y2 are the spring equilibrium positions.Solving these equations with the initial condition thatthe system has a constant velocity (drift) in the horizon-tal direction yields the following parametric form�x(t) = A cos(!x(t� t0) + �x) + C(t� t0)y(t) = B cos(!y(t � t0) + �y) (3)

Cycloid parameters: C < Ax Phi = 90 Cycloid parameters: C = Ax Phi = 30

Cycloid parameters: C > Ax Phi = 0 Cycloid parameters: C < Ax Phi = -60Fig. 1. Various cycloidal writing curvesThe angular velocities !x and !y are determined bythe ratios between the spring constants and masses.A;B;C; �x; �y; t0 are the integration parameters deter-mined by the initial conditions. This set describes twoindependent oscillatory motions, superimposed on a lin-ear constant drift along the line of writing, generatingcycloids. Di�erent cycloidal trajectories can be achievedby changing the spring constants and zero settings atthe appropriate time. The relationship between the hor-izontal amplitude modulation Ax(t), the horizontal driftC, and the phase lag, �(t) = �x(t) � �y(t), controls theletter corner shape (cusp), as demonstrated in Fig. 1.We further restrict the model by assuming that theangular velocities are tied, i.e. !x(t) � !y(t)�=!(t), andthat �y(t) = 0. These assumptions are not too restric-tive, as will be shown later. With these assumptions,the equations governing the oscillations in the velocitydomain can be written as�Vx(t) = Ax(t) sin (!(t)(t � t0) + �(t)) +CVy(t) = Ay(t) sin (!(t)(t � t0)) (4)where t0 is the writing onset time, Ax(t) and Ay(t)are the horizontal and the vertical instantaneous am-plitude modulations, !(t) is the instantaneous angularvelocity, �(t) is the horizontal phase lag, and C is thehorizontal drift velocity. By de�nition, the oscillationphase �(t) = R t0 !(t)dt is monotonic in time. Hence, thetime parameterization of the velocity equations can bechanged, using the chain rule, dXd� = dXdt dtd� , to phaseparameterization of the following form�Vx(�) = Ax(�) sin(� + �(�)) + C� dtd� �Vy(�) = Ay(�) sin(�) (5)As already demonstrated, di�erent cycloid parame-ters yield di�erent letter forms. The transition from oneletter to another can be achieved by a gradual changein the parameter space. A smooth pen trajectory canbe obtained in this way. Standard di�erential geome-try parameterizations (e.g., curvature versus arc-length),however, have di�culties expressing in�nite curvature(corners), which are handled naturally in our model.
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1 2 3 4 5Fig. 3. A discrete controlled system that mapsmotor control sym-bols to pen trajectoriesThis problem is demonstrated in Fig. 2. In this simpleexample, a cycloid trajectory was produced by settingthe parameters Ax(t) = Ay(t) = C = 1 and graduallychanging �(t) from 0� to +180� . The resulting tra-jectory after integration of the velocities is a smoothcurve which has the form of the letter w. However, thecurvature diverges at the middle cusp.3 MethodologyUsing the velocity equation presented in the previoussection, handwriting can be represented as a slowlyvarying dynamical system whose control parameters arethe cycloidal parameters Ax(t); Ay(t); and �(t). In thiswork, it is shown that these dynamical parameters havean e�cient discrete coding that can be represented bya discretely controlled, dynamical system. The inputsto this system are motor control symbols which de�nethe instantaneous cycloidal parameters. These parame-ters change only at restricted times. Our motor system`translates' these motor control symbols to continuousarm movements. An illustration of this system is givenin Fig. 3 where the system is denoted by H and thecontrol symbols by (xi; yi).Decoding and recognition, as implied by this model,are done by solving an inverse dynamics problem. Thefollowing sections describe our solution to this inverseproblem. A series of parameter estimation schemes thatreveal the discrete control symbols is presented. Eachstage in the process is veri�ed via an analysis-by-synthesis technique. This technique uses the estimatedparameters and the underlying model to reconstruct thetrajectory. At every stage the synthesized curve is ex-amined to determine whether the relevant recognitioninformation is preserved. The result is a mechanism thatmaps the continuous pen trajectories to the discrete mo-tor control symbols. A more systematic approach whichuses control theoretical schemes is being developed.

