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THE RELATION BETWEEN LINEAR EXTENT 

AND VELOCITY IN DRAWING MOVEMENTS 

P. VIVIANI* and G. MCCOLLUM~ 

Laboratoire de Physiologie Neurosensorielle, CNRS, Paris, France 

Abstract-The speed of execution of complex movements depends on both the local, differential properties 

of the trajectory and on some of its more global metric parameters. The effects of these global factors 

were studied in free, writing-like movements with either piece-wise constant, or regularly changing 

curvature. It is demonstrated that the tangential velocity of the pen’s tip is tightly correlated, through a 

power function, with the total linear extent of the trajectory (perimeter). Thus, a strong tendency exists 

to keep the execution time of these complex trajectories independent of the movement size (isochrony). 

Furthermore, it is shown that the average tangential velocity over identifiable segments of the trajectory 

also depends on the corresponding average curvature. The implications of these results the central 

representation and planning of movements are discussed. 

A very general compensatory mechanism called the 

Isochrony Principle’,” seems to apply to many areas 

of motor control. In the broadest qualitative terms, 

the principle states that the velocity of voluntary 

movements increases with the extent of the move- 

ment, thus keeping execution time approximately 

constant.3,‘0 However, such compensatory behavior 

emerges in motor performances as sharply different 

as manual pointing,4 stroking,‘.” handwriting,5.” head 

rotations4~5 and saccadic eye movements,6,9 taking 

different quantitative forms according to both the 

specific motor system involved and the qualifications 

of the movement. It would thus appear that the 

Isochrony Principle is a common emerging feature of 

otherwise inependent motor systems, rather than one 

specific component shared by all these mechanisms. 

It follows that, for any given motor performance, one 

should ideally be able to show how and why the 

specific logic and constraints of the relevant motor 

mechanisms result in such compensatory behavior. 

In this and in another paper’ we take up such a 

problem for a class of simple hand and finger move- 

ments. The motor task considered is the spontaneous 

drawing of closed patterns: circles, ellipses and 

several forms of the “Figure Eight”. Despite their 

simplicity, these movements have a considerable in- 

terest insofar as they are the building blocks for such 

highly skilled motor performances as handwriting 

and drawing. 

Previous work on handwriting6J’J3 has described 

some of the principles of organisation of writing 

movements. It was shown that the kinematics of 

writing is highly correlated with movement trajectory 

and, in particular, that to each word written in a 

given size corresponds a unique profile of tangential 
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velocity. When the same word is written in different 

sizes, the shape of the velocity profile remains the 

same, but the average velocity changes 

with the size so that execution time tends to remain 

constant. Thus, even in the case of complex motor 

sequences involving curvilinear trajectories and rever- 

sals of direction, the velocity of the movement is 

related-via the Isochrony Principle-to total linear 

extent of the trajectory.* Instead, when a closed 

pattern is traced repeatedly, as in the experiments to 

be described here, the Principle seems to apply to the 

linear extent of just one cycle of the movement rather 

than to the total length of the trace.’ 

With respect to the examples of monodimensional 

movements mentioned above, for which only the 

extent appear to have a major effect on the kine- 

matics, the case of bidimensional writing-like move- 

ments is considerably more complex, inasmuch as the 

instantaneous velocity also depends on the local 

geometrical properties of the trajectories. All (but 

one) of the experiments to be reported were primarily 

designed to single out the dependence of the average 

velocity on the global metric properties of the tra- 

jectory for a class of patterns with constant curva- 

ture. The dependence of the instantaneous velocity on 

the local geometrical properties of the trajectory is 

dealt with in a separate paper.6 

EXPERIMENTAL PROCEDURES 

Horizontal and vertical components of the drawing move- 

ments were recorded with a Calcomp 622 RP digitizing table 

(accuracy 0.025 mm; sampling rate 100 Hz). The writing 

stylus provided with this table closely resembles an ordinary 

ball pen. The displacement of the tip of the pen could be 

measured reliably, also when the pen was not touching the 

paper, as long as it stayed within 1 cm from the table. Time 

derivatives of the movement components were calculated 

numerically with a 5-point polynomial formula after 

smoothing the raw data with a double-sided, numerical 

low-pass filter (cut-off 50Hz). Curvature was calculated 

from these time derivatives. All the patterns to be drawn 

were closed (see below). The task consisted in tracing these 

patterns repeatedly, at a spontaneously selected speed. In all 
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cases the experimenter let the movement go for a few cycles 
before recording for IO s (1000 samples at the 100 Hz 

sampling rate). Four subjects (two paid students and the two 
authors) participated in the experiments. The instructions 

for the various experimental conditions were given verbally 

in the course of an informal practice session. 

