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Abstract
The question of whether time is its own best representation is explored. Though there is
theoretical debate between proponents of internal models and embedded cognition proponents
(e.g. Brooks R 1991 Artificial Intelligence 47 139–59) concerning whether the world is its
own best model, proponents of internal models are often content to let time be its own best
representation. This happens via the time update of the model that simply allows the model’s
state to evolve along with the state of the modeled domain. I argue that this is neither
necessary nor advisable. I show that this is not necessary by describing how internal modeling
approaches can be generalized to schemes that explicitly represent time by maintaining
trajectory estimates rather than state estimates. Though there are a variety of ways this could
be done, I illustrate the proposal with a scheme that combines filtering, smoothing and
prediction to maintain an estimate of the modeled domain’s trajectory over time. I show that
letting time be its own representation is not advisable by showing how trajectory estimation
schemes can provide accounts of temporal illusions, such as apparent motion, that pose serious
difficulties for any scheme that lets time be its own representation.

1. Introduction

The deepest theoretical divide in the sciences of cognition
and its physical bases is between, on the one hand,
theories that highlight the role of internal representations—
paradigmatically internal models—of the agent’s body and
environment in explaining an agent’s behavior, and, on
the other hand, theories that highlight the role of high-
bandwidth agent–environment interactions in producing
adaptive behavior without much or any representation on
the part of the agent. The debate is not new. The
behaviorism of the early 20th century was in large part a
reaction against explanation in terms of internal mental states
when it was felt that explanations in terms of organism
responses to environmental stimuli would be explanatorily
sufficient and more theoretically parsimonious (Watson 1913,

Skinner 1935). The early cyberneticists (Wiener 1948, Ashby
1952) brought concepts from classical control theory and
dynamical systems theory to bear on behavior explanation
by highlighting representationless feedback mechanisms and
dynamical agent–environment interactions. The ‘cognitive
revolution’ (Tolman 1948, Chomsky 1959) argued that
such mechanisms, while perhaps more parsimonious, were
in fact not explanatorily sufficient for a wide variety
of cognitive phenomena, most notably learning. More
recently, Rodney Brooks has given fresh inspiration to the
anti-representationalists by building robots that manage to
complete various tasks without any internal models, but by
letting the world be its own model, as Brooks put it (Brooks
1991).

One of Brooks’ main arguments hinges on the claim that
representations are bottlenecks in perception–action cycles.
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Brooks conceives representations as being located in a series
that includes sensation modules and action modules. But, of
course, internal models need not have this character. A Kalman
filter, for example, runs an internal model in parallel with, not
in series with, the perception–action cycle. The Kalman filter
is thus an example of representation without bottlenecks. See
Grush (2003) for more discussion of the impact of schemes
that employ internal models on the representationalism
debate.

But there is one respect in which even the staunchest
proponent of internal models has been in unwitting complicity
with the anti-representationalist—time. While internal models
of the body or environment are not content to let the body
or the environment be its own representation, such models
nevertheless allow time to be its own representation. It is
common to assume that the domain being modeled evolves
over time in regular ways, paradigmatically and most tractably
as a driven Gauss–Markov process, where the state of the
process at any time is determined by three factors: a successor
function of its previous state; a predictable driving force;
and unpredictable disturbances, often modeled as additive
Gaussian noise. Accordingly, the model of the domain is
assumed to exploit knowledge of the successor function that
governs the evolution of the modeled domain. This ‘time
update’ is automatically applied to the model in such a way as
to allow it to evolve over time just as the modeled domain’s
state automatically evolves over time. This is one of the
primary factors that allow the model’s state to be a reliable
estimate of the modeled domain’s state as time progresses.

But note that in such cases time is being used as
its own representation. Such a system represents a
temporal feature such as succession, say that state A of
the environment occurred before state B of the environment
occurred, via the temporal features of the representations—
the representation of A occurred before the representation
of B. The representation of succession is accomplished by a
succession of representations, and can only be so represented
on such schemes. To put it another way, the temporal features
of the mechanisms that do the representing is exploited to
represent the time of the domain that is represented. Time is
represented with time. It is silently assumed to be its own best
model, indeed its only model.

In section 2, I will briefly describe one way in which a
scheme that utilizes internal models could do so in a way that
does not just let time be its own representation, but rather
actively and explicitly represents the temporal aspects of the
modeled domain just as typical modeling schemes model the
nontemporal aspects. Briefly, the proposal is for the internal
modeling not of temporally punctate states of the modeled
domain, but of the trajectory of the modeled domain over a
temporal interval.

While section 2 tries to show that there are theoretical
options available besides letting time be its own representation,
section 3 addresses the issue of why it might be beneficial to do
so. After all, why not join in with the anti-representationalists
on this one issue? It certainly seems like time is special in
that both the model and the modeled domain are subject to
the exact same physical laws, and are both evolving through

time in such a way as to track each other accurately, assuming
that they are not moving at some substantial fraction of the
speed of light with respect to each other, anyway. One
reason, though not the only one, is the existence of temporal
illusions. Generally speaking, illusions are a strong motivation
for positing representations, since a representational theory
has an easy explanation of illusions as the production of
representations that do not accurately represent the modeled
domain. The anti-representationalist has a hard time with
illusions. If the world is being used as its own representation,
how can it look to be other than it in fact is? Temporal illusions
present the same challenge to the anti-representationalist. If
time is its own representation, then it would seem that temporal
illusions ought not to be possible.