4 Global transformationsOn-line handwriting need not be oriented horizontally,and usually the handwriting is slanted. In this sectionnormalization processes that eliminate di�erent writ-ing orientations and writing slants are described. Thesetransformations are performed prior to any modeling tomake the input scheme more robust. In this process, wedo not estimate any of the dynamic parameters but usethe general form of the dynamic equations.4.1 Correction of the writing orientationOn-line handwriting is sampled in a general uncon-strained position. This results in a nonhorizontal di-rection of writing. Even when the writing direction ishorizontal, there are position variations due to the os-cillations; thus, the general orientation is de�ned asthe average slope of the trajectory. Robust statisticestimation (Wald 1940) is used to estimate the gen-eral orientation, rather than a simple linear regres-sion, since there are measurement errors both in thevertical and the horizontal pen positions. The sam-pled points (X(i); Y (i)) are randomly divided into pairsf(X(2ik); Y (2ik)) ; (X(2ik + 1); Y (2ik + 1))g, such thatX(2ik + 1) � X(2ik). The estimated writing orientationis Ŵ = PkfY (2ik+1)�Y (2ik)gPkfX(2ik+1)�X(2ik)g . The angle of the writ-ing direction � is tan�1Ŵ , and the velocity vectors arerotated as follows�V 0x(t) = Vx(t) cos(�) + Vy(t) sin(�)V 0y(t) = �Vx(t) sin(�) + Vy(t) cos(�) (6)4.2 Slant equalizationHandwriting is normally slanted. In the spring musclemodel, this implies that the spring pairs are not orthog-onal and only the general (1) is valid. The amount ofcoupling can be estimated by measuring the correlationbetween the horizontal and vertical velocities. Remov-ing the slant is equivalent to decoupling the oscillationequations. This decoupling is desired since it is a writer-dependent property which does not contain any contextinformation. The decoupling enables an independent es-timation of the oscillation parameters for the phase-lagregularization stage, described in Sect. 7, and simpli�esthe estimation scheme.The decoupling can be viewed as a transformationfrom a nonorthogonal to an orthogonal coordinate sys-tem in which one of the axes is the direction of writing.The horizontal velocity after slant equalization (denotedby ~Vx) is statistically uncorrelated with the vertical ve-locity Vy ( ~Vx ? Vy). Therefore, the original velocitycan be written as Vx(t) = ~Vx + A(t)Vy(t). Assumingstationarity, this requirement means that E( ~Vx Vy) = 0and A(t) = A. If we assume that the slant is almostconstant, then the stationarity assumption holds. The



4Fig. 4. The result of the slant equalization processmaximum likelihood estimator for A, assuming that themeasurement noise is gaussian, isÂ = E(VxVy)E(VyVy) = PNt=1 Vx(t)Vy(t)PNt=1 Vy(t)Vy(t) (7)There are writers whose writing slant changes signif-icantly even within a single word. For those writers,the projection coe�cient A(t) is estimated locally. Weassume though that along a short interval the slantis constant (local stationarity assumption). In order toestimate A(t0) we compute the short time correlationbetween Vx(t) and Vy(t) after multiplying them by awindow centered at t0Â(t0) = PNt=1 Vx(t)Vy(t)W (t0 � t)PNt=1 Vy(t)Vy(t)W (t0 � t) (8)where W is a Hanning window1, frequently used in shorttime Fourier analysis applications (Oppenheim andSchafer 1975). We empirically set the width of the win-dow to contain about 5 cycles of Vy . After �nding Â(t)(or Â if we assume a constant slant) the horizontal veloc-ity after slant equalization is ~Vx(t) = Vx(t)� Â(t)Vy(t).The slant equalization process is depicted in Fig. 4,where the original handwriting is shown with the hand-writing after slant equalization with a stationary slantassumption.5 Estimating the model parametersThe cycloidal (4) is too general. The problem of estimat-ing its continuous parameters is ill-de�ned since thereare more parameters than observations. Therefore, wewould like to constrain the values of the parameterswhile preserving the intelligibility of the handwriting. Itis shown in this section that by restricting the valuesof the parameters, a compact coding of the dynamics isachieved while preserving intelligibility.Assuming that the model is a good approximation ofthe true dynamics, then the horizontal drift, C, can beestimated as follows, Ĉ = 1N PNi=1 Vx(n), where N is thenumber of digitized points. Under the model assump-tions, Ĉ converges to C and is an unbiased estimator. Inorder to check the assumption that C is really constantwe calculated it for di�erent words and locally within a1 Hanning window of length N is de�ned as WHanning(n) =12 �1� cos( 2�nN�1 )�.

