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Abstract  

After a brief and non-exhaustive review of existing 
models of handwriting in the literature, we try to 
define which properties should exhibit a valuable 
generative model of handwriting. Then, we propose a 
model based on Hollerbach model. We describe a fast 
method to extract the parameters of this model from 
real strokes; we compare this method to usual non 
linear optimization method. We then do a first 
statistical analysis of extracted parameters. Finally we 
rate our model respectively to our definition of a 
valuable generative model of handwriting.  

1 Introduction  

1.1 Modelling handwriting  

As for any task a human being is able to tackle, 
handwriting is a center of interest of many fields of 
science such as computer science, psychology, 
history, biology and so on. Among them, some try to 
understand the process of handwriting (and the 
process of reading) as it may happens in our body, the 
others try to computationally recognize or synthesize 
handwriting for practical applications. These two 
approach led to a certain amount of models of 
handwriting, of its generation, of its recognition.  

In computer science, models of handwriting are 
mainly due to real life applications such as automatic 
recognition, synthesis (ie. (copy a person’s signature 
or text and imitate his handwriting style [6,19,20]). 
As far as recognition is concerned, we generally 
separate o�-line and on-line recognition. Dynamics 
of the strokes are not available in o�-line recognition 
which is a serious drawback but not the only one. On-
line handwriting recognition is often given in input a 
precise timestamped se-rie of points (coming from 
digital pens, mouse or touchscreens). On the opposite 
o�-line recognition often operates on poor quality 
scannings or photographies, so there are thickness 
problems). [11] is a survey on handwriting 
recognition (to our knowledge the most recent on 
such a wide area).  
Models inherited from recognition are often based on 
hidden markov models, especially for o�-line 
recognition [14]. The sliding window method seems 
to be the most used strategy to sequentialize 
handwritten images. Other models are based on 
neural networks. The very impressive TabletPC 
software embedded in Windows since Vista [10] is 
based on delayed neural networks ( [14] considers on-
line recognition as a solved problem).  

Another type of models appeared within the same 
time. These are called generative models. They try to 
explain which commands and which function can be 
the ground for the generated dynamic movement of 
handwriting. This can be seen as a particular case of 
biological movement study. Commands (or inputs) 
can be seen at di�erent scale from neural signals to 
more abstract commands such as write the letter a. 
Ideally such a model would account for some 
properties observed in movement and handwriting, 
we will present them in the following section. As 
examples of generative models we can give [1, 4, 5, 
12, 16, 17] This work focuses mainly on two points. 
First, try to de-fine what would be a valuable 
generative model of handwriting; second, to provide a 
generative model whose parameters can be quickly 
extracted from existing strokes.  

1.2 The problem  

Is this section we try to define which properties of 
handwriting would a good generative model acquaint 
for, then we show the limitations of the models 
briefly presented in the previous section.  

Two sets of criteria seem to be important. The first 
one relies on studies of handwriting from a biologico-
movmentologue-truc point of view, these criteria 
allow us to measure if a model is or not close to, let 
us say, the human1 properties of handwriting. The 
second set of criteria is more pragmatic and is linked 
to computer science. It tries to evaluate the 
computability and the usefulness of the model to the 
task presented before (recognition, synthesis and 
writer identification). Of course, model designers will 
favour some of the criteria depending of the use they 
plan to do with it.  

First, we will depict the biologicomovmentologue-
truc criteria.  

1.3 Plan  

In section 2 we first present the Hollerbach generative 
model (section 2.1) from which ours is derived 
(section 2.2).  

The section 3 section explains our method to 
quickly extract model parameters from real strokes. 
We first need to show a mathematical result (section 
3.1). Afterwars each step of the algorithm is detailed 
(section 3.2).  

Proposition 1. Section 4 describes several 
experiments. Among them one in which real writers 
are given some words to write. The algorithm 
presented earlier is then run on their strokes. The 
outputs are then analysed.  



 

 

Proposition 2. Section 4 describes an experiment, 
in which real writers are asked to produce several 
handwriting samples. The algorithm presented earlier 
is then run on their strokes. The outputs are then 
analysed.    