In section 3, I will discuss a number of temporal illusions,
including the flash-lag effect (MacKay 1958), the cutaneous
rabbit (Geldard and Sherrick 1972) and apparent motion
(Kolers 1972). As something of an appetizer, I will briefly
describe the cutaneous rabbit now. The basic phenomenon is
this: a test subject has small tactile stimulators placed on her
arm, one near the wrist, a second between the wrist and elbow,
and a third near the elbow. If the mechanical stimulators
produce a sequence of five taps at the wrist, each separated by
40–80 ms, then the subject will report feeling a group of taps
near the wrist. But if the sequence of taps produced is five taps
near the wrist, followed by five at a location between the wrist
and elbow, and finally five at the elbow, the subject will report
feeling an evenly spaced sequence of taps progressing from
the wrist to the elbow. Initially this can seem like a merely
spatial illusion, since what is being inaccurately represented
in the second case is the location of many of the taps. The
second tap of the second sequence is felt not on the wrist,
but a few centimeters proximal to the wrist. But there is a
puzzling temporal aspect to the phenomenon as well that can
be brought out by reflecting on the question: Where does the
subject feel the second tap when the second tap is produced
by the stimulator? The answer seems to be the following: if
in the immediate future there will be more taps only at the
wrist, then the second tap will be felt at the wrist; but if in
the future an appropriate sequence of taps will be delivered to
the forearm and elbow, then the second tap will be felt a few
centimeters proximal to the wrist. But at the time of the second
tap, the subject cannot know what the future sequence of taps
will be, since the different possible sequences are randomly
selected. Surely the perceptual system cannot look into the
future, see where the subsequent taps will be delivered and
use that information to decide how to interpret the location of
the current tap!

In section 4, I will discuss how trajectory estimation
schemes of the sort I described in section 2 can address
these phenomena. Part of the discussion will include a
comparison of the trajectory estimation approach to two other
approaches: Dennett and Kinsbourne’s multiple drafts model
(Dennett and Kinsbourne 1992), and Rao, Eagleman and
Sejnowski’s smoothing model (Rao et al 2001). In a final
discussion section, I will briefly point to some additional areas
of application of the trajectory estimation model.
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2. Trajectory estimation

The goal of this paper is a conceptual goal. I am not going
to articulate a particular concrete model and then compare the
performance of that model to empirical data, or anything of
the sort. Rather, my goal is to bring to light a wider range of
salient options to those who wish to apply internal models to
perceptual processing, and to point out some of the advantages
of exploring some of those options. All of the conceptual
points I wish to make can be illustrated while restricting the
discussion to discrete linear systems. For simplicity, I will
assume that the modeled domain is a driven Gauss–Markov
process:

p(t) = Vp(t − 1) + d(t) + m(t). (1)

Here, p(t) is an n × 1 vector describing the process’s state;
V is a function, represented as an n × n matrix, that maps
states of the process onto successor states of the process;
d(t) is a driving force, which is any predictable influence
on the process’s state; and m(t) is a small zero-mean additive
Gaussian vector that represents any unpredictable influence
on the process’s state, sometimes called process noise.

The process’s state is measured at each time by one or
more sensors. This measurement is presumed to be noisy.
The production of the noisy observed signal can be formally
described as a noise-free measurement of the process’s state
to which a small zero-mean time-dependent non-additive
Gaussian noise vector is added. The noise-free measurement
can be represented as a function O that maps process states
onto signal states:

I (t) = Op(t). (2)

Here I (t) is the real, noise-free sensory signal at time t. The
observed signal s(t) is a noisy version of I (t):

s(t) = I (t) + n(t). (3)

Again for simplicity, I will assume that V and O are both
invertible.

As an exemplar of an internal modeling approach to
controlling the process, or simply filtering noise from the
observed signal, consider a scheme that maintains an estimate
of the state of the process by exploiting knowledge of
the function V that maps process states to successor states,
the function O that effects a measurement of process states
to signals, and has access to the observed signal at each time
step. The model will exploit a prediction–correction cycle as
follows. First, an a priori estimate of the process’ state is
produced by iterating the estimate from the previous cycle and
adding the predictable driving force:

p̄(t) = V p̂(t − 1) + d(t). (4)

Here p̄(t) is the a priori state estimate, and p̂(t − 1) is the
a posteriori estimate from the previous estimation cycle. This
a priori estimate is measured to produce an a priori estimate
of the signal:

Ī (t) = Op̄(t) (5)

This a priori signal estimate is compared to the observed signal
and the difference, the sensory residual, is pushed through a

measurement inverse. The result is multiplied by a gain to
yield a correction to the a priori estimate:

p̂(t) = p̄(t) + kO−1(Ī (t) − s(t)). (6)

Here p̂(t) is the final a posteriori state estimate, and k is a
gain that determines the relative weight given to the sensory
residual and the a priori estimate in forming the a posteriori
estimate.

Finally, if the system is filtering the signal, then the final
a posteriori signal estimate Î (t) is given by

Î (t) = Op̂(t). (7)

For review of many applications of this sort of approach to
understanding various functions of the nervous system, see
Grush (2004).

The same mechanisms and information can be used to
produce a priori predictions of future states of the process in
the obvious way:

p̄(t + 1) = V p̂(t) + d(t + 1). (8)

And this process can obviously be iterated to produce, at time
t, estimates of what the process’s state will be at any arbitrary
future time t + k, so long as knowledge of d(t + k) is available;
the availability of future intentions will be significant for a
specific purpose discussed in section 4.