word using a sliding window. The small variations in theestimator Ĉ indicate that our assumption is correct. Atthis point we perform one more normalization by divid-ing the velocities Vx(t) and Vy(t) by Ĉ. The result is aset of normalized equations with C = 1. Henceforth, theconstant drift is subtracted from the horizontal velocityand it is added whenever the spatial signal is recon-structed. Integration of the normalized set results in a�xed height handwriting, independent of its original size.The normalizations and transformations presented so farare supported by physiological experiments (Hogan andFlash 1987; Lacquniti 1989) that show evidence of spa-tial and temporal invariance of the motor system.We assume that the cycloidal trajectory describes thenatural pen motion between the velocity zero-crossingsand changes in the dynamical parameters occur at thezero-crossings only, to keep the continuity. This assump-tion implies that the angular velocities !x(t); !y(t) andthe amplitude modulation Ax(t); Ay(t) are almost con-stant between consecutive zero-crossings. A good ap-proximation can be achieved by identifying the veloc-ity zero-crossings, setting the local angular velocities tomatch the time between two consecutive zero-crossings,and setting the velocities to values such that the to-tal pen displacement between two zero-crossings is pre-served. Denote by txi and tyi the ith zero-crossing of thehorizontal and vertical locations, and by Lxi and Lyi thehorizontal and vertical progression during the ith inter-val (after subtracting the horizontal drift), respectively.The estimated amplitudes areR txi+1txi Âxi sin( �txi+1�txi (t� txi ))dt = Lxi ) Âxi = Lxi �2(txi+1�txi )R tyi+1tyi Âyi sin( �tyi+1�tyi (t � tyi ))dt = Lyi ) Âyi = Lyi �2(tyi+1�tyi )The angular velocities are set independently and thephase lag, �(t), is currently set to 0. The result of thisprocess is a compact representation of the writing pro-cess, demonstrated by the resynthesized curve which issimilar to the original, as shown in Fig. 5.At this stage we can represent the writing process astwo statistically independent, single-dimensional, oscilla-tory movements. Free oscillatory movement is assumedbetween consecutive zero-crossings, while switching ofthe dynamic parameters occurs only at these points.Each of the original sampled points, denoted by(x; y), is quantized to 8 bits. Quantizing the amplitudesand the zero-crossings indices to 8 bits reduces the num-ber of bits needed to represent the curve, as shown inFig. 13. The original code length is indexed as stage 1.Stage 2 is the velocity approximation described in thissection. The total description length of the trajectory atthis point is reduced by a factor of 7.6 Amplitude modulation discretizationThe amplitudesAx(t); Ay(t) de�ne the vertical and hori-zontal scale of the letters. Frommeasurements of writtenwords, the possible values of these amplitudes appear tobe limited to a few typical values with small variations.