RESULTS 

Figure 1 shows typical examples of the recorded 

quantities for two of the patterns to be considered. 

Each panel in this Figure illustrates the time course 

of the tangential velocity V and of the radius of 

curvature R for the pattern indicated. As already 

demonstrated in a previous report,13 a striking cor- 

relation exists between the instantaneous values P’(t) 

and R (t). With the exception of the inflection points, 

where R goes to infinity (see upper panel), the 

proportional relation v(t) = kR (t) provides a first 

order approximation to the data. In what follows, we 

will mostly be concerned with the relation between 

the average values of the tangential velocity V and of 

the radius R (or, equivalently, the curvature C = l/R) 

over identifiable figural units. Thus. for instance. in 

the case of the patterns shown in Fig. 1, the averages 

of V and R were independently calculated over the 

two circles which form the pattern and which obvi- 

ously represent distinct figural units (not necessarily 

distinct units of motor action; see ref. 12). 

The first experiment deals with the drawing of 

circles. Subjects were to draw successively a number 

of circles with varying diameters. The exact value of 

each diameter, as well as the sequence of these values, 

was left to each subject’s whim. We gave, however, a 

rough indication of the extreme values to be attained, 

and we suggested that the entire range be covered in 

an approximately uniform manner. Three of the 

subjects wre left free to choose the direction of the 

movement which was kept constant throughout the 

experiment. A fourth subject performed the experi- 

ment in both directions. All subjects used their dom- 

inant hand. Figure 2 summarizes the results. For the 

sake of clarity, only the results of three subjects are 

shown. In A, different symbols describe the relation 

between average curvature and average velocity for 

clockwise (a) and counterclockwise (0) movements, 

in one subject. In B, each symbol identifies one of the 

V (crwsec) 
15 R(cm) 

0 Ll I 1 I 

0 2 4 6 Time (set) 

B 

Fig. 1. Kinematic description of the movement for two typical examples. In A and B are shown two of 

the patterns considered in this study and the corresponding time course of the radius of curvature (R) 

and of the modulus of tangential velocity (V). Notice the close correlation between these two variables. 
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Fig. 2. Relation between the average tangential velocity and 

the average radius of curvature in the case of circles. A: 

Results in one subject for clockwise (0) and counter- 
clockwise (0) movements. B: Results for two other subjects 

identified by different symbols (clockwise movements). The 
straight line interpolations correspond to the indicated 
power functions. In circles, the radius of curvature is 

proportional to the total linear extent (perimeter) of the 

pattern. 

other two subjects. The straight lines interpolating 

the data points correspond to the indicated power 

functions. Apart from a small but noticeable curva- 

ture in the upper part of the curve in A, the approx- 

imation of the results by power functions is extremely 

good. Thus, in a range of movement sizes going from 

those that involve the elbow and the shoulder, to 

almost point-like ones, and whatever the direction of 

the movement, a simple relation exists between the 

radius of curvature (or, equivalently, the length of the 

trajectory) and the speed of execution: 

V = KR”. (1) 

Notice that the exponent of the power function for all 

subjects is significantly less than 1. Therefore, the 

time to draw a circle is a slightly increasing function 

of the circle size: isochrony is only partially attained. 

The remaining experiments were designed to in- 

vestigate the extent to which the relation demon- 

strated for circles generalizes to more complex pat- 

terns. The instructions and modalities were similar to 

those of the first experiment. However, in order to 

minimize inter-individual variability, we prepared for 

each experiment a set of templates of different sizes, 

drawn lightly on paper, which served as a guide for 

the first few cycles of the movement (see Experi- 

mental Procedures). It should be stressed that, by the 

time the recording started, the templates were abun- 

dantly written over and therefore virtually invisible: 

during the recording the subjects were actually copy- 

ing their previous movements as in the case of circles. 