In the last section (section 5.3 we discuss on the 
model, its strengths and its drawbacks. We give some 
direction to improve it and the costs of it. Then, 
applications based on this model basis are given.  

2 Our model  

2.1 The Hollerbach model  

One of the first, if not the first, oscillatory model of 
handwriting was proposed by Hollerbach [4]. It 
comes jointly with a modelling of the arm apparatus 
using springs : this will not be developed further.  

In this model, handwriting is seen as the result of 
two superimposed oscillators on two distinct di 

1Human as to be thought there as a embodied whole  
 

rections of the plane. Although any non-sinusoidal 
oscillators could work as well, it is more convenient 
to use sinusoids. Moreover, the choice was more 
compliant with the spring muscle model. Oscilla-tors 
time evolution is define as:  

dx = a sin(ωxt + φx)+ c (2.1) 

dt  
dy = b sin(ωyt + φy) (2.2) 

dt  

where a and b are the horizontal and vertical velocity 
amplitudes, ωx, ωy φx and φy are respectively the 
frequencies and the phases associated to these 
directions. c represent the constant displacement to 
the right when writing. Direction on which oscillators 
vibrates are not necessarily chosen perpendiculars 
according to usual X and Y axis. It would be 
advocable to choose the horizontal axis for one of 
them and the slant direction for the other. In the rest 
of this paper we use the canonical direction of plan 
space as the direction of the two oscillators.  
 
un petit exemple en image...  
 
Model parameters (ie. a,b,ωx,ωy,φx and φy) are 
supposed to be piecewise constant. There value 
change at vertical zero-velocity points (both for pa-
rameters concerning horizontal and vertical axis). 

Interestingly, the slant described by the angle β can 
be expressed as :  

b  

tan β = where φ = φx − φy (2.3)  

a cos φ  

Another interesting value is the value of the hori-
zontal velocity when the vertical velocity is null:  

dx  

Ψ= (ty0 )= c − a sin φ (2.4) 

dt  

This value gives the shape the drawn object will have. 
If Ψ is next to zero then the top corner will look 
sharp. If it is positive, the top corner the top corner 
will become rounded. Oppositely a negative value of 
P si will result in a full loop. This behavior is shown 
in table 1.  

2.2 Improving the oscillatory model  

Our model is highly inspired by the Hollerbach 
model. In fact we saying that it is new model might 
be a bit exagerated. However important 



 

 

 
Shape Ψ  

 

1.262  

-43.74  

37.41  

Table 1: The shape of the top corner of the stroke depends on the value of Ψ.  

questions and problems have not been addressed enough deeply and this is the aim of that work. Here they are :  

1. Is the adding of the c parameter useful ?  
2. Keeping the other parameters (a,b,ωx,ωy,Φx and Φy) piecewise constant, what are the best moment for them 

to change ?  
3. Is there a way to quickly extractparameters from real strokes ?  

 
Answer to 1 : The parameter c is aims at representing the constant displacement to the right (or to the left) when 

writing...  
Answer to 2 :  
Answer to 3 : The main computational drawback of the Hollerbach model is the way we can get the parameters 

from the stroke : it is a non linear curve fitting problem. As we will see in section 4.1, usual optimization algorithms 
are not fast enough to give enough amount of data to study this model deeper. Thanks to the choice we made for ??, 
we were able to design a fast algorithm which will be presented in the next session.  

3 From real stroke to the model  

In this section we will present the algorithm used to retrieve parameters from a recorded stroke. In the remaining of 
this paper, this algorithm will be referred as the direct method. Figure 1 show the result of the direct method applied 
to a sentence. The method is applied on each stroke of the recorded sentence.  

 
(a) Original (b) Synthesised  



 

 

 
(c) Superimposed  

Figure 1: In blue the original recording : Hopes are in the sky. In red the reconstructed signal using the extracted 
parameters. Note that the dynamic aspect can not be shown here but both original and synthesised signals can be 
replayed, we see that they are synchronised (ie. the oscillatory model is able too capture the dynamics of the 
movement).  
 