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Fig. 7. The original and the quantized vertical velocity (top), theoriginal handwriting (bottom left), and the reconstructed hand-writing after quantizationof the horizontal and vertical amplitudes(bottom right)Therefore, the complete data consist of the sequenceof levels and indicators fIt; L(t)g, while the observeddata (also termed incomplete data) are just the sequenceof levels, L(t). The task of estimating the parameterfHi; �g is a classical situation of maximum likelihoodparameters estimation from incomplete data, commonlysolved by the EM algorithm (Dempster et al. 1977). Afull description of the use of EM in our case is givenin the Appendix. The handwriting synthesized from thequantized amplitudes is depicted in Fig. 7.6.2 Horizontal amplitude discretizationThe quantization of the horizontal progression betweentwo consecutive velocity zero-crossings is simpler. In gen-eral, there are three types of letters, thin (like i), normal(n), and fat (o). These typical levels can be found usinga standard scalar quantization technique.7 Horizontal phase lag regularizationAfter performing slant equalization, the velocities Vx(t)and Vy(t) are approximately statistically uncorrelated.Since !x � !y, the two velocities can be statisticallyuncorrelated if the phase lag between Vx and Vy is �90�on the average. Thus, the horizontal velocity, Vx, is closeto its local extrema, while Vy is near zero, and vice versa.Since the phase lag changes continuously, a change froma positive phase lag to a negative one (or vice versa)must pass through 0�. There are places of local haltin both velocities, so a zero phase lag is also common.When the phase lag is 0�, the vertical and horizontaloscillations become coherent, and their zero-crossingsoccur at about the same time. These observations aresupported by empirical evidence, as shown in Fig. 8,where the horizontal and the vertical velocities of theword shown in Fig. 6 are plotted. Note that the phase lagis likely to be �90� or 0�. This phenomenon supports our
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3 : 22 : 11 : 21 : 1Fig. 9. The possible phase-lag relations and the corresponding spa-tial curvesdiscrete dynamical approach, and the phase lag betweenthe oscillations is discretized to �90� or 0�. We nowdescribe how the best discrete phase-lag trajectory isfound.Examining the cycloidal model for each Roman cur-sive letter reveals that the horizontal to vertical angularvelocity ratio is at most 2, i.e., maxn!x!y ; !y!xo � 2. Thus,for English cursive handwriting the ratio !x!y is restrictedto the range [12 ; 2]. Combining the angular velocity ratiolimitations with the discrete set of possible phase-lagsimplies that the possible angular velocity ratios are: 1:1 ,1:2 , 2:1 , 2:3 , and 3:2. Four of these cases are plotted inFig. 9 with the corresponding spatial curves, assumingthat the horizontal drift is zero. The vertical velocity Vyis plotted with a solid line and the horizontal velocityVx with a dotted line.We view the vertical velocity Vy as a `master clock',where the zero-crossings are the clock onset times. Vxis viewed as a `slave clock' whose pace varies aroundthe `master clock'. The rate ratio between the clocksis limited to at most 2. Thus, Vy induces a grid for Vxzero-crossings. The grid is composed of Vy zero-crossingsand multiples of quarters of the zero-crossings (the boldcircles and the grey rectangles in Fig. 10). Vx zero-crossings occur on a subset of the grid. The phase tra-jectory is de�ned over a subset of this grid, which isconsistent with the discrete phase constraints and theangular velocities ratio limit. The allowed transitionsfor one grid point are plotted by dashed lines in Fig.10. For each two allowed grid points the phase trajec-tory is calculated. For example, if ti and tj are twogrid points and there is a Vy zero-crossing at tk whereti < tk < tj, then the horizontal velocity phase along thetime interval [ti; tj] should meet the following conditions:

xV

Vx

Approximated 