Figure 3 shows the results in two subjects (A and 

B) for the Figure Eight pattern with circles of equal 

size. In both panels of this Figure, different symbols 

identify the relationship between the averages of R 

and V for each of the two halves of the pattern. In 

213 

B the two sets of data points permit comparison of 

the performances of the same subject at a few days 

of interval. Continuous lines represent the best-fitting 

power functions for the data. Dashed lines reproduce, 

for each subject, the fitting to the circle data already 

shown in Fig. 2. The average velocities for the Figure 

Eight pattern are typically smaller than those for 

circles. However, the same type of relation, with 

similar values for the exponents, holds in both cases. 

From this we conclude that, despite the alternations 

from clockwise to counterclockwise rotations in these 

movements, the principle of organisation valid for 

simple units (circles) remains valid also when two 

such units are coordinated in one, more complex 

pattern. 

As a further generalisation, we consider the draw- 

ing of a Figure Eight with unequal radii. A typical 

result of this experiment has been shown in Fig. lA, 

while the complete results are summarized in Fig. 4. 

Experiments were performed in three successive ses- 

sions. In each session the radius of the upper circle 

(R,) was kept constant, while that of the lower one 

(R2) was varied. In all three cases, the range of 

variation of R2 included the (fixed) value of R, Thus, 

the experiments replicated three measurements of the 

previous one. In Fig. 4, the average values of the 

tangential velocity for the two parts of the Figure (0: 

V,, 0: V,) are plotted as a function of the average 

radius of curvature R, (which can also be expressed 

as curvature C,). The results show unambiguously 

that: 

(1) The average velocities V, and Vz in the two 

parts of the pattern differ considerably; 

(2) The V, - R2 relationship for the circle with 

variable radius is no longer a simple power function 

as in the previous experiments; 

(3) The velocity V, in the circle with fixed radius 

not only depends on R, but on R, as well. 

V(cmpx 

100 - 

50- 

10 - 

5- 

l- 

L 

Fig. 3. Symmetrical Figure Eight. Results in two subjects (A 

and B). Different symbols describe the relationship in 

the two parts of the patterns. Dashed lines indicate the 

power function fits to the circle data for the same subjects 

(cf Fig. 2). As in circles, the radius of curvature is propor- 

tional to the perimeter of the pattern. 
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Fig. 4. Asymmetrical Figure Eight. Results in two subjects (A and B). Different symbols describe the V-R, 

relationship in two parts of the patterns for each of the indicated values of the radius of the upper circle. 

Dashed lines indicate the power-function fits to the circle data for the same subjects (see Fig. 2). Notice 

that neither V,-R2 nor the V,-R, relations are adequately described by simple power functions. The 

continuous lines, which provide an excellent interpolation of the data points, correspond to the double 

power functions reported inset. 

Considering that, in the case of circles, the length 

of the trajectory is proportional to the radius of 

curvature, points 2 and 3 above can be tentatively 

summarized by saying that the average velocity in 

each part of the pattern depends on both the length 

of that part and the length of entire pattern (see, 

however, Discussion). This conclusion can be formu- 

lated quantitatively by assuming that the constant K 

in equation (1) is itself a power function of the total 

length: 

V, = 

The best fitting approximation of Equation (2) to the 

data points (continuous lines in Fig. 4) is indeed 

excellent. The corresponding estimates of the 

coefficient and of the exponents a and b (Table 

1) are consistent with those of the first two experi- 

ments. Indeed, in the case of Figure Eight pattern 

with equal radii, Equation (2) reduces to: 

” = 2bK’R (d + h) 

and the average sum a + b of the estimated exponents 

is numerically close to the exponents of the best 

fitting power functions in Figs 2 and 3. 

The identification of the sum with the 

length of the trajectory is reasonable but not logically 

inescapable. Because of the special properties of the 

Figure Eight, it is also possible to identify 

with the overall vertical extent of the movement. In 

order to eliminate this ambiguity, and further to 

extend validity of the results, we considered the 

drawing of a “folded-up” version of the Figure Eight 

pattern, shown diagrammatically in Fig. 5 (Fig. IB 

Table 1. Best titting parameters 

Sl S? 

