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Abstract We propose an oscillatory model that is theoret-
ically parsimonious, empirically efficient and biologically
plausible. Building on Hollerbach’s (Biol Cybern 39:139—
156, 1981) model, our Parsimonious Oscillatory Model of
Handwriting (POMH) overcomes the latter’s main shortcom-
ings by making it possible to extract its parameters from the
trace itself and by reinstating symmetry between the x and y
coordinates. The benefit is a capacity to autonomously gener-
ate a smooth continuous trace that reproduces the dynamics
of the handwriting movements through an extremely sparse
model, whose efficiency matches that of other, more com-
putationally expensive optimizing methods. Moreover, the
model applies to 2D trajectories, irrespective of their shape,
size, orientation and length. It is also independent of the end-
effectors mobilized and of the writing direction.

Keywords Graphonomics - Coordination dynamics -
Oscillations - Motor pattern - Handwriting

1 Introduction

Handwriting can be regarded as the ultimate motor skill.

Through one of the longest learning processes known to
humans, it achieves the exquisite and sophisticated coordi-
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nation of a great number of components, not only from the
hand and the forearm, the endeffectors for the trace, but also
from the entire body, determining a whole posture which
has noticeable effects on the written production (Blote et al.
1987; Sassoon 1993). As such, handwriting provides scien-
tists with a unique experimental window into motor expertise
and its acquisition.

A survey of the literature yields numerous models that cap-
ture several features of trajectory formation, hence the hand-
writing movements. They can roughly be classified into two
categories: discrete and continuous models. Discrete mod-
els apply some optimization algorithms over a segment of
the trace defined as a stroke according to more or less arbi-
trary criteria (Edelman and Flash 1987; Bullock et al. 1993;
Teulings 1996; Plamondon and Djioua 2006). A stroke rep-
resents a basic movement unit, of varying length and shape,
executed by the motor system in a feedforward control mode.
Teulings (1996) captured the notion of movement unit with
the term ‘ballistic stroke.” The process of handwriting itself
may be then viewed as the concatenation of strokes in space
and time. This piecemeal process involves a graphic motor
buffer where the corresponding motor patterns or engrams
(e.g., Viviani and Terzuolo 1982) extracted from a memory
store are eventually translated into appropriate neural com-
mands to the muscles (Ellis 1982; Patterson and Wing 1989).

The incertitude about the definition of what a stroke is
hampers discrete models of handwriting. The first issue per-
tains to the size of a stroke. Depending on the task and the
writer’s skill, it may be a small fragment of trajectory, a let-
ter, a grapheme or even a word (Wing 1978; Teulings et al.
1986; Kandel and Spinelli 2010). The second issue pertains
to the concatenation process between successive strokes. At
times, the units tend to smudge into each other, a phenom-
enon called coarticulation; at other times, they appear to be
connected by an additional segment of trajectory (Meulen-
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broek and Galen 1989). Such variability in size, shape and
timing undermines a robust determination of the nature, fea-
tures and properties of a stroke, lessening by the same token
its plausibility.

Continuous models on the contrary posit that the trace is
the outcome of a nonstop generative process, usually oscilla-
tory, which is modulated parametrically every now and then
in a mode that mixes feedback and feedforward control (e.g.,
Stark 1968). The mixed process merges feedforward mech-
anisms of generation with feedback mechanisms of updat-
ing, so that the desired trajectory be obtained. In a seminal
paper, Hollerbach (1981) made a first account of continu-
ous trajectory formation in handwriting as a combination of
the motion of two linear oscillators, deemed to capture the
motion of wrist and fingers. The model basically assumed
that each antagonist muscle pair about the joints behaves as
a harmonically moving mass-spring system. Handwriting is
thus generated through the combined action of the pair of
oscillators set in an orthogonal fashion, generating oscilla-
tion in the horizontal and vertical directions. The addition of
a translational motion from left to right at a constant speed,
typical of most western scripts, separates the strokes/letters
spatially. However, crude and incomplete the model may be,
it still provides a very sparse mechanism for trace generation:
A large number of different graphic shapes can be obtained by
intermittently updating a limited set of parameters, namely
the amplitude, the frequency and the phase of each oscillator.