Estimates of previous states of the process can be arrived
at via smoothing:

p̃(t − 1) = p̂(t − 1) + h(V −1p̂(t) − d(t)). (9)

Here, the smoothed estimate p̃(t − 1), which is produced at
time t, is arrived at by adding to the filtered estimate p̂(t − 1),

which was produced at time t − 1, a correction term based on
the filtered estimate from the subsequent time step t. Here, V −1

is the inverse of the function V that maps current to successive
process states, and so V −1p̂(t) is the expected predecessor
state to p̂(t), where here ‘expected’ means ‘modulo driving
force and process disturbance’; and h is a gain term.
Equation (9) can obviously be applied recursively to produce
estimates of the state of the process at time t − j for arbitrary
lag j:

p̃(t − 2) = p̂(t − 2) + h(V −1p̃(t − 1) − d(t − 1)). (10)

With such tools in place, it is possible to describe a system
that combines smoothing, filtering and prediction to maintain
an estimate of the trajectory of the modeled domain over the
temporal interval [t − j, t + k], by determining, at each time t,
the following ordered j + k + 1− tuple:

(p̃(t − j), p̃(t − j + 1), . . . , p̂(t), p̄(t + 1), . . . , p̄(t + k)).

(11)

Since following how trajectory estimates themselves change
as time progresses will be a central theme in what follows,
it will be convenient to have, on each state estimate that is a
component of a given trajectory estimate, separate indices for
the time at which that estimate is produced and the time that
the estimate is representing. So I will streamline the notation
by letting p̂i/h be the estimate produced at time h of the state
of the process at time i, and it will be understood that if i < h

the estimate is smoothed, if i = h it is filtered and if i > h
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it is predicted. Similarly, I will extrapolate to notation of the
form p̂[f,g]/h for a trajectory estimate produced at time h of
the process’s trajectory from t = f to t = g inclusive.

Before moving on to a discussion of temporal illusions,
there are two aspects of a trajectory estimation scheme of the
sort I have sketched here that I wish to emphasize. First,
time is not being used to represent time. It is possible to
represent a succession without a succession of representations,
for example. A single trajectory estimate, produced at one
time, is capable of representing temporal relations of various
sorts, e.g. succession, simultaneity, duration, without needing
to use time to represent these relations.

The second point is obvious, but I will highlight it anyway.
The system is continually updating its estimate of the entire
trajectory as new measurements come in at each time. As a
result, the estimate of a state of the process at a given time
might change. There is no reason to expect that p̂r/s, as an
element of p̂[s−j,s+k]/s, will be the same as p̂r/s+1, as an element
of p̂[(s+1)−j,(s+1)+k]/s+1 (for s + 1− j � r � s +k), even though
both are estimates of the process’s state at time t = r.

3. Application to temporal aspects of perceptual
processing

3.1. The puzzles of the cutaneous rabbit and apparent motion

Geldard and Sherrick (1972) found that a certain sort of
illusion could be induced by tactile stimuli. The experimental
setup involved placing small mechanical devices at various
places on subjects’ arms and shoulders. These would produce
sequences of small taps, the exact nature and timing of these
sequences under the control of the experimenters. Some of
the sequences lead to no surprising results: a sequence of taps
all located at the same spot on the wrist, for example, will
be reported by the subject as a sequence of taps at the same
location at the wrist. However, different sequences provide
more interesting results:

. . . if five brief pulses (2-msec duration each,
separated by 40 to 80 msec) are delivered to one locus
just proximal to the wrist, and then, without break in
the regularity of the train, five more are given at a
locus 10 cm central, and then another five are added
at a point 10 cm proximal to the second and near the
elbow, the successive taps will not be felt at the three
loci only. They will seem to be distributed, with more
or less uniform spacing, from the region of the first
contactor to that of the third. (Geldard and Sherrick
1972, p 178)

I explained in the introduction why this was not merely a
spatial illusion, but presented a temporal puzzle as well, one
brought into focus by asking where the subject feels the second
tap at the time of the second tap.

The phenomenon of apparent motion presents exactly the
same paradox. Two successive flashing dots presented within
some spatial distance and within some inter-stimulus interval
will appear to be a single moving dot, moving from the location
of the one that flashes first to the location of the one that flashes
second (see figure 1). Again, this can look to be merely a

Figure 1. Apparent motion. The left-hand side represents actual
stimuli, a flashing dot (1) followed by a second flashing dot (2). The
right-hand side represents what is perceived: a single dot moving
from location A (the location of the first dot’s flash), through
location B and to location C (the location of the second dot’s flash).

Figure 2. An ambiguous bi-stable quartet of flashing dots. First, the
upper and lower dots (labeled ‘1’) flash simultaneously, and then the
left and right dots (labeled ‘2’) flash. The resulting apparent motion
is either clockwise (dotted-line arrows) or counterclockwise
(solid-line arrows).

spatial illusion in that it looks as though a dot has moved
through spatial areas where no dot has in fact been—it appears
as though the dot occupied and moved through location B as
indicated on the right-hand side of figure 1. To bring out the
temporality of the phenomenon, consider that the subject will
appear to see the dot first at location A, then at location B,
and finally at location C—the motion is actually perceived to
be continuous, but I am just drawing attention to the temporal
relations between three of the positions on the continuous path.

Note, however, that if the second flashing dot were above,
below or to the left of the first, then the subject would have
seen the dot as moving upward, or leftward or downward. And
accordingly, the intermediate location B would be either above,
to the left of or below location A. But, and this is the crucial
bit, until the second dot actually flashes, the subject cannot
know in which of these four spatial directions the interpolated
motion (the location of B) should occur. Yet the subject sees
the dot as being at the interpolated location before being at the
terminal location where the second flash occurs. It can seem
as though the perceptual system is able to foretell where the
second flash will be in order to appropriately begin filling in
the intermediary phases of the apparent motion.