4 log K’ ~- a b log K’ a b 

0.75 1.85 0.40 0.50 1.59 0.30 0.42 

3.00 I .98 0.40 0.50 2.40 0.44 0.25 Asymmetrical 

5.00 2.00 0.52 0.40 2.07 0.58 0.25 Figure-of-Eight 

Av. 1.94 0.44 0.47 2.02 0.44 0.31 

RI log K’ a b 1ogK’ a b 

3.00 I .87 0.61 0.43 2.68 0.63 0.21 Folded 

8.00 0.39 0.60 0.99 2.31 0.64 0.57 Figure-of-Eight 

Values of the parameters a and b in Equation 2 which produce the 

interpolations shown in Figs 4 and 5. Results in two subjects (S, and S). 
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Fig. 5. Folded-up Figure Eight. Results in two subjects (A and B). The radius of one circle is kept constant, 
the other ranges between 0.75 and 7 cm. When R, = 3 cm (left panel), the fixed-sized circle is either inside 

or outside the variable one, depending on the radius of the latter. When R, = 8 cm, the variable circle 
is always smaller than the constant one and, therefore, the V-R characteristics do not cross. The data 

points (*) correspond to the case V, = Vz = 3 in which the pattern becomes a circle. 

shows an actual measurement for this type of pat- 

tern). Experiments were run in two successive ses- 

sions. In each session one radius (conventionally 

referred to as R,) was kept constant while the other 

(R2) was varied. When R, = 8 (right panels in Fig. 5), 

the overall vertical extent of the movement (16 cm) is 

independent of R2, while the length of the trajectory 

is stiil proportional to R, + R2 as in the previous 

experiments. In this case R, was always smaller than 

R, . Thus, VZ is always less than V, and the V, - R, 

and V, - R, characteristics do not cross as they do in 

Fig. 4. However, the results in two subjects demon- 

strate that even in this case Equation (2) provides a 

very satisfactory interpretation of the results. It is 

therefore confirmed that the average velocity in each 

part of these patterns is expressible by two power 

functions components, one of which can be identified 

with the total pattern length. However, the estimates 

of the parameters a and b (Table 1) are signi~cantly 

different from those calculated previously. The con- 

trol condition for this experiment is provided by the 

case R, = 3 (left panels in Fig. 5). Here the range of 

R2 includes the fixed value of R,. 

Thus, apart from the fact that no inversion of 

movement direction occurs in the drawing of this 

pattern, the conditions are the same as in the regular 

Figure Eight experiment (Fig. 4). For both subjects, 

the results are very similar to those for R, = 8 and so 

are the estimates of the parameters. Notice that when 

R, = R, = 3; the pattern collapses into a circle. The 

corresponding average velocity (data points _k) is 

slightly but characteristically higher than that pre- 

dicted by the crossing of the theoretical power func- 

tions. This suggests that the very presence of two 

distinguishable units in the pattern has an influence 

in the overall dynamic organization of the movement. 

From the results of both experiments we conclude 

that switching from one direction of rotation to the 

opposite one does not modify the form of the R-V 

relationship. However, the fact that an inversion is, 

or is not, present may be responsible for the 

difference in the exponents. 

To conclude, we shall consider the drawing of 

patterns with regularly changing curvature. The tem- 

plates (outlined on paper as in the other experiments) 

were two isoperimetric ellipses with a high (0 = 0.95) 

and low (0 = 0.60) eccentricity, respectively. Each 

template was drawn in nine different sizes arranged in 
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a geometric progression and ranging from 36 to 

573 mm in perimeter. It was shown previously,” that 

in the drawing of ellipses the angular velocity oscil- 

lates rather abruptly between two distinct values. 

These transitions occur approximately at the four 

symmetrical points of the trajectory where the radius 

of curvature is the arithmetic mean of its maximum 

and minimum values. Since each cycle of the move- 

ment can be thus divided into two pairs of sym- 

metrical portions within which the angular velocity is 

relatively constant, we averaged the ins~ntaneous 

values of V and R over each pair independently. For 

a given eccentricity and a given size, such procedure 

yields two points in the V-R plane, one for the poles 

and the other for the flatter parts of the contour. 