3.1 An interesting Mathematical result  

Before moving on and describe our fast method to 
find the model parameters out of recorded strokes we 
need to demonstrate a little result. Consider the 
following function:  

f : x → a sin(ωx + φ) (3.1)  
where a, ω and φ are independant to x. First, let us 
calculate the mean and variance of f between two 
successive zeros:  

 π − φ π 2a 

ω 

M = f(x)dx = (3.2) 

−φ 

ωπ ω  π − φ π  

ω 

V = −φ (f(x) − M)2dx  

ωω  

a2 −8+ π2  

= (3.3) 

2π2 Then, let us add the calculated 
mean and the square root of the calculated variance 
(ie. the standard deviation) and devide the result by a:  

√  

R = M + V  

√   

a 2a2 (−8+ π2) 

= 2 + (3.4) 

π 2π 

√√  

R 4+ 2 −8+ π2sgn (a)  

= (3.5)  

a 2π Which if we give a numerical 
approximation leads to (if a is positive):  

R  

≈ 0.9443782250 (3.6)  

a  
This result show that the amplitude of a sinusoidal 

signal can be approximated thanks to the sum and the 
standard deviation of this signal on a semi-period 
(zero to zero) independantly of the frequency and the 
phase.  

3.2 Evaluating stroke parameters  

3.2.1 Algorithm  

Suppose the recorded stroke is represented by a 
chronological finite list of timestamped position:  

S =(ti,xi,yi)0≤i≤N,N�N� ,�i>0,ti>ti−1 (3.7)  
We apply the following steps on position compo-
nents. Note that we present the steps for the x 
component but it is directly applicable to the other 
component.  



 

 

Step 1 x =(xi)0≤i≤N is di�erentiated according to t 
=(ti)0≤i≤N :  

   

dxxi − xi−1  

=(3.8) 

dtti − ti−1 
0<i≤N  

Step 2 Zeros are added to the beginning and to the 
end of the derivative signal. From a theoretical point 
of view this could be contested: it is clear (for 
example if you look at the pressure of the pen) that 
velocity is not always null when a writer begins or 
ends a written stroke ; but practically this allow to 
sensibly improve calculus of parameters.  

Step 3 We apply a zero-crossing algorithm on the 
derivative that we have previously low-pass filtered. 
This prevent this algorithm to find clusters of zeros 
due to acquisition irregularities.  

Step 4 Between two zeros, we said in section 2.2 that 
the parameters a, ωx and φx were constant. We now 
show that we can calculate these values easily. Lets t1 

and t2 the times of the two zeros. we have these 
equations :  

ωx(t2 − t1)= π (3.9) ωxt1 + φx = 0 
(3.10)  

From equation 3.9 we can have ωx and from equation 
3.10 we can have φx. The way we obtain the 
parameters is excessively simple (not to say obvious), 
but the main drawback is quite an high sensitivity to 
zero finding. This point is developed further (5.1).  

Step 5 The final step is to estimate the amplitude 
velocity a (note that we still are between two zeros 
timestamped t1 and t2). Lets define the arc A as the 
part of the derivative signal between t1 and t2:  

   

dx  

A =(i)between t1 and t2 (3.11) 

dt We approximate a thanks to result 
3.1:  

a = sign(A)(mean(A) + std(A)); (3.12)  

where sign(A) can be evaluated as the sign of the 
middle element of A (notice that theoricaly, all el-
ements in A are of the same sign).  

4 Experiments and Results  

In this section we present three experiments which are 
the earlier work of further developments of the 
exploitation of our model. The first experiment 
consist in comparing the algorithm (section 3.2.1) to 
usual optimization methods, both for accuracy of the 
result and heaviness of the computation. The second 
experiment is an example of how the reconstructed 
stroke can be used to drive a haptic arm from machine 
writing. Lastly, the ultimate experiment present a first 
step in the statistical analysis of the extracted 
parameters.  