Y Zero CrossFig. 10. Phase lag trajectory optimization by dynamic program-ming. Vx is approximated by limiting its zero-crossings to a gridwhich is denoted in the �gure by bold circles (Vy zero-crossings)and grey rectangles�x(ti) = 2�n ; �x(tk) = 2�(n + 14) ; �x(tj) = 2�(n + 12 ).The phase trajectory is linearly interpolated betweenthe induced grid points. Hence, the phase along the timeinterval [ti; tj] is�x(t) = ( 2�n+ �2 t�titk�ti ti � t < tk2�n+ �2 + �2 t�tktj�tk tk � t < tjIf there is no Vy zero-crossing between the grid points orthere are two Vy zero-crossings, the Vx phase lag changeslinearly between the zero-crossings. In those cases, thephase trajectory along the grid points is�x(t) = 2�n+ � t� titj � tiGiven the horizontal phase lag and assuming that theamplitude modulation is constant along one grid in-terval, the amplitudes that will preserve the horizontalprogression are calculated. Denoting by L the horizon-tal progression, the approximated horizontal amplitudemodulation along the time interval [ti; tj] isA0i;j = LR tjti sin (�x(t)) dtand the approximation error along this interval isErrorApprox([ti; tj]) = Z tjti �V (t) �A0i;j sin (�x(t))�2dtFormally, let the set of possible grid points be�T = ft1; t2; : : : ; tNg. We are looking for a subset~T = �ti1 ; ti2 ; : : : ; tiK	 � �T such that all the pairstij ; tij+1 are allowed, with the minimal induced approx-imation error~T = arg minT 0�T Xij2T 0 ErrorApprox(htij ; tij+1i)For each grid point ti a set of allowed previous grid pointsSti is de�ned. The accumulated error at the grid pointti can be calculated by dynamic programming using thefollowing local minimization,Error(tj) = minti2Stj fError(ti) +ErrorApprox([ti; tj])g
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StageFig. 13. The number of bits needed to encode cursive handwritingalong the various stagesconstrained modulation of underlying oscillatory pro-cesses. The imposed limitations on the dynamical con-trol parameters result in a good approximation which issimilar to the original. We then introduced a series oftransformations which led to synchronous oscillations.As a result, a many-to-one mapping from the continu-ous velocities Vx(t); Vy(t) to a discrete symbol set wasgenerated. This set is composed of a cartesian productof the discrete vertical and horizontal amplitude modu-lation values and the phase-lag orientation between thehorizontal and vertical velocities.Tracking the number of bits that are needed to en-code the velocities (Fig. 13) reveals that the discretiza-tion and regularization processes gradually reduce thebit rate. This indicates that our discrete controlled sys-tem representation is well suited for compression andrecognition applications. The transformation closes partof the gap between di�erent writing styles and di�erentwriters. Keeping track of the transformations themselvescan be used for writer identi�cation. Here we introduceone possible discrete representation of the resulting dis-crete control. Our representation does not corresponddirectly to the original dynamic parameters but ratherinvolves a one-to-one transformation of them.Further, we describe the two discrete control pro-cesses as the output of two synchronized stochastic au-tomata. The output can be written in two rows. The�rst row describes the appropriate vertical level (whichcan be one of 5 values) each time Vy(t) = 0. Wheneverthere is a vertical velocity zero-crossing, the correspond-ing automaton outputs a symbol which is the index ofthe level obtained at the zero-crossing. Similarly, thesecond automaton outputs a symbol when a horizontalvelocity zero-crossing occurs. This symbol correspondsto the horizontal amplitude modulation for the next in-terval. Special care is taken when tracking the discretecontrol of the horizontal oscillations, since the phase isnot explicit but changes its state implicitly. Yet if theinitial horizontal oscillation phase is known, then thetotal phase trajectory can be reconstructed from thisinformation. The �rst output symbol of the horizontalautomaton is the initial phase denoted by �. Since theoscillation processes are synchronized by the angular ve-locity regularization, we only need to record the order ofthe automata output. When the two automata outputsymbols at the same time, it means that the oscilla-tion phases became coherent; otherwise, there is a �90�phase lag. The angular velocity ratio limitation impliesthat each of the automata can output at most two con-