Strangely enough, this proposal has not been followed by
much theoretical work (except for Singer and Tishby 1994,
who made but a cursory reference thereto). More recently, a
series of empirical work tested an extension of the oscillatory
model proposing that handwriting emerges from the non-
linear coupling between the orthogonal oscillators (Athénes
et al. 2004). Due to this nonlinearity, several stable modes
of synchronization between the oscillators were expected to
arise, according to the principles of dynamic pattern the-
ory (Kelso 1984, 1995; Schoner and Kelso 1988). In a task
demanding participants to draw several ellipses of various
eccentricities, Athénes and colleagues showed that a straight
line and an ellipse with an intermediate eccentricity were pro-
duced with high accuracy and velocity, independent of their
orientation. They concluded that such preferences resulted
from the stability of some synchronization modes between
the oscillators arising from their mutual coupling. This view
afforded specific predictions about the degradation of hand-
writing in deleterious situations (Sallagoity et al. 2004).

Building on the above theoretical and empirical work, the
present article offers a model for 2D trajectory formation
in humans, probably a valid blueprint of any graphic skills,
including handwriting. In the following, we shall introduce a
Parsimonious Oscillatory Model of Handwriting (POMH),
emphasize its computational simplicity, compare its effi-
ciency quantitatively with the existing model of Edelman
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and Flash (1987) and evaluate its performance on real hand-
writing of increasing complexity: letters, words, sentences
and signatures.

2 An improved oscillatory model of handwriting
2.1 The Hollerbach model

In the Hollerbach (1981) model, handwriting is seen as the
result of two superimposed oscillators moving along two dis-
tinct directions of the plane: x and y. Although any non-
sinusoidal oscillators could work as well, a harmonic func-
tion is fairly compatible with the mass-spring dynamics of
the endeffectors. The equation of motion for each oscillator
is defined as:

X = asin(wyt + ¢y) + ¢ (1)
y = bsin(wyt + ¢,) 2

Where a and b are the horizontal and vertical velocity ampli-
tudes, wy, wy, ¢, and ¢y, are, respectively, the frequencies and
the phases associated with these oscillators. The parameter ¢
models the constant translation movement to the right when
writing. The x axis is thus oriented in this left to right writing
direction, whereas the y axis, not necessarily orthogonal to x,
can be defined as the slant direction. The model parameters
(i.e., a, b, wy, wy, ¢, and ¢,) are piecewise constant; they
are supposed to be updated only when the vertical velocity
is null. Stemming from this formalism, the slant angle 8 can
be expressed as:

tan 8 =

where ¢ = ¢, — ¢y (3)

acos ¢

Another issue pertains to the horizontal velocity value when
vertical velocity is null:

W = X(ty,) =c —asing 4)

The sign and magnitude of this value indicates the particular
shape of the trace at this point. If ¥ is close to zero, then
the top corner looks sharp. If it is positive, the top corner
becomes rounded. Conversely, a negative value of ¥ results
in a full loop. These effects are illustrated in Fig. 1.

/ d ‘ / /-"jf
(a) (b) (c)

Fig. 1 In Hollerbach’s model (1981), the shape of the top corners
depends on the sign and magnitude of ¥ (see text for further details). a
U =12b¥ =-43,c¥ =37
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2.2 Reasons for improving the Hollerbach model

Hollerbach’s model calls for improvement because three
issues are not addressed.

The main computational drawback of Hollerbach’s model
lies in the lack of any parameters extraction method from a
given handwritten trace. With the assumed asymmetric equa-
tions, any such algorithm would involve a nonlinear curve-
fitting problem, calling for computationally expensive opti-
mization methods. Our aim is to present here a much more
efficient algorithm, stemming from our symmetric choice of
the moments when parameters are allowed to change.

Secondly, the ¢ parameter, representing the constant drift
of the hand from left to right during writing, is quite ad
hoc and unnecessary. Moreover, it imposes the x-axis to be
exactly aligned with the writing direction and introduces a
dissymmetry between x and y. We will show that it can be
simply omitted and that the drift can be accounted for by
cumulating phase values between cycles.