4.1 Rating the direct method  

In order to rate the direct method a comparison with 
usual optimization methods is achieved. From the set 
of extracted parameters, a synthesis of the vertical 
and horizontal velocities signal can easily be 
achieved. We then compare the latter signal to the 
original signal in the least square paradigm.  

4.1.1 A least square problem  

The algorithm 3.2.1 can be modified in order to used 
a non-linear optimization method instead of the direct 
method. The loop on steps 4 and 5 are replaced by the 
method presented here.  

The problem to solve can be expressed as a non-
linear least square problem.  

ˆ 

θ = argmin f(θ)  
θ  

where  

θ =(ai,ωxi,φxi)1≤i≤Nx , (bi,ωyi,φyi)1≤i≤Ny  
and  

Nxιx(j+1)−1 

NN  
f(θ) → (xi − aj sin(ωxj ti + φxj))2  

j=0 i=ιx(j)  
Nyιy(j+1)−1 

NN  
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+(yi − bj sin(ωyjti + φyj))2  
j=0 i=ιy(j)  

To find solutions we have used the large scale 
Reflective Trust-Region algorithm [2, 3]. 
You may notice that in θ parameters referring to horizontal 
speed velocity are independent from those referring to 
vertical speed velocity. Moreover, for each i,(ai,ωxi,φxi) is 
independent from (ai+1,ωxi+1,φxi+1) and (bi,ωyi,φyi) id 
independent from (bi+1,ωyi+1,φyi+1).  
We therefore might be tempted to apply the Trust-
Region algorithm to sub-parts of the problem instead 
of the entire problem. Several strategies have been 
explored, and applying Trust-Region to the whole 
problem gave the best results (both for time footprint 
and accuracy). Therefore we only present the latter 
strategy.  
Trust-region needs a starting point θ0. It was chosen 
randomly according to a normal distribution 
established from an earlier done statistical analysis of 
handwriting.  

4.1.2 Comparison  

The first point we can emphasize on is the setting up 
of this algorithm. Whereas the direct method is very 
straightforward with no tuning at all, reflective trust 
region needs a lot of parameters to be set before being 
run (such as stop conditions and much more). 
Moreover, it is nearly impossible to test all possible 
combinations of parameters. Hopefully the results 
don’t change much with these parameters.  
The first criteria we want to test is the accuracy of the 
two methods. In order to measure it we generate 
strokes thanks to parameters extracted from real ones. 
Then we get a measure of the accuracy by calculating 
the relative magnitude of the subtraction of the 
generated and the original signal. Results, presented 
in table numero and in figure, show that basically the 
the values given by both algorithm are quite similar (a 
compl´et´eer).  

The other criteria studied is the computation time. 
For the Reflective Trust-Region method, Figure 2: 
The shape of the last spike is not what it should be.  

 

these moments depends on the number of time the 
algorithm is launched for each stroke (because result 
depends on the starting point which is generated 
randomly). One run is barely su�cient to get an 
optimal approximation but five to ten runs give good 
results most of the time (note that if we had not gone 
for normal distribution start points (cf ..), the number 
of necessary runs is much higher). Results are without 
appeal : the direct method is more than a thousand 
time faster than the usual optimization algorithm.  

Our algorithm is as good as the usual optimizations 
method for calculating the parameters but clearly 
outperform them as far as computation time is 
concerned. Extracting parameters from real strokes 
has become clearly practicable for huge amount of 
samples, whereas it was not allowed with previous 
algorithms. Note that this gain is permitted only 
because we changed the point where these parameters 
change cf the improved model .  

4.2 Common errors  

Here we want to present three cases where the al-
gorithm fails to approximate correctly the velocity 
signals.  

4.2.1 Case 1 : straight line along the axes  

4.2.2 Case 2 : ghost zero crossing  

Figure 2 gives an example of what we called a ghost 
zero crossing bug. As explained all along this paper, 
our algorithm is very sensitive to zero crossing point 
search.  