When the size of the ellipsis decreases, the average 

values of the curvature (C = l/R) increase, while the 

corresponding average values of the velocity V de- 

crease as in Fig. 2-5. Thus, spanning the entire range 

of sizes yields two distinct V-R characteristics for 

each eccentricity. Typical results in one subject are 

illustrated in Fig. 6. They show that all four V--R 

curves have approximately the same slope as those 

for the circle in the same subject (broken line). Thus. 

the relation between length and velocity of execution 

which has been demonstrated in patterns with con- 

stant curvature is also valid when a systematic vari- 

ation of curvature is present. 

During the execution of any given ellipsis the 

instantaneous values of the angular velocity, and of 

the closely related tangential velocity, change con- 

tinuously as a function of the instantaneous values of 

the curvature. More specifically, it can be shown” also 

that the instantaneous values of V and R are related 

by a power law. An approximation to this re- 

lationship for any given ellipsis can be here provided 

by joining with linear segments the corresponding 

average points. This is shown in Fig. 6 only for the 

more eccentric ellipsis (dashed lines). The slope of 

these linear segments (i.e. the exponent of the power 

law) is similar for all sizes. The average slope is 

suggested by the dot-dashed line which represents the 

power function V = KR”‘. 

In writing and drawing movements, the instanta- 

neous tangential velocity of the pen’s tip is a function 

of both the global parameters of the trajectory and of 

its local (differential) properties. In the examples of 

Fig. 1, the effects of the local parameters show up in 

the close similarity between the high frequency oscil- 

lations of the curvature R(t) and the corresponding 

values of the tangential velocity P’(f). These effects, 

already described in Viviani and Terzuolo’3, are 

considered in detail in a separate paper.(’ In the 

V(cm/sec) 100 10 1 .l R(cm) 

100 

50 

20 

10 

5 

2 

1 I r I 

\ 

.Ol .l 

Fig. 6. Ellipsis. Data in one subject. Different symbols describe the V-R relation for ellipses with high 
(e) and low (0) eccentricity. For each ellipsis two V-R characteristics are plotted, one for portion of 
trajectory where R is higher than the mean value of the radius (poles), the other for the flatter portions, 
where R is smaller than the mean value. All four V-R characteristics have approximately the same slope 
as the circle data for the same subject (cf, dashed line labelled “circles”). The dashed segments which 

connect each pair of corresponding points on the two characteristics are drawn to suggest the relation 
between the values of the tangential velocity and of the radius of curvature within each ellipsis. The 
average slope of the dashed segments is suggested by the dot-dashed line which represents the power 

function V = KR”“. 
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experiments presented here, we have instead sought 

to isolate the effects of the global parameters, by 

considering closed patterns with either constant or 

regularly changing curvature. 

The fundamental hypothesis of the study is that the 

high-frequency, local effects can be “factored out” 

from the raw data by averaging velocity and curva- 

ture over identifiable segments of the trajectory (such 

as the two circles which compose the Figure Eight). 

The residual variations of velocity would then repre- 

sent a “Gain“ factor which can be assumed to remain 

constant over those segments and which only de- 

pends on the global parameters of the trajectory (cf. 

ref. 7). With reference to the examples of Fig. 1, our 

hypothesis leads us to assume that useful information 

on this gain factor can be obtained by approximating 

V(r) with piece-wise constant functions. 

In the case of circles (Fig. 2) and symmetrical 

Figure Eights (Fig. 3), the average radius of curvature 

of the trajectory is proportional to its total length. 

Therefore, the very little scatter of the data points 

and their excellent interpolation by Equation (1) 

suggest the existence of a very accurate gain control 

mechanism relating the average tangential velocity 

and the linear extent of one cycle of the movement. 

To be sure, this relation is not rigid inasmuch as we 

can certainly draw intentionally the same circle at two 

different speeds. Nevertheless, there seems to exist a 

preferred velocity which each individual spontane- 

ously selects when he/she performs a movement of a 

given size. This velocity may differ (appreciably) from 

subject to subject and (slightly) from one experiment 

to the next (cf. panel B in Fig. 3). However, when one 

velocity value has been selected for one size, the 

drawing of the same pattern in other sizes is con- 

stained by a tight covariation between speed and 

extent which is reminiscent of the Isochrony 

Principle2,5,‘o and which can be interpreted as the 

operating characteristic of the individual per- 

formances. 