An even more interesting apparent motion phenomenon
has recently been studied (Williams et al 2005). Consider a
bi-stable quartet of flashing dots, as in figure 2 (Gengrelli
1948). The resulting apparent motion will be seen either
as (a) the top dot moving down and to the left, with the
bottom dot moving up and to the right (counterclockwise
motion indicated by the solid-line arrows); or (b) the top
dot moving down and to the right, with the bottom dot
moving up and to the left (clockwise motion indicated by the
dotted-line arrows). A diamond orientation bi-stable quartet
is perceived as clockwise motion about half the time, and
as counterclockwise about half the time (Ramachandran and
Anstis 1983).
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(A) (B)

Figure 3. Apparent motion retrodiction. See the text for
explanation.

The left-hand side of figure 3 shows how the perceived
direction of motion of the bi-stable quartet can be influenced
by prior flashing dots. In the situation diagramed, before
the four dots in the quartet flash, a third pair outside the
quartet is flashed. The sequence of dot flashes could yield
two possible apparent motion sequences. First, the motion
from the two external dots to the top and bottom dots on the
quartet could be followed by counterclockwise motion of the
quartet, yielding two perceived rectilinear apparent motions as
indicated by the solid-line arrows. Second, the motion from
the external dots to the top and bottom dots could be followed
by clockwise motion of the quartet, yielding two perceived left-
hand-turn movements as indicated by the dashed-line arrows.
Perhaps not terribly surprisingly, the visual system has an
apparent preference for rectilinear motion (Ramachandran and
Anstis 1983). This suggests that the visual system employs an
internal model of object motion according to which rectilinear
motion is significantly more likely than non-rectilinear, and
the invocation of this motion model by the observed signals
corresponding to the first and second pair of dots biases the
system to perceive one path of motion rather than the other.
This is a fascinating result, but not entirely unexpected by
anyone who takes it that the perceptual system is set up to
exploit knowledge of the sorts of processes that are likely in
order to produce anticipations of what will be observed next.

The phenomenon illustrated on the right-hand side of
figure 3 is yet more interesting. The first two pairs of dots
that flash are identical to the pairs that flash in the ambiguous
bi-stable quartet. However, after these dots, a third pair flashes.
As in the previous case, there are two possible paths of apparent
motion: a rectilinear path (indicated by the solid-line arrows),
and a left-hand-turn path, indicated by the dashed-line arrows.
Since it is known that the bi-stable quartet will produce the
clockwise and counterclockwise apparent motions with equal
probability, it would be expected that the rectilinear path
and the left-hand-turn path should be perceived with equal
probability. However, the result is that when the successive
pairs of dots followed each other at 67 ms, rectilinear motion
was perceived significantly more than 50% of the time (see
Williams et al (2005) for details, including the strength of
the effect, and how the strength varies as conditions are

modified; for trials in which the interstimulus interval was
100 ms, no significant effect was found).

3.2. The solution to the ‘paradoxes’

The trajectory estimation model applies to the cutaneous rabbit
as follows. At t = 1 and t = 2, the observed signals are two
taps on the wrist. At t = 2 the trajectory estimate will simply
be that two taps have been felt at the wrist. So to the question:
At the time of the second tap, where does the subject feel that
tap? The answer is: at the time of the second tap, the second
tap is felt at the wrist. This is true regardless of what the future
sequence of taps will be. If we suppose that the trajectory
estimate produced spans ten time steps before and after the
present time, then we can indicate this by saying that p̂2/2 (an
element of p̂[−8,12]/2) is ‘tap on the wrist’.

However, suppose that in the immediate future, say from
t = 3 to t = 10, taps are delivered to locations proximal to the
wrist as in the Geldard and Sherrick experimental condition.
The trajectory estimator will, if the sequence is right, be
forced to make a choice between interpreting the sequence
of taps as being either (i) three groups of taps delivered to
spatially discrete locations that were accurately reported by
the sense receptors; or (ii) an evenly spaced series of taps
from the wrist to the elbow that was inaccurately reported
by the sensors. For some sequences of stimuli the second
trajectory estimate is produced. Presumably this is because the
nervous system has models of external objects and their likely
trajectories, embodied in an analogue of V that is appropriate
to environmental stimuli, which indicates that continuous
motion is more likely than discontinuous motion. In such
a case, p̂2/10 (an element of p̂[0,20]/10) is ‘tap just proximal
to the wrist’. If the system is probed at t = 10 or later, it
will ‘report’ that it has just observed a sequence of evenly
spaces stimuli. So even though at the time of the second tap
it is felt at the wrist, if the system is given an appropriate
sequence of subsequent taps and is probed late enough, it will
then represent the second tap as having been just proximal to
the wrist.

A similar explanation applies to apparent motion and
apparent motion retrodiction results discussed earlier. As
for apparent motion, the nervous system apparently has a
model of how the world works that indicates that single
moving stimuli are more likely than two distinct salient and
quickly extinguished stimuli in very close spatial and temporal
proximity. Because of this, when the stimulus conditions are
right, the trajectory estimate produced at the time of the second
flash is that a single moving stimulus was noisily observed by
the sense organs, rather than two distinct stationary stimuli in
close spatial and temporal proximity accurately observed by
the sense organs. When this trajectory estimate is produced,
one of the aspects of this production is that the stimulus was
just at the intervening position. The percept to the effect that
the stimulus was at location B was produced after the stimulus
was observed at location C. Because of this, if time were
being used to represent time, then the system would then be
representing the stimulus as being at A, then C, then B. But
the trajectory estimation scheme does not use time to represent
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time. What the system decides, at the time of the flash at C, is
that the object was at B before its current location at C.