The reason for that error is that the horizontal 
velocity nearly touches zero but does not. The al-
Figure 3: The shape of the last spike is not what it 
should be.  



 

 

 

gorithm misses the zero crossing although it should 
put one 3.  

4.2.3 Case 3: starting and ending points  

 

4.3. Experimental Procedure 

An experiment was carried out on real writers aiming 
to assess how Hollerbach model reconstructs real 
writing samples. Four unpaid volunteers, three male 
and one female, aged between 24 and 49, took part in 
the study. Two participants were self-claimed right 
handed, two others left handed.  

The graphic task was performed on a computer-
controlled graphic tablet (WACOM DTZ) with LCT 
screen of 261.1 × 163.2 mm size and 1280 × 800 
resolution, inserted in a tablet (405.2 × 269.7 × 17 
mm) which can be freely rotated just like a sheet of 
paper. A white sheet in landscape orientation, lined 
by blue lines spaced by 150 mm, was displayed on 
the screen. The stylus used was approximately the 
same size (174.8 mm long, with a diameter of 14.8 
cm) and weight (17 g) as a normal ball point pen. 
Participants were seated in a high-adjustable chair, 
facing the graphic tablet posed on a table, and asked 
to adopt most comfortable writing posture. As soon as 
the stylus was brought of 5 mm the screen, the x and 
y spatial coordinates of the performed trajectories 
were digitized at 100 Hz with spatial resolution of 
0.02 cm. The trace produced was displayed in real 
time on the screen and its coordinates stored for 
further analysis on a 3GHz PC. When the stylus 
raised 5 mm above the tablet, data recording stopped 
and produced trace removed.  

The set of required forms was composed of the 
participant signature and of four handwriting 
prototypes distinguished by modellers (Edelman, & 

Flash, 1987; Edelman, Flash, Ullman, 1990; 
Grossberg, & Paine, 2000; Paine, Grossberg and Van 
Gemmert, 2004) and educators (Dumont, 2006) as 
basic components of all letters: a hook, a cup, a 
inversed gamma and an oval. Gamma appears in 
loop-based letters (b e f h k l), a cup in cup-based 
letters (m, n, u v w y i t), an oval in round-based 
letters (a c d g o p) and a hook in stroke-based letters 
(g y j, Dumont, 2006). The participant signature was 
selected as a sample of a natural, over-trained 
handwriting pattern. For each required form, 
participants were instructed to write six strings of 
unconnected, handwriting exemplars using cursive 
handwriting and their spontaneous writing speed. 
About 60 exemplars (SD = 12) were produced for 
each required form by each participant. To collect 
handwriting exemplars in as natural a setting as 
possible, participants were not asked to rest the pen at 
the starting position prior to beginning to write. As a 
result, their hands were already in motion when the 
pen contacted the writing surface. 

 

4.4 Statistical analysis method  

 
The aim of statistical analysis was to assess whether, 
despite the parsimony and genericity of our model, 
the degree of fit by Hollerbach model was in the 
range of that of Flash-Edelman model.  
 
4.4.1. Data Reduction  
 
For each participant and for each required shape, 
twenty central exemplars were selected for statistical 
analysis, in order to focus on the most natural tracing 
performance, free of warming-up and of fatigue 
effects. For each selected exemplar, the trace 
produced by participant and the two corresponding 
traces generated by Edelman-Flash and Hollerbach 
models were analyzed. For each trace, six dependent 
variables were studied: x-position, y-position, x-
velocity, y-velocity, x-acceleration, and y-
acceleration.  
 