Finally, the simultaneous updating of x and y parameters,
occurring when the y velocity is null, renders the Holler-
bach model similar to a stroke-by-stroke, piecemeal method
for trace generation. Even though each stroke is formed via
continuous harmonic movements on x and y, it is simply
concatenated to the next, which may be very different in
shape, leading thereby to undesired angularities at the junc-
tion points. We will show below how our improved model
overcomes this problem.

2.3 The POMH model

Our model (POMH), compared to Hollerbach’s, is simpler
because it is symmetric in x and y. The model benefits are
as follows: a complete independence from any spatial coor-
dinate system; an analytic solution for extracting parameters
from the trace, hence an inexpensive computation; a genera-
tion of any 2D trajectory preserving the biological movement
dynamics. The POMH model is described in the following
paragraphs.

2.3.1 Cinematic equations

We use canonical orthogonal directions of the plan space as
axes for the two oscillators. The movements on the x and y
axes are defined by:

X = a, (¢) sin(wyx (1)t + ¢x (1)) ©)
v = ay(t) sin(wy (1).t + ¢, (t)) (6)

where a,, wx, ¢x, ay, wy, ¢y are constant-by-part functions
defined by a parameter series described in 2.3.2.

2.3.2 Parameter series

Let # 1, ..., tx,n, be the moments of zero velocity on the
x-axis, and ty 1, ..., fy n, the moments of zero velocity on
the y-axis. We compute the following elements:

T
Opg = — @)
Ly,i+1 — Ix,i
Ty i
i = - ®
tx,i-i—l - tx,i
T .
i = Smean (X, ;.p, | ©)
T
g = — (10)
tyit1 —ly.i
Tty
Y,
fyi= — (11)
Iy iv1 — 1ty
T .
ayi = Fmean ity ity il (12)

where mean is the mean on the interval [z, ;, £y ;1.
The functions ay, @y, @x, ay, wy, ¢y are defined by:

ax(t) =ax; tyi <t =<tciy1 (13)
wx(t) =y tei <t =< tyit (14)
Gx(t) = Pxi txi < < lyiy (15)
ay(t) =ay; tyi <t =<tyi+l (16)
wy(t) =wy; ty; <t =<1ty (17
Gy () =Py tyi <t <1yt (18)

Finally, a trace is completely modeled by the two series:

(tx,iy Ay i, Wx,i, ¢x,i) 1<i<N, (19)
(ty,isayi,wyi, ¢yi) 1 <i <N, (20)

Figure 2 shows the x and y position (middle panels) and
velocity (bottom panels) profiles on a sample trace ‘umbrella’
(upper panel). Circle (resp. square) dot indicate moments
when x (resp. y) velocity is null.

2.4 Mathematical justification of computations
2.4.1 Computation of w and ¢
Between two successive zeros #;; and t, ;41 of the veloc-

ity on x, the function x performs half a period of the sinus
function, so:

Ixi+l —lxi = and Wy il i +¢x,i =0 (21)

Wy i

Similarly on the y-axis:
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Fig. 2 The actual handwritten 370
trace (upper panel), with the
corresponding x and y position 'g 360 il
(middle panels) and velocity =
(lower panels) as a function of = 159 |
time. Circles (resp. squares) >
indicate the moments of x (resp.
i i 340
y) r%u.H velocity. Uplts (mm for 900 340
positions, ms for time and
mm/ms for velocities) are the
same for all subsequent images) 350
€ 300 .
E
v 250 b
200
0 6000
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€ 360 .
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340 1 Il L L |
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0.3 T T T T
g 02} .
5
X
6000
5
>
6000
bl —toi = — and oyt + ¢y =0 (22) ¢
Wy i w
M=— / fo)dx = — (24)
Hence formulas (7), (8) and (10), (11) o
w
2.4.2 Computation of amplitude parameter a T—¢
w
Consider the following function: y=2 / (f(x) — M)*dx
f x> asin(wx + ¢) (23) —¢
w
. : a? (—8 + 2)
where a, @ and ¢ are independent of x. The mean and vari- _ (25)
ance of between two successive zeros are: 272
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This shows that the amplitude of a sinusoidal signal can be
approximated by the mean or the variance of this signal on
a semi-period (zero to zero), independently of the frequency
and phase, hence formulas in Egs. (9) and (12).