secutive symbols, while the other automaton is silent.The following is an example for such a representationfor the same word (`toccata') written twice. 25 2 4 44 2 4 3 4  442 44 42 44 42 4 2 5 2 44 42 4 2+222 1 23 2 3 3 1 23 3 1 133 3  2  2 2 2 2 3  2  2 3  25 2 4 442 4 3 44 4 2 4 442 4 442 4 2 5 2 4 442 4 2+122 1 132 3 3 1 13 3 1 233 1 132 2 3 2 3 1 232 2 3 Note that the discrete representation is almost thesame, and that simple rules may be found to matchthe two sequences. In fact, in this example, if we omitthe horizontal (lower) output and squeeze the gaps forthe vertical (upper) one, then the upper sequences forthe two words are identical. This implies that much ofthe information is embedded in the vertical oscillations.We use this observation in a rudimentary spotting andmatching experiment to conclude this paper.10 Word spotting and matching experimentsIn order to test our representation, some rudimentaryexperiments were performed. We describe two of themin this section. Only a small amount of data was col-lected, so the experiments are restricted to nonpara-metric schemes. The �rst scheme is based on learningvector quantization (LVQ) which is essentially a statictemplate matching. The second scheme is based on dy-namic programming and called dynamic time warping(DTW). The second scheme was compared with directDTW on the original handwriting velocities to check therobustness of our discrete representation.10.1 Word spotting by learning vector quantizationA set of 10 words, all beginning with the letter sequencecom was collected. Another set of 10 words with otherletters without the sequence com but with the sequencesco and om was also collected. A third set which includedthe sequence com and other sequences was used as a testset. A nonparametric method based on LVQ (Kohonen1989) was developed for word spotting.During the estimation process, there were false detec-tions and misses of zero-crossings. This a�ects directlythe output of the automata. Deletion and insertion ofsymbols may occur. In order to overcome this di�culty,the spotting algorithm should be made locally shift toler-ant. Shift tolerance is achieved by training the classi�eron `windowed' parts of the sequences (McDermott andKatagiri 1991). Denote a sequence by fSigNi=1 where N isthe length of the sequence. Each sequence is divided intoL overlapping sequences, Sl = fSigN�L+li=l . A two-classLVQ was trained for each chopped sequence, by buildinga vector set (also termed codebook) for each positioni 2 f1; : : : ; N � L + 1g. Denote by M the number of
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Time (msec)Fig. 14. A reconstructed handwriting and the corresponding spot-ting score of the word-part comcode vectors for each position, then the total number ofcode vectors is ML.A compound distance was developed in order to com-pare di�erent sequences. First, the outputs of the verticalautomaton are compared by calculating the Euclideandistance between the chopped sequences. Then the ver-tical automaton outputs are used to divide the hor-izontal automaton output into blocks. The horizontaloutput symbols between two consecutive vertical au-tomaton outputs are gathered into one block. Denotethe discrete output times of the vertical automaton byi1; i2; : : : ; iK and the horizontal output symbols by Xi.The kth horizontal block is Bk = fXj j ik � j < ik+1g.The compound distance (denoted by Dc for each classc) is the sum of the vertical symbol distance and thehorizontal block distanceDc(�S1i 	;�S2i 	) = D(�Y 1i 	 ;�Y 2i 	) +D(�X1i 	 ;�X2i 	)= N�L+1Xi=1 k Y 1i � Y 2i k2 + KXi=1 k B1i �B2i k2Spotting was tested on more than 30 words. The closestcode vector for each class within each position was foundfor all the chopped sequences. Let Dc(l) be the distancefor class c (c = 1; 2) at the lth position. An activation isde�ned for each window position using these distancesas followsAc(I) = 1L LXl=1 D1�c(l)P2c=1Dc(l) = 