4.4.2. Goodness of fit  
 
In line with Edelman and Flash (1987; Paine, 
Grossberg and Van Gemmert, 2004), numerical 
estimates of the degree of fit  between the produced 
and the simulated traces was obtained by computing 
correlation index between the six dependent variables 
and their simulated counterparts (ie. rxx _pos, rxx_vel, 
rxx_accel, ryy_pos, ryy_vel, ryy_accel). Six correlation indexes 
captured the fit between the trace produced and the 
trace simulated by Hollerbach model (MH), six others 
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between the trace produced and simulated Flash-
Edelman model (MEF). The classic formula for 
correlation index was used:  
 

 
 
where a and b represents a dependent variable and its 
simulated counterpart, respectively. This classic 
formula is distinct from that used by Flash and 
Edelman (1987), whose formula contains a possible 
artifact leading the authors to report correlations 
greater than 1.0 in some instances. Correlation index 
amounts to 1 for identical traces, to -1 between 
mirror-inversed traces, and tends toward zero when 
the goodness of fit deteriorates. For each participant, 
the 20 (Exemplar = {1, ..., 20}) × 4 (Form = {oval, 
gamma, cup, hook}) × 2 (Models = {Hollerbach, 
Flash-Edelman}) correlation indexes were computed 
for the six dependent variables and averaged over 
Exemplars.   
 
4.4.3. Minkowski p-similarity 
 
A global assessment of the (dis)similarity between 
Hollerbach and Edelman-Flash models was captured 
using Minkovski p-dissimilarity metric. This metric 
captured the distance between the two models in a 6-
dimensional space, in which each dimension 
corresponds to the six correlation indexes. For each 
participant, the MEF and MH represents two points in 
the 6-dimensional hyperspace, and Minkowski 
distance, d(MEF, MH), corresponds to the vector 
joining them. Minkowski distance is a generalization 
of Euclidean distance: 
 

 
 
when p is the number of dimensions, or the factor for 
the norm of the vector traced between the points MEF 
and MH. Minkovski distance equals 0 when the two 
methods are identical. In our data, it amounts to 1.348 
when the distance is largest possible, because the 
largest distance between the best-fitting model (rab=1) 
and worst fitting model (rab=0) amounts to 1:  
  

 
 
 
 
 

4.4.4. Inferential statistics  
 
Friedman ANOVA’s, a nonparametric alternative to 
one-way repeated measures analysis of variance, were 
used. Each dependent variable was analyzed 
separately using a 2 (Model) Friedman ANOVA to 
test whether there was a statistically reliable 
difference between the fit provided by Hollerbach and 
by Flash-Edelman simulation. An additional 4 
(Shape) Friedman ANOVA aimed to compare the 
Minkowski distances between the four Shapes. 
Statistically significant effects (at p < 0.05) are 
singled out by an asterisk.     
 
4.5 Statistical analysis results  

 
The Tables 1-4 display correlation indexes as a 
function of six dependent variable (column 1) for 
Hollerbach and Flash-Edelman model (column 2-5), 
the difference between the goodness of fit of both 
models (column 6) and Friedman ANOVA results 
(column 7-10). Positive difference signals that 
Hollerbach model fitted better the data than the Flash-
Edelman one, and inversely. 
 
4.5.1. Correlation index 
 
Correlation indexes are displayed on the Tables 1-4. 
Overall, Hollerbach model led to larger rab for 
position and velocity than for acceleration. In Flash-
Edelman model, this is true in case of circle, gamma 
and hook only. For all dependent variables but 
acceleration, the difference between Hollerbach and 
Edelman-Flash model was lower than 0.1.  

Correlation indexes for circle are displayed on the 
Table 1.  A 2 (Model) Friedman ANOVA revealed 
that there was a statistically reliable but marginal 
difference between the models for x-velocity, x-
acceleration, y-position and y-velocity. Hollerbach 
model led to slightly larger correlation for position 
and velocities and to slightly lower correlation for 
acceleration.   

Correlation indexes for gamma are displayed on 
the Table 2. A 2 (Model) Friedman ANOVA revealed 
that there was a statistically reliable but marginal 
difference between the models for x-position, x-
velocity, x-acceleration, y-position and y-velocity. 
Hollerbach model led to slightly larger correlation for 
positions, velocities and to slightly lower correlation 
for x-acceleration.   

Correlation indexes for hook are displayed on the 
Table 3. A 2 (Model) Friedman ANOVA revealed 
that there was a statistically reliable but marginal 
difference between the models for x-position, x-
acceleration, y-velocity and y-acceleration. Flash-



 

 

Edelman model led to slightly larger correlation for 
all the four dependent variables.   