2.4.3 Minimum number of parameters

Following Teulings (1996), it is interesting to assess the min-
imum number of parameters to be extracted from written
trace and to be updated in the model to reconstruct a par-
ticular handwriting sample. Here, among the parameters of
each oscillator [see Eqgs. (19) and (20)], the ¢ and 1,/ series
are superfluous since they can be readily computed at recon-
struction time from the following elements:

— The initial values (ty 0, ax,0, @x,0, $x,0) and (ty.0, ay,o,
wy,0, $y,0)

— The series (ay;, wy,;), 1 < i < Ny and (ay;, wy;),
1 <i <N,

The model is fairly parsimonious, since it needs only the
computing of two parameter values—the value of amplitude
and value of frequency—for each update, every half period
for x and y alternately. For instance, when writing a [ letter
(see Fig. 2 at about 4,000 ms), two parameter updates on the
x-axis are required, as well as two updates on the y-axis,
hence four updates. As a result, a total number of 8 value
changes are necessary.

2.5 Parameter extraction algorithm for a sampled trace

Suppose that the recorded handwriting sample is represented
by a chronological finite list of 91 timestamped positions:

S = (i, Xi, Yi)1<i<MNeN* Vi>1,6>4_ (26)

Here follows an algorithm for extracting the series of para-
meters (19) and (20) from this recorded trace:

Step 1 x = (x;)1<ij<o is differentiated according to ¢ =
(ti)1<i<on

. Xi — Xi—1

i = (_) @7)
i =li-1 J1<ism

¥y = (i) 1<i<m 1s differentiated according to t = (#;)1<; <o

5= (yi — )’i—l) (28)
li =ti-1 Ji<i<m

Step 2 An extra zero velocity is added at the beginning and
at the end of the velocity series on x and y. Otherwise, the
forthcoming estimation of oscillatory parameters is impossi-
ble before the first zero crossing and after the last zero cross-
ing. Indeed, oscillatory parameters can be estimated only
between two successive zero crossings on each axis. This

decision, although sometimes unrealistic, avoids additional
computations.

Step 3 A zero crossing algorithm is applied to the derivatives,
which have been low-pass filtered first (using a flat window
of size 6). This filtering prevents the algorithm to find clusters
of zeros due to acquisition irregularities or noise. This step

yields the two series #y 1, ..., N, and 1, ..., Iy, N, -

Step 4 The parameter series elements are computed:

Vi,1<i < Ny:
z (29)
Wyj=—""—
o tx,iJrl — Iy
Tl
Gyi=—— (30)
Iyi+1 — tx,i
T )
Axi = Zmean (Xie, ; r ;[ (1)
Vi,1<i<Ny:
T (32)
wy ;] =
T by — by
Tty
byi=——— (33)
Ty i+1 — 1y,
T )
ay; = Emean (y)[ty,,-,ty,,-H[ (34)

Step 5 The x and y velocities are reconstructed, using Eqgs.
(5) and (6) and given the computed parameter series. The x
and y traces are reconstructed by integration of these velocity
values.

Figure 3 shows a sample trace superimposed with the trace
reconstructed from the extracted parameters using the algo-
rithm. Not only the reconstructed sentence is readable but
also the individual properties of the letter formation are cap-
tured by POMH as well, even though the traces are quite com-
plex, including abrupt changes in derivatives, corresponding
to peculiar topological features of handwriting (e.g., spikes,
reversal points, ...).

Note that in Fig. 3, only the visible traces have been
processed: The pen-lifted portions of the entire trajectory
have been excluded from the analysis. Nonetheless, if these
pen-lifted portions are processed, they are readily included
in the analysis without any special treatment as can be seen
in Fig. 12.