Now to apparent motion retrodiction. Suppose that the
first pair of dots flashes at t = 1, the second pair at t = 2
and the third pair at t = 3. We know that if only two pairs of
dots flash in the diamond-patterned bi-stable quartet, there is
a 50% chance that it will be perceived as clockwise motion,
and a 50% chance as counterclockwise. If, however, the third
pair flashes in a location such that clockwise motion would
be rectilinear, then there is a greater than 50% chance that
the first two pairs are seen as clockwise motion. Again, how
much greater than 50% depends on details such as the spatial
and temporal distance between the dots, and other factors;
see Williams et al (2005) for details. This entails that there
are trials such that the motion appears to be rectilinear with
a clockwise motion of the first pair (the bi-stable quartet),
but had the third pair not flashed, the motion would have
been seen as counterclockwise. What this means is that in
at least some instances, at t = 3, the trajectory estimator
retroactively modifies its prior estimate to the effect that there
was counterclockwise motion and instead represents the prior
motion that just occurred as being clockwise.

3.3. Representational momentum

While I have formulated the trajectory estimation model in
such a way that part of the trajectory estimate at any time is
a prediction of future stages of the evolution of the process’
state, the examples I have used so far have not required this.
A system that maintained trajectory estimates only up to and
including the present time, using smoothing and filtering but no
prediction, would be sufficient to account for apparent motion
and the cutaneous rabbit. Indeed, as I will discuss in section 4,
a mere fixed-lag smoother would be able to explain them, so
long as the system was always probed for its representation
after the lag had expired. I want now to motivate the prediction
end of the trajectory estimation scheme.

The original Geldard and Sherrick article briefly mentions,
like an afterthought and without further exploration, that “there
is typically the impression that the taps extend beyond the
terminal contactor” (Geldard and Sherrick 1972, p 178). This
effect—the apparent continuation of some perceived stimulus
motion beyond its actual termination—has been studied a great
deal under the rubric of representational momentum. A typical
stimulus set together with its perceived counterpart is shown
in figure 4.

While there are many possible explanations for this
phenomenon, it certainly suggests that at some level the
perceptual system produces representations whose content
anticipates, presumably on the basis of the current observations
and past regularities, the immanent antics of the perceived
situation. In this context it is interesting to note that
the representational momentum effect appears to be tied to
predictability (Kerzel 2002). It is true that the phenomenon is
most often introduced with examples involving the apparent
continuation of linear or circular motion, but cases that are
significantly more complicated also exhibit the phenomenon
so long as they are predictable. Perhaps the most interesting is

(A) (B)

Figure 4. Representational momentum. A sequence of stimuli is
shown to subjects, such as a moving ball or a rotating rectangle. The
sequence is ended by a masking stimulus. Subjects are then shown
two probe stimuli, such as two different end locations for the
rectilinear motion, or rectangles oriented at different angles for the
rotating motion, and are to select the one that matches the last stage
of the movement that they observed. Subjects overshoot by
preferring probes that slightly overshoot the actual terminus to those
that accurately mirror the terminus. For review see Thornton and
Hubbard (2002).

the highly nonlinear case of biomechanical motion (Verfaillie
and Daems 2002).

I will make one observation before moving on to the next
section. Kalman filters are a very common way to implement
forward models in control schemes. One characteristic of
Kalman filters is the use of the sensor noise and process
disturbance covariation matrices to determine the Kalman
gain. If the perceptual systems are like Kalman filters in this
regard, then this might lead to some predictions concerning
the sorts of illusions I have discussed. In particular, if
the perceptual system can, so to speak, adjust the gain as
conditions dictate, then these illusions should be enhanced
in conditions where subjects are acclimated to relatively high
sensor noise, and reduced in cases where they are acclimated
to relatively high process noise. Acclimating to high sensor
noise is, in Kalman gain terms, trusting the internal model’s
predictions more than the observed signal. Since the illusions
are cases where a model-based prediction is over-ruling an
observed signal, these illusions should be enhanced in these
conditions. For example, superimposing white noise over
the computer display should increase the representational
momentum effect, or the strength of the apparent motion
retrodiction effect, at least if the perceptual system is like
a Kalman filter in this regard.

4. Comparison with other models

It will prove helpful to compare the trajectory estimation model
with two other proposals that have been applied to the case of
temporal illusions: Dennett and Kinsbourne’s ‘multiple drafts’
model (Dennett and Kinsbourne 1992), and Rao, Eagleman
and Sejnowski’s smoothing model (Rao et al 2001).

Using phenomena such as the cutaneous rabbit and
apparent motion as motivation, Dennett and Kinsbourne argue
against a conviction that they claim is nearly ubiquitous, but
seldom recognized as a substantive assumption. It concerns
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the temporality of perception, and in particular the idea that,
at least for perceptual processes, time is represented by time.
The assumption, which certainly holds at large time scales,
is that my perceptual belief that event A preceded event B is
justified by, and perhaps amounts to no more than, the fact
that I perceived A before I perceived B. Here, the temporal
features of the represented content (that event A preceded
event B) is a function of temporal features of the representing
mechanisms—the neural states that embodied the perception
of event A occurred before the neural events that embodied
the perception of event B. At large time scales this is relatively
unproblematic. Surely my belief that the hour hand’s pointing
at ‘1’ long preceded its pointing at ‘4’ is at least in major part
explained by the fact that I perceived it pointing at ‘1’ long
before I perceived it pointing at ‘4’.

But at shorter time scales, the assumption that this
principle still holds is not so obvious, and leads to difficulties.
During apparent motion, I perceive the moving dot as being at
the half-way point before it is at the end point of the motion.
Otherwise it would not seem like it was moving from the initial
point to the end point, but would look like it transported from
the initial to the end point and then bounced back half way. Is
this to be explained by my perceiving the dot at the half-way
point before I perceive it at the end point? Before I perceive the
end point of the motion, how can my perceptual system know
whether it should interpolate motion at all, let alone in what
direction? And if it does not know this, how can it correctly
‘fill in’ the intermediate stages of the motion?