Correlation indexes for hook are displayed on the 
Table 4. A 2 (Model) Friedman ANOVA revealed 
that there was a statistically reliable but marginal 
difference between the models for x-position, x-
acceleration, y-velocity and y-acceleration. Flash-
Edelman model led to slightly larger correlation for 
all the four dependent variables.   
 
4.5.2. Minkowski p-similarity 
 
Mean Minkovsky distance was of 0.242 (SD = 0.022) 
for circle, 0.298 (SD = 0.065) for gamma, 0.151 (SD 
= 0.063) for hook and 0.228 (SD = 0.041) for the cup, 
pertaining to the corresponding fractions of maximal 
distance: 0.179, 0.222, 0.111, and 0.169 of maximal 
distance. A 4 (Shape) Friedman ANOVA carried out 
on p-dissimilarities revealed no statistically reliable 
difference between shapes (F(3) = 7.5, p < 0.057). 
 
4.5.3. Statistical analysis conclusion 
 
The goodness of fit provided by Hollerbach and by 
Flash-Edelman was similar. Minkovsky distance 
between the models represented 0.229 of the maximal 
one.  For position and velocity, the difference 
between Hollerbach and Edelman-Flash model was 
lower than 0.1. Acceleration was less well fitted than 
position and velocity by both models, and it was 

always less well fitted by Hollerbach than Flash-
Edelman model.  
 
  
 
5 Discussion  

In this section we want to address three points. First, 
we want to explain why our algorithm is so fast, ask 
if we can imagine to adapt it to cases where the 
moments of parameter changes of the oscilla-tory 
model would be di�erent and try to answer that 
question. Second, we want to understand what is 
lacking in the present oscillatory model and try to 
give path for future work (param`atres pr´ef´erentiels, 
points d’attraction, ...). Lastly, we try to undesrstand 
why generative models (oscillatory model as a 
particular case of) haven’t been of much used in 
computer science for recognition, classification and 
synthesis tasks.  

5.1 On the algorithm  

The reason why our algorithm is so fast, is that the 
way we choose the dates where parameters changes 
(ie. zero vertical velocity for parameters linked to 
vertical direction and zero horizontal velocity for 
parameters linked to horizontal direction). Without 
this restriction our algorithm can not apply.  

 
The quality of the result highly depends on the way 

zero velocity crossing points are chosen. As we have 
seen in (ref bidule) missing a zero crossing point can 
be disastrous. If the algorithm finds too many points, 
the result will look OK but the spirit of the model is 
lost. ...  

5.2 On the oscillatory model  

Choosing changing times for the parameters at these 
moments leads to two serious drawbacks. If we 
estimate Φ (the relative phase), β (the slant according 
two Hollerbach model) and Ψ (giving the shape of the 
letter in Hollerbach’s model); these parameters 
change every quarter period. Even worse, when 
studying them statistically,  

Changins to simulate speed decrapency  

 

5.3 On the applications  

Generative models are hardly used in practical ap-
plications ; it is even truer for the Hollerbach based 
models (oscillatory approach). This may be because, 
these problems were earlier based on nonlinear 
regression. Thanks to our work, this approach is now 
more practicable.  

We hope that from this work, we will be able to 
tackle a few problems. First, we think that know that 
we are able to extract parameters from huge amounts 
of data ,we hope that we will be able to to some 
classification (for writer, character or word 
recognition).  

As we said in introduction, on-line recognition is a 
solved problem and there is a lot of work to try to 
extract temporal information from o�-line strokes 
[7–9,13,15,18]. Generative models seem to be 
appropriate in these cases, we will try to explore that 
way.  



 

 

Synthesis is also a interesting way of research. [6] 
gave a very good example of o�-line style preserving 
synthesis base on glyphs and interpolation but we 
except to be able to do a on-line style preserving 
synthesis (that is respecting dynamics).  
6 Conclusion  
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