1L LXl=1 D1�c(l)D0(l) +D1(l)For words that contain the word-part com, there is awindow position with close vectors from the code; hence,D0(l) is small compared with D1(l), and the activationis high. For random strings, the distances are about thesame, hence the score uctuates about 0:5.The result of spotting in the word shortcoming isshown in Fig. 14, where the reconstructed word is plot-ted together with the corresponding spotting score. Thesharp peak occurs in the last part of the learned word-part com since the accumulated activation scores arecalculated backward.10.2 Word matching by dynamic time warpingDTW (Sanko� and Kruskal 1983) is a well-known tech-nique for string matching, when the strings are corruptedby a noisy channel that can omit, insert, or substitute

symbols. If the strings are over a �nite alphabet, then thedistance between two strings is de�ned as the minimalnumber of string modi�cations (deletions, insertions, orsubstitutions) on one string that make it equal to theother. This is a symmetric distance since a deletion ofa symbol in the �rst string is equivalent to an insertionof the symbol in the proper place of the second string.The optimal sequence of operations can be obtained viadynamic programming. Substitutions can be performedby successive insertions and deletions, hence the distanceD between strings S1; S2 up to place i1 in string S1 andplace i2 in string S2 is,DS1;S2(i1; i2) = min�DS1;S2 (i1 � 1; i2) + CdelDS1;S2 (i1; i2 � 1) + Cins (10)where Cdel and Cins are the costs of a deletion and aninsertion. The total distance between two strings is theaccumulated distance at the last two symbols in thestrings, D(S1; S2) �= DS1;S2 (j S1 j; j S2 j).When the strings' alphabet is an in�nite set a slightlydi�erent scheme is applied. Usually the square distance,denoted by k � k2, is used to measure the distance be-tween symbols. The distance between two strings isDS1;S2(i1; i2) =min8<:DS1;S2 (i1 � 1; i2) + k S1(i1); S2(i2) k2DS1;S2 (i1; i2 � 1) + k S1(i1); S2(i2) k2DS1;S2 (i1 � 1; i2 � 1) + k S1(i1); S2(i2) k2 (11)Based on the distance DS1;S2 a forward distance matrixM f is de�ned, where M fi;j = DS1 ;S2 (i; j). Therefore,the (i; j) element in the matrix represents the distancebetween the two strings from the start up to place i inS1 and j in S2. Let S01 = � � S1; S02 = � � S2 be twopseudo-strings, where � represents the null symbol and� represents concatenation. We de�ne the matrix M fas the distance matrix between S01 and S02. Denote thelength of the sequences by N1 = jS01j and N2 = jS02jand assume that N1 > N2. We want to spot occurrencesof the string S2 in S1. The following scheme builds thedistance matrix: Initialize M fi;0 = 0 : 0 � i � N1, i.e.the string S2 can start anywhere in S1. The rest of thematrix is computed by the recursion (11). The valuesM fi;N2 are the distances (number of string operationsneeded) when the string S2 ends in location i in S1. ThesmallerM fi;N2 is, the more likely that the string S2 endsin location i in S1. We can de�ne a backward distancesimilarlyDS1;S2(i1; i2) = min�DS1;S2 (i1 + 1; i2) + CdelDS1;S2 (i1; i2 + 1) + Cins (12)The backward distance matrix M b is de�ned based onthis distance. The symmetric distance between strings S1and S2 for a position centered around the ith symbol inS1 is SDS1 ;S2 (i) = M bi�N22 ;0 +M fi+N22 ;N2 . This distancemeasures the number of insertion and deletion operations
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Fig. 16. Comparison of DTW on the discrete representation(right) and on the original writing velocities (left)level coding of the motor system. The relationship be-tween this representation and the actual cognitive rep-resentation of handwriting remains open, though thereis some psychophysical experimental evidence linkingthe recognition time to the writing time for handwrit-ing (Frederiksen and Kroll 1976). The discrete motorcontrol representation largely reduces the variability indi�erent writing styles and writer speci�c e�ects. Therudimentary recognition experiments that we performedindicate the potential of this representation for cursiverecognition tasks, which is our primary goal. Since