According to Dennett and Kinsbourne’s multiple drafts
model, the perceptual system has the capacity to produce
more than one ‘draft’ or judgment concerning what has been
observed, and a draft produced at one time may be rewritten
at a later time if additional information comes in to suggest
that the initial judgment was mistaken. But such rewriting
does not, on this model, require a representation of updated
versions of the sensory states that led to the older, outdated
draft. For example, after three taps have been sensed on the
wrist, a draft containing the perceptual judgment to the effect
that three taps have just been felt on the wrist is produced.
Later, after some further taps have been delivered near the
elbow and shoulder, a new draft is written to the effect that
there was an evenly spaced sequence of taps beginning at the
wrist and moving upward. Crucially, though, this new draft,
which embodies the perceptual judgment as of the time of its
production, does not require the system to go back in time
and re-tool the sensory episodes, producing ‘fake’ sensed taps
between the wrist and elbow. If asked, the subject will report
a sequence of evenly spaced taps. Having a perceptual ‘draft’
to the effect that there was such an evenly spaced sequence
just is, on this model, what it is for it to seem to the subject as
though she has just experienced an evenly spaced sequence of
taps.

It should be clear that the trajectory estimation model is
entirely compatible with the multiple drafts model. Both claim
that the representation produced at any time by the perceptual
system can be overridden later on as new information is made
available. A phase of a trajectory estimate made at one time,
say p̂5/5, produced at t = 5 about what is happening at t = 5,

may be overridden by an incompatible assessment, say p̂5/6,

produced at t = 6, concerning what was happening at t = 5.
Just as on the multiple drafts model, there is no requirement
that the bare observed signals that lead to the various trajectory
estimates themselves need to be represented in a different form
that is compatible with the new judgment.

The differences between the trajectory estimation model
and the multiple drafts model are largely differences of focus
and explicitness. The trajectory estimation model is not
formulated from copyediting metaphors, but on apparatus that
applies internal forward models for purposes of control, signal
processing and estimation. It is thus better suited for the
construction of concrete simulations. Second, because of the
tools used to formulate the model, it is capable, in principle
at least, of being more easily integrated into current work
in motor control and perceptual processing that use similar
conceptual tools. Third, the trajectory estimation model
explicitly highlights something only implicit in the multiple
drafts model—the crucial role played by knowledge of how
the process, in the cases discussed as examples this is the
environment and various sorts of things in it, can be expected
to behave.

Now consider the smoothing model of Rao, Eagleman
and Sejnowski (Rao et al 2001). Rao et al take as their
explanandum not any of the phenomena mentioned so far, but a
related illusion, the flash-lag effect. The details of the flash-lag
effect are not important for current purposes. What is relevant
is that in order to shed light on the psychometric details of this
effect, Rao et al propose that the visual system implements a
fixed-lag smoother. The comparison of some modeling results
and actual data from human subjects leads Rao et al to the
conclusion that in the case of the visual system, the lag is
around 80–100. As Rao et al put it, “The smoothing model
demonstrates how the visual system may enhance perceptual
accuracy by relying not only on data from the past but also on
data collected from the immediate future of an event.”

The fixed-lag smoothing hypothesis can also address the
temporal illusions I have here discussed. If the perceptual
system waits 100 ms before committing to an interpretation
of what has happened, then it has access to the fact that a
flash was sensed at location C before it has to start filling in
interpolated motion from location A.

There is an obvious similarity between the smoothing
model and the trajectory estimation model. On the trajectory
estimation model, the lagging edge of the trajectory estimate is
produced by a fixed-lag smoother. This entails that once the lag
time has elapsed, the two models will yield identical estimates.
The trajectory estimation model thus inherits all confirmatory
data that speak in favor of the smoothing model, at least all
data that concern estimates constructed by the systems after
the lag time has passed, and the psychometric and modeling
data presented by Rao et al are all of this nature.

This significant similarity aside, there are a number of
considerable advantages of the trajectory estimation model
over the fixed-lag smoother model. First, the smoothing model
posits a costly delay in perceptual processing. The delay is
costly in two respects. First, there is a computational cost
involved in smoothing over filtering. More data are involved,
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and arriving at the smoothed estimate involves more processing
than a merely filtered estimate, since the filtered estimate
must be computed in route to computing a smoothed estimate.
Second, there is a cost to the organism in terms of behavioral
timeliness if percepts potentially crucial for action are delayed.
Rao et al are aware of the fact that such a delay is costly, and
conjecture that the magnitude of the lag (about 80–100 ms)
might represent an optimal tradeoff between the cost of delay,
and the benefit of more accurate percepts.

The trajectory estimation model need make no such
conjecture, because on this model nothing is delayed, and
hence there is no cost of behavioral timeliness. Not only
are percepts not delayed, but indeed they are anticipated.
It remains true that the specific state that is anticipated or
estimated might be revised as more data come in. But openness
to revision for, say, 100 ms, should not be confused with
delaying all interpretation until 100 ms has passed. The
functional import of the lag in the trajectory estimation model
is that it is the deadline for incoming information to be able to
influence the ongoing trajectory estimate. But the trajectory
estimate is up and running the entire time. It seems plausible
to suppose that two of the most important functions of nervous
systems as they evolved are anticipation and accuracy. The
smoothing model sets these desiderata up at cross purposes,
sacrificing time for accuracy. The trajectory estimation model
embraces them both simultaneously.

So there is no behavioral timeliness cost. As for the
computational cost, the trajectory estimation model is costlier
still than the smoothing model. It not only requires filtering
and smoothing, but also prediction. But this cost is presumably
offset by the lack of an additional cost from perceptual delay
and the benefit of perceptual anticipation. It is not clear how
to assess this balance of costs and benefits, so I will end the
speculation here.