3 Comparison with Edelman—Flash model (EFM)

The efficacy of POMH parameter extraction and trace recon-
struction can be assessed by comparison with those provided
by another model. Unfortunately, Hollerbach’s (1981) work,
aiming to computer generation of handwriting-like traces,
offered no method of parameter extraction from real, cursive
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Fig. 3 Comparison of an actual handwritten (blue line) and POMH-
reconstructed (red line) sentence (color figure online)

handwriting produced by humans. We compared our POMH
model to the Edelman and Flash model (EFM, Edelman and
Flash 1987; Edelman et al. 1990), already used elsewhere
for comparison purposes (Paine et al. 2004). The interest of
EFM undertaking lies in its completeness: The model was
ultimately designed to reconstruct any real handwriting trace
and Edelman and Flash proposed a quantitative method to
assess its matching the real traces.

Using piecemeal generation approach, Edelman and Flash
(1987) envisioned global handwriting trace as the concate-
nation of four prototypical strokes: a hook, a cup, an inversed
gamma and an oval. The letter ‘a,” for instance, was viewed
as a concatenation of oval, cup and hook. The minimum jerk
model is then applied to construct the trajectory from the
relative positions of the start point, the via point, situated
approximately in the middle of the planned trajectory and
the end point of an actual stroke. EFM offered an excellent
fit for the prototypical strokes as well as for letters, provided
that, beforehand, the actual trace is separated into successive
strokes. We expect that the matching between the real and the
reconstructed profiles (position and velocity) with our model
is at least as good as that achieved by the EFM model.

3.1 Methods
3.1.1 Participants

Four unpaid volunteers, three males and one female, aged
between 24 and 49, took part in the study. Two partici-
pants were self-claimed right handed, two left handed. They
reported normal or corrected-to normal visual acuity and had
no physical impairment impeding detection and production
of the required trace. The study was approved by the local
ethical committee of Paul Sabatier Toulouse University, and
participants provided a written informed consent in accor-
dance with the Helsinki Declaration.

3.1.2 Material

The graphic task was performed on a computer-controlled
graphic tablet (WACOM DTZ-1200W/G) with LCT screen

@ Springer

of 261.1 x 163.2 mm size and 1280 x 800 resolution,
inserted in a tablet (405.2 x 269.7 x 17 mm) which can
be freely rotated just like a sheet of paper. A white sheet in
landscape orientation, lined by blue lines spaced by 150 mm,
was displayed on the screen. The stylus used was approxi-
mately the same size (174.8 mm long, with a diameter of
14.8 mm) and weight (17 g) as a normal ballpoint pen. Par-
ticipants were seated in a height-adjustable chair, facing the
graphic tablet set on a table, and asked to adopt the most
comfortable writing posture. As soon as the stylus was less
than 5 mm from the screen, the x and y spatial coordinates
of the performed trajectories were digitized at 100 Hz with
a spatial resolution announced at 0.005 mm. The produced
trace was displayed in real time on the screen and its coor-
dinates stored for further analysis. When the stylus raised 5
mm above the tablet, data recording stopped. This procedure
allowed each required trace to be stored in a separate file.

3.1.3 Procedure

The set of required traces was composed of four prototyp-
ical strokes distinguished by Edelman and Flash (1987): a
hook, a cup, a gamma and an oval, as discussed above. For
each required stroke, participants were instructed to write 60
exemplars, using cursive handwriting at their spontaneous
speed. Among the exemplars, the 20 middle exemplars were
selected for analysis purposes. To collect handwritten traces
in as natural a setting as possible, participants were not asked
to rest the pen at the starting position prior to beginning to
write. As a result, their hands were already in motion when
the pen hit the writing surface. The whole experimental pro-
cedure lasted about 15 min.

3.1.4 Data analysis and reduction

Statistical analysis focused on the four prototypical strokes,
for which both POMH and Edelman—Flash methods can be
applied. In line with Edelman and Flash (1987), the match-
ing between the produced and the reconstructed strokes
was calculated through typical correlations on x-position,
y-position, x-velocity and y-velocity. The classic Pearson-
R formula was chosen here instead of that used by Edelman
and Flash (1987) because the latter contains possible artefacts
leading often to correlation values greater than 1. This cor-
relation captures the topological similarity between the real
and reconstructed stroke, without being affected by a possi-
ble vertical shift or change in amplitude between the real and
reconstructed trace. The correlation index (R) varies from 1
for identical traces to -1 for mirror-inversed traces and tends
toward zero when the matching deteriorates.
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3.1.5 Minkowski p-dissimilarity