dif-ferent writing styles are transformed to the same repre-sentation, the transformation itself can be used for textindependent writer identi�cation and veri�cation tasks.12 AppendixWe assume that there is a virtual center for the vertical movementsand that the amplitudes are symmetric about this center. Theproblem becomes similar to a mixture density estimation, but itis more involved since the parameters are tied via the symmetryconstraints. The �ve levels correspond to �ve normal distributionswith unknown means and a common variance. Initially, each levelis chosen by the a priori probability Pi . We need to estimate theparameters Hi and �nd the most probable level indices It, whenthe available observations are the noisy vertical positions at thezero-crossings.Let �i�=Hi and denote the stochastic levels by Yi � N(�i; �)(i 2 (f1; : : : ; 5g). At each of the zero-crossings one of the levelsis chosen with probability Pi (P5i=1 Pi = 1). The observed in-formation is a noisy sample of the chosen level. We would like toestimate concurrently the vertical amplitude parameters and thelevels obtained at the zero-crossings. Denote the parameter set by� = ff�ig ; �g = ffPig ;f�ig ; �g. The joint distribution of thelevels Y is Z �P5i=1 PiN(�i;�). The symmetry constraints im-ply that �5 = 2�3 � �1 and �4 = 2�3 � �2. The complete dataare denoted by (�Y ; �I) = (fYtg ; fItg) where It is the index of thechosen level at time t, and Yt is the observed level value at thattime. Let It(i) be the levels indicator vector due to the index It,i.e., It(i) = 1 if It = i and It(i) = 0 otherwise. The likelihood ofan observation sequence fYtgTt=1 islogL�( �Y ) = log TXt=1 PItN(Yt;�It ; �)= TXt=1 5Xi=1 It(i) logPiN(Yt;�i; �) (13)



11The �rst step in each EM iteration is to �nd the expectation of(13) using the current estimation of the parameter set denoted by�1 = ��P 1i 	 ;��1i	 ; �1	. The following weights are calculatedusing the current parametersWt(i)�=E(It(i) j Yt;�1) = P1i e�12 (Yt��1i�1 )2P5i=1 P1i e� 12 (Yt��1i�1 )2 (14)The second stage of each EM iteration maximizes the current setof parameters, denoted by Q(�;�1), using the expectation of (13)max� Q(�;�1) = maxPi ;�i;�Xt Xi Wt(i)���logPi � log� � 12�Yt � �i� �2�+ Const (15)Taking the partial derivative of (15) with respect to Pi under theconstraint thatP5i=1 Pi = 1 and equating it to zero results in thefollowing estimator, Pi = PtWt(i)PiPt Wt(i) . The estimation of thecurrent optimal level averages �i is more complicated due to thesymmetry constraints. We rewrite Equ. (15) by substituting thesymmetry constraints. Therefore, the explicit form for Q isQ(�;�1) =Const +Xt 5Xi=1 Wt(i) (logPi � log�)�Xt 3Xi=1 12Wt(i)�Yt � �i� �2�Xt 2Xi=1 12Wt(6� i)�Yt � (2�2 � �i)� �2 (16)De�ne !i�=PtWi(t) and �i�=PtWi(t)Yt. Minimizing (16) withrespect to �0; �1; �2 yields the following set of linear equations8<:�0!0 � �0 � (2�2 � �0)!4 + �4 = 0�1!1 � �1 � (2�2 � �1)!3 + �3 = 0�2!2 � �2 + 2(2�2 � �0)!4 � 2�4 + 2(2�2 � �1)!3 � 2�3 = 0These equations are explicitly solved using the symmetry con-straints, to obtain the new values for �i as followsD�=4!4 !0 !1 + 4!4 !3 !1 + 4!3 !0 !1 + 4!4 !0 !3+!2 !0 !1 + !4 !2 !1 + !4 !2 !3 + !2 !0 !3�0 =D�1 (4!4 !3 �1 + 2!4!3 �2 + 2!4 !1 �2 � 4!1 !3 �4��4 !2 !1 � !3 !2 �4 + 4!1 !4 �3 + 4�0 !4 !1+4!3 �0 !1 + 4!4 !3 �0 + �0 !2 !1 + !3 !2 �0)�1 =D�1 (2!4 !3 �2 + 4!4 !3 �1 + 4!4 !0 �1 � !4 !2 �3+4!0 !3 �4 � !2 !0 �3 + 4!4 !3 �0 + !4 !2 �1+!2 !0 �1 + 4!3 !0 �1 � 4!4 !0 �3 + 2!3 !0 �2)�2 =D�1 (!4 !3 �2 + 2!4 !3 �0 + 2!4 !3 �1 + !3 !0 �2+2!3 !0 �1 + 2!0 !3 �4 + 2!1 !0 �3 + !4 !1 �2+2�0 !4 !1 + !1 !0 �2 + 2!1 !4 �3 + 2!1 !0 �4)�3 = 2�2 � �1 ; �4 = 2�2 � �0Finally, the new variance is estimated using the new means,�2 = Pt;iWt(i)(Yt��i)2Pt;iWt(i) . This process is iterated until conver-gence, which normally occurs within a few iterations. The �nalweightsWt(i) correspond to the posterior probability that at timet the pen was at the vertical position Hi. Choosing the maximalvalue as the indicator of the level is the maximum a posteriori de-cision. This process can be performed on-line on a word basis or
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