A related advantage is that the smoothing model seems to
imply that we are under an illusion of control in some contexts.
It seems to us as though we do certain things on the basis of
what we perceive. But for anything that gets executed in less
than 100 ms, this must be mere illusion if the smoothing model
is correct, since on this model we are not conscious of visual
percepts until after 100 ms or so has elapsed. This by itself is
no major disadvantage, since how things seem to us in such
contexts can hardly be taken to be definitive. That we are under
such illusions is a very live possibility. However, though not a
major disadvantage, it would seem that if an account that has
equal or better explanatory potential is available, and lacks
this counter-intuitive result, then this ought to count in favor
of the alternate proposal. Surely being counter-intuitive is not,
by itself, a theoretical desideratum! The trajectory estimation
model is not forced to take a stand on the issue of the veracity of
the sense of conscious control. Since percepts are available in
real time and indeed even anticipated, the possibility of online
conscious control based on perceptual representations is not
ruled out. We are not, as David Eagleman has provocatively
put it, ‘living in the past’ by 80 ms, or any other amount of
time.

I will remark now on one prima facie advantage that the
smoothing model has over the trajectory estimation model.

The proponent of the smoothing model has an answer to the
question why the lag has the particular magnitude it has. That
speculative answer, as I mentioned above, is that a lag on
the order of 100 ms or so might represent something like
an optimal tradeoff between the cost of delaying perceptual
processing and the benefit of more accurate percepts. Since on
the trajectory estimation model there are no delayed percepts,
there is no cost, except computational, to extending the lagging
edge of the estimated trajectory arbitrarily. Is there any reason,
even an equally speculative one, as to why the temporal interval
spanned by the trajectory estimator might have lagging and
leading edges on the order of 100 ms into the past and future
respectively?

First to the lagging edge. The point of smoothing is to
allow information collected after some event to help aid the
interpretation of the observation of that event. If there were
some delay period such that information collected within that
period could be expected to have a significant impact on the
smoothed estimate, but beyond that delay it was unlikely that
further information would have a significant impact, this would
motivate setting that delay period as the lag. In biological
organisms there is such a time period—the longest sensory
transmission delay. All the sensory information is carried
to the central nervous system via neural signals, which are
relatively slow. Proprioceptive information from the feet
is probably the most significantly delayed information, and
while the exact magnitude of this delay is subject to debate,
it appears to be on the order of 100 ms. This means that
the perceptual processors can expect, as a matter of course,
that upon constructing a state estimate of the body at time
t, information will continue to arrive up to t + 100 ms or so
that will be directly relevant to the accuracy of that estimate.
Beyond that delay, all of the relevant sensory information will
typically be on hand. So the longest typical sensory delay sets
a natural point to anchor the lag.

Now to the leading predictive edge. Predictions are only
useful to the extent that they are accurate. Is there some
prescience boundary such that up to that boundary certain
kinds of predictions are much more reliably accurate than
predictions that transcend that boundary? Again, neural
conditions velocities provide the key. It is plausible to suppose
that efference copies of the organism’s own motor commands,
together with an internal model of the body, provide the
material for very reliable estimates of the state of the body upon
execution of that motor command. But those motor commands
take time to propagate to the musculature and have their effects.
Again, this delay is on the order of 100 ms or so (for voluntary
actions; reflexes are faster, of course). This means that at time
t, when the system has an estimate of the body’s current state
and has an efference copy of the currently issued command, it
will be in a position to produce a very reliable estimate of the
state of the body at t + 100 ms or so. Recall that it was pointed
out in section 2 that predictions for future states of a driven
Gauss–Markov process require knowledge of the driving force
that will be in effect at the time for which the prediction is
attempted. These considerations are extremely speculative, of
course. The point is merely to illustrate that the trajectory
estimation model is not without resources for addressing the
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question of the apparent magnitude of the temporal interval of
the estimated trajectory.

5. General discussion

In the introduction I remarked on the fact that although
proponents of internal models are at theoretical odds with
adherents to the embedded cognition camp, in the case of time
they are in agreement. Time is typically used to represent time
in internal modeling schemes. I have tried to show that it is
neither necessary nor advisable for the proponent of internal
models to acquiesce on this matter. It is not necessary because
the possibility of internal models of trajectories over temporal
intervals, as opposed to internal models of states at a time, has
the capacity to represent time by means other than time. And
it is not advisable because the existence of temporal illusions
appears to be good prima facie evidence to the effect that time
is explicitly represented by the perceptual system. Something
has to be represented in order for it to be misrepresented. There
are several aspects of this capacity for temporal representation
worth mentioning.

The first point has to do with the paradoxical point
that tools from filtering and optimal estimation are being
used to explain the existence of illusions! This is true
not only of the trajectory estimation model, but Rao et al’s
smoothing model as well. Indeed, the paradox is stronger
on the smoothing model, since it is precisely the ability
to improve estimates that smoothing is motivated, but the
phenomenon it is addressing is our blatant mis-estimation of
the location of a stimulus. What this point highlights is the
role played in these schemes by the model of the process
that is used by the internal model, whether it be for filtering,
smoothing, prediction or trajectory estimation. The process
model embodies expectations, presumably learned through
observation, in the form of the function that describes how the
process—the body and the environment—evolves over time.
It is by exploiting this knowledge that such systems are able to
produce estimates that are able to reduce one or another sort
of expected error. Illusions are cases where the environment is
comporting itself, sometimes with an experimentalist’s aid, in
a statistically irregular way with the result that the expectation
embodied in the process model leads the estimation process
astray. The paradox is merely apparent.