A global assessment of the (dis)similarity between EFM and
POMH was captured using Minkowski p-dissimilarity met-
ric. This metric captured the distance between the two models
in a four-dimensional space, each dimension corresponding
to one of the above correlation (R) between the real and
the reconstructed stroke. For each participant, the EFM and
POMH represent two points in the four-dimensional space,
and Minkowski distance, d, corresponds to the vector joining
them. Minkowski distance is a generalization of Euclidean
distance:

1
14 P
d= (Z | Repm — RPOMmP) (35)

i=1

where p is the number of dimensions or the power for the
norm of the vector. The Minkowski distance with power p =
4 was used here instead of the most often used power p = 2,
in order to give a greater weight to the variables on which the
models differ most. Minkowski distance equals 0 when the
two methods are identical. Conversely, the largest distance
between the best-matching model (R = 1) and the worst
matching model (R = 0) amounts to:

1

4 7
dmax (EFM, POMH) = (Z 11— 0|4) =1.414 (36)
i=1

3.1.6 Statistical analysis

Friedman ANOVA’s, a nonparametric alternative to one-way
repeated-measures analysis of variance, were used. Each
dependent variable was analyzed separately using a 2 (Model
=POMH, EFM) Friedman ANOVA to test whether there was
a difference between the matching provided by POMH and
EFM. An additional 4 (Stroke = oval, gamma, hook, cup)
Friedman ANOVA carried out on the Minkowski distance
aimed to assess whether the matching is distinct between
closed (i.e., oval and gamma) and open (i.e., hook and cup)
strokes.

3.2 Results
3.2.1 Visual inspection of individual data

Figures 4, 5, 6 and 7 provide individual samples of actual
prototypical strokes, produced by humans: a hook (Fig. 4), a
cup (Fig. 5), a vertically flipped gamma (Fig. 6) and an oval
(Fig. 7). Each figure illustrates the produced stroke (upper
panel), the time series of position (middle panels) and veloc-
ity (lower panels) on x and y (left and right panels, resp.).
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Fig. 4 Comparison between the actual (black), reconstructed by
POMH (dark gray) and by EFM (light gray) traces for the ‘hook’ pro-
totypical stroke, and the associated correlation indexes (see text for
details)

Visual inspection of the graphic patterns (upper panels) sug-
gests that both POMH (dark gray line) and EFM (light gray
line) models fit the produced stroke (black line) quite well.
Correlation indexes displayed below the panels are high for
both models, all exceeding 0.97 value. Only trifling differ-
ences manifested at the second decimal arise between the fit
produced by the POMH and EFM.

3.2.2 Correlation index

Correlation indexes are displayed in Table 1. For all prototyp-
ical strokes and all variables, the difference between POMH
and EFM was lower than 0.1. Positive differences signal that
POMH matched better the produced stroke than EFM. In
Table 1, a star denotes a statistically significant difference
(p < 0.05) between the two models.

A 2 (Model) Friedman ANOVA carried out on the oval
prototypical stroke revealed that there was a statistically sig-
nificant difference between the models for x-velocity, y-
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Fig. 5 Comparison between the actual (black), reconstructed by
POMH (dark gray) and by EFM (light gray) traces for the ‘cup’ pro-
totypical stroke, and the associated correlation indexes (see text for
details)

position and y-velocity. POMH model led to a higher corre-
lation for the three variables.

A 2 (Model) Friedman ANOVA carried out on the gamma
prototypical stroke revealed that there was a statistically
reliable difference between the models for x-position, x-
velocity, y-position and y-velocity. POMH model led to a
larger correlation for the four variables.

A 2 (Model) Friedman ANOVA carried out on the hook
prototypical stroke revealed that there was a statistically reli-
able difference between the models for x-position and y-
velocity. EFM led to a higher correlation for the two vari-
ables.

A 2 (Model) Friedman ANOVA carried out on the cup pro-
totypical stroke revealed that there was a statistically reliable
difference between the models for x-position and y-velocity.
EFM led to a higher correlation for the two variables.