The experiments with asymmetrical (Fig. 4) and 

folded (Fig. 5) Figure Eights further qualify the 

dependency of the gain factor from the global metric 

properties of the trajectory. The large and systematic 

changes observed in different portions of the move- 

ment are in fact incompatible with the hypothesis that 

the average tangential velocity only depends on the 

perimeter of the pattern. The representation of the 

results by Equation (2) actually proves that the 

average tangential velocity can be factored out into 

at least two multiplicative components. One com- 

ponent can be reliably identified with the total perim- 

eter of the pattern. As for the other component, good 

interpolation of the data provided by Equation 2 

indicates that it depends on the radii of the two 

subpatterns that form the movement. Thus, a poss- 

ible interpretation of Equation 2 is that the average 

velocity in each identifiable subpattern of a complex 

movement depends on both the total perimeter of the 

pattern and the perimeter of that subpattern. The 

ellipsis experiments (Fig. 6) suggests, however, a 

different interpretation which is in better agreement 

with previous results. I3 It demonstrates, in fact, an 

effect of the radius of curvature, which is independent 

of the perimeter of the pattern. If we assume that this 

specific effect is also present in all other cases consid- 

ered so far, where, however, it cannot be dis- 

tinguished from that of the length of the trajectory, 

we may then tentatively identify the second multi- 

plicative component of the tangential velocity with 

the average radius of curvature. This hypothesis is in 

keeping with the quantitative analysis of the data. 

Indeed, in the case of the ellipsis also, the tangential 

velocity in each portion of the trajectory can be 

expressed as the product of two terms: 

where R is the average radius of curvature of that 

portion, and P is the perimeter of the ellipsis. When 

the eccentricity tends to zero, P tends to 2rc R while 

the sum of the exponents 0.30 + b should coincide 

with the average estimated exponent for the circle, 

say 0.80 {cf. Fig. 2). If, as a first approximation, we 

assume that this relation between exponents also 

applies for non-zero eccentricities we obtain b = 0.50, 

that is: 

These estimates are not very different from those of 

the exponents a and b in Equation (2) for the 

asymmetrica Figure Eight (Table 1) which, as al- 

ready noted, are themselves coherent with the results 

for circles and symmetrical Figure Eights. The “a” 

exponents for the folded patterns are instead higher 

(-0.60) while the b exponents are somewhat vari- 

able. Thus, although the changes in movement direc- 

tion necessary to draw these patterns seem to have a 

specific quantitative effect on the timing of the move- 

ment, one and the same qualitative law relating 

velocity, curvature and perimeter applies to all closed 

patterns considered in these experiments. 

To conclude, we would like to raise a theoretical 

issue concerning the general organisation of the 

motor plan. Whenever a given closed pattern is 

repeated over and over as in our experiments, it is 

quite natural to assume (cf. Introduction) that the 

larger linear extent relevant to the planning of the 

movement is the perimeter of the pattern. More 

specifically, it is natural to assume that the gain factor 

which regulates the average speed of execution only 

depends on the perimeter of the planned trajectory, 

being instead unaffected by the additional instruction 

to execute so and so many times the same plan. 

Informal observations have indeed shown that the 

tempo of the movement is practically independent of 

the number of repetitions. However, periodic, closed 

movements, are but a special case of all possible 

smooth movements. On an a basis, it seems 

unlikely that such a sophisticated principle of plan- 

ning as the precise dependency of the velocity from 
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the linear extent has developed only for such special 

case. It is then tempting to speculate that some notion 

of linear extent must be represented internally also in 

the genera1 case of open, aperiodic movements. If this 

is true, one could further speculate that such gener- 

alized notion of linear extent applies to those succes- 

sive segments of the trajectory whose identification is 

relevant to the global motor plan (cf. ref. 7). Ulti- 

mately, it is conceivable that these segments, if they 

exist, might be identified by a systematic analysis of 

the correlation between the extent of all possible 

stretches of the trajectory and the corresponding 

average velocity of execution. 
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