The second point has to do with the nature of the temporal
interval that is represented. Since my goal was merely to
introduce the basic concepts rather than to develop a specific
model, I left most details out. But the empirical data appear
to suggest that the interval spanned by the trajectory estimator
that handles human perception is roughly on the order of
200 ms or so, from about 100 ms in the past to about 100 ms
in the future. For the past direction, the Rao et al model,
which is here being interpreted as exemplifying the special
case of the lagging edge of the estimated trajectory, suggested
that the lag was about 100 ms. This is consistent with the
Williams et al apparent motion retrodiction result, which found
that the effect was only found if the last pair of flashing dots
was presented within 100 ms. As for the leading predictive
edge of the estimated trajectory, representational momentum

would appear to be the obvious phenomenon to examine. The
problem is that the amount of shift is somewhat variable.
Nevertheless, it seems that a fraction of a second, roughly
on the order of 100 ms or so, is in the ballpark.

The third point is that if the trajectory estimate that is
produced at any given time is what one perceives at any
given time, then the trajectory estimation model is an instance
of the specious present doctrine. This is a doctrine, given
currency in psychology by William James in his highly
influential Principles of Psychology (James 1890). The
doctrine maintains that what we are aware of at any instant
is not a corresponding instant of the perceived environment,
but a span of time. As James put it:

In short, the practically cognized present is no knife-
edge, but a saddle-back, with a certain breadth of its
own on which we sit perched, and from which we look
in two directions into time. The unit of composition
of our perception of time is a duration, with a bow
and a stern, as it were—a rearward- and a forward-
looking end. It is only as parts of this duration-block
that the relation of succession of one end to the other
is perceived. (James 1890, pp 609–10)

The doctrine has been appealed to in order to explain our
capacity to perceive motion, for example the motion of a
second hand. While we can come to judge that an hour hand
is moving by comparing its position as we now perceive it to
its position as we remember it from some time ago, it seems
as though we can simply directly see the motion of a second
hand. But motion takes time, and so the content of our visual
experience appears to span at least a duration sufficient for us
to notice the second hand’s movement. The specious present
doctrine is controversial, and my purpose is not to enter into
that debate here, but merely point out that if the trajectory
estimation model is right, then at least one version of the
doctrine will be vindicated.

The final issue I wish to raise concerns the role of
neural ‘timing’ mechanisms. When the issue of how time is
represented by nervous systems is raised, quite often it
is assumed that the existence of time-keeping mechanisms
is what is being asked after, something like a neural clock
(Hazeltine et al 1997, Nenadic et al 2003). There are two
distinct uses to which a nervous system might put a time-
keeping mechanism. First, the mechanism could simply help
to guarantee that the timing of behavior is appropriate—
everything from timing a hand clap with the beat of music
to tracking time in order to use the angle of the sun correctly
as a navigational marker (Froy et al 2003).

A second use of time-keeping mechanisms is more
relevant for the issue of internal models. When the internal
process model evolves its state from one time step to the next,
the function that affects this mapping should be calibrated
such that it will evolve the process model’s state in a way
that mirrors, as closely as possible, the evolution of the state
of the real process over that same amount of time. That is,
if each update of the process model’s state estimate takes
20 ms, then the function that is used to update the state of
the process model ought to change the process model’s state
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to mirror the change that the actual process undergoes in 20 ms.
Obviously, if every 20 ms the internal model’s state is updated
to reflect a change that the real process would undergo in 40 or
100 ms, the a priori estimates will not be very accurate. This
time-tracking capacity is a matter of calibrating two separate
aspects of the internal model: (i) the function that maps state
estimates onto successor state estimates, and (ii) the timing
of the production of successor state estimates. In neural
implementations of process models, the second element here
is most likely governed by some combination of the intrinsic
dynamic properties of the neural structures that implement the
model and timing mechanisms, such as oscillators that cycle
at more or less regular intervals. Exactly similar points hold
for trajectory estimation schemes of course.

6. Conclusion

My goal in this paper has been modest. I have not tried
to produce a specific detailed trajectory estimator model of
perception. Such a task would involve some specific choices
as to what the span of the temporal interval is, the specific
nature of the process models implemented by the system, and
choices as to whether to model it as a generalized Kalman
filter/smoother/predictor, some sort of optimal tuned filter, or
perhaps one that is suboptimal in one or more ways. A few
speculations on these specifics have emerged. The magnitude
of the interval can probably be ascertained empirically
via phenomena such as representational momentum, which
perhaps provide a clue as to how far in the future predictions
are produced, and considerations such as those mentioned by
Rao et al that appear to single out some maximum lag for the
smoothed end of the trajectory estimate. It seems unlikely
that the nervous system is strictly optimal, especially since it
most likely does not have access to the process disturbance and
sensor noise covariation matrices, as required by the vanilla
Kalman filter. And it also seems unlikely that the nervous
system has an implementation of an accurate and complete
system identification of the environment, as the Kalman filter
requires, and hence is more likely to implement a variety
of tuned filters, tuned to various sorts of motion and force-
dynamic interactions, for example.

Working out these details is surely required for
determining whether some sort of trajectory estimation model
accurately describes some aspect of the nervous system’s
perceptual processing mechanism. But my goal in this paper
has merely been to describe, in general and schematic terms,
what a trajectory estimation model would look like, and to
indicate, again in rough terms, how such a model might
be able to shed considerable theoretical light on a range
of puzzling phenomena. I have also tried to indicate how
such an approach compares favorably to two other models
that have been proposed to address the same phenomena.
Hopefully this schematic framework will be seen as promising
enough to merit further investigation and clarification by those
researchers whose work touches on the temporal features of
perception.
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