3.2.3 Minkowski p-dissimilarity

Mean Minkovsky distance was 0.242 (SD = 0.022) for oval,
0.298 (SD = 0.065) for gamma, 0.151 (SD = 0.063) for
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Fig. 6 Comparison between the actual (black), reconstructed by
POMH (dark gray) and by EFM (light gray) traces for the ‘gamma’
prototypical stroke, and the associated correlation indexes (see text for
details)

hook and 0.228 (SD = 0.041) for the cup, which is much
smaller than the maximum Minkowski distance of 1.414 (see
Eq. 36). For oval and gamma where there is a large dis-
crepancy between the two models in terms of Minkowski
distance, correlations shows that POMH performs a better
matching (see differences for oval and gamma in Table 1).
However, a 4 (Stroke) Friedman ANOVA carried out on p-
dissimilarities between all prototypical strokes revealed no
significant effect (p > 0.05). Overall, the above results indi-
cate that the matching for POMH and EFM was similar for
all strokes.

3.2.4 Samples of roman handwritten traces

Beyond the reconstruction of basic prototypical strokes,
POMH makes it possible to simulate longer pieces of hand-
writing, such as letters (‘b” and ‘h,” Figs. 8, 9), words (‘lune,’
Fig. 10), signatures (Fig. 11) and sentences (‘la mort du jeune
radis,” Fig. 12). Correlation indexes for the more complete
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and natural handwriting samples are in the range of those
for the shorter prototypes studied above (i.e., 0.9). Notably,
POMH is successful in reconstructing signatures, which
often escape the school-imposed well-behaved forms and
lead to idiosyncratic patterns. Notably, these free-running
traces are quite a challenge for prototype-based models.

3.2.5 Samples of non-roman handwritten traces

In order to assess how good the POMH model is to handle
handwriting systems that bear on the production of discrete
movements such as Japanese kanji or Chinese ideograms,
we asked a Chinese subject to write the Chinese word for
‘table’ at her most natural speed on our experimental writing
tablet. The pen movement was recorded when it was on the
sheet (z = 0; writing) and above the sheet (z > 0; flying
between two strokes). The trace was analyzed through the
POMH parameter extraction algorithm and reconstructed.
The results are displayed on Fig. 13.

Figure 13 top-left shows the produced movement trajec-
tory on and above the sheet (z > 0) and top-right shows
its reconstruction by POMH; Fig. 13 middle-left shows the
movements on the sheet only (z = 0) and middle-right its
reconstruction by POMH. The last row shows the corre-
sponding speed profiles for x and y.

The trace reconstructed by POMH, with its dynamics, is
good, with a high degree of correlation between the actual
and reconstructed velocities on both dimensions. Interest-
ingly, both velocity profiles exhibit rhythmic fluctuations,
very similar to those observed for continuous handwriting
with Latin characters, words and sentences (cf. Fig. 2 for
instance). Although the trace in Chinese writing is obviously
discrete, the underlying generative process remains of a peri-
odic nature.

The preliminary results, which certainly need to be con-
firmed with a larger data set, indicate that when the complete
motion of the pen is considered, on and above the sheet,
which avoids separating the successive strokes from each
other, ‘discrete’ writing systems might well be described in
terms of coordinated oscillatory motion, as it is the case for
‘continuous’ handwriting.

4 Discussion

Elaborating on the original Hollerbach’s work (1981), our
aim was to provide a model of handwriting production and,
more generally, of 2D trace generation. The task was two-
pronged: determining when and how the model parame-
ters are extracted and updated and making the model gen-
eral enough to account for a large diversity of handwritten
traces. The core of our contribution lies in the symmetry of
the equations and in an autonomous algorithm for extract-
ing the model parameters. This leads to a reconstruction of
handwritten traces without resorting to complex procedures
of optimization and of prototypes identification. The com-
putation of amplitude, in particular, benefited from a new
mathematical result based on the sum of the mean value and
the standard deviation over the last semi-period. We discuss
below the mathematical features of our model, its perfor-
mance in reconstructing an actual handwritten trace, its bio-
logical plausibility and future directions for development.

4.1 A parsimonious model of cursive handwriting

For the x and y movements to be truly oscillatory, their para-
meters should not change in a continuous way (otherwise,
the choice of an harmonic driving function would be some-
what arbitrary), and even not too often (otherwise, it would
be an ad hoc mapping of the trace with small arcs of ellipses,
a piecemeal operation). By virtue of this oscillatory premise,
the trajectory between two zero crossings in the velocity pro-
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Table 1 Mean and standard

. X POMH Edelman-Flash Difference Friedman ANOVA

deviation (SD) of correlation

indexes for the four mentioned Mean (SD) Mean p

dependent variables for POMH

and EFM, and results of Oval

subsequent ANOVA x 0.97 (0.02) 0.93 (0.08) 0.04 031
X 0.96 (0.01) 0.88 (0.06) 0.08 0.05*
y 0.99 (0.00) 0.91 (0.07) 0.08 0.05*
y 0.94 (0.01) 0.88 (0.07) 0.06 0.05*
Gamma
x 0.99 (0.001) 0.93 (0.08) 0.06 0.05*
X 0.95 (0.006) 0.88 (0.05) 0.07 0.05*
y 0.98 (0.002) 0.89 (0.10) 0.09 0.05*
y 0.96 (0.005) 0.82 (0.10) 0.14 0.05*
Hook
X 0.90 (0.13) 0.91 (0.13) —0.01 0.05*
X 0.90 (0.09) 0.89 (0.05) 0.01 1.00
y 0.94 (0.05) 0.92 (0.08) 0.02 0.37
y 0.82 (0.12) 0.84 (0.10) —0.02 0.05*
Cup
x 0.81 (0.28) 0.85 (0.17) —0.04 1.00
X 0.88 (0.13) 0.91 (0.09) —0.03 0.05*
y 0.91 (0.10) 0.95 (0.06) —0.04 0.31

* A statistically different value y 0.79 (0.14) 0.87 (0.09) —0.08 0.05%*

(p < 0.05)

files specified using two parameters only. The simplicity of
this method made it possible to extract the parameters ‘in real
time’ with any ordinary personal computer and pen tablet.

POMH parsimony mostly owes to its symmetry. In con-
trast to Hollerbach (1981) who implemented a method to
update parameters for both x and y oscillators exclusively
when velocity reached zero on the y axis, we posited the
parameters to be changed at the velocity zero crossings for
each x and y oscillators separately. Thus, symmetry is pre-
served since the axes or the oscillators can be swapped. From
there, a unique and simple algorithm, based on elementary
trigonometric operations, could be applied for reconstructing
the velocity profiles of both oscillators motion. Hollerbach
(1981) took another track: By using zero crossings on the
y axis only, the reconstruction of parameters on the x axis
would call for additional, complex nonlinear methods of fit-
ting.

As a first consequence, symmetry allows obviating a spe-
cific account for the positional drift that occurs along the
x-axis during writing. Whereas Hollerbach (1981) or Singer
and Tishby (1994) abstracted and implemented the drift sep-
arately, POMH accounts for the right-to-left displacement by
the mere generation of the oscillations on the x axis, provided
that the phase accumulates across cycles. Actually, the pro-
cedure could work as efficiently, irrespective of the leading
direction of the handwriting (right-to-left, top-to-bottom). In
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contrast to Singer and Tishby (1994), no assumption was for-
mulated about the phase, amplitude or frequency values at
the moment of their updating. Singer and Tishby (1994) stip-
ulated that when velocity reaches zero, a null phase should
be reset on y and the same frequency is attributed to both x
and y.

As a second consequence, symmetry endowed POMH
with the possibility of information transfer across successive
updates, some kind of partial memory of the trace that has
just been written. For instance, while parameters are being
extracted from x-trajectory at a given update, the model keeps
using the parameters that had been just extracted from y-
trajectory, and vice-versa. As a result, the trace is not pro-
duced in a serial, piecemeal manner: The newly extracted
parameters to be implemented for one dimension of the ongo-
ing trace are intermixed with those inherited from the pre-
vious update for the other dimension. Such an ‘information
transfer’ on a quarter of a cycle basis is likely to account for
the smoothness of the reconstructed traces.

Finally, symmetry made also our model insensitive to x
and y swapping; Actually, there is no need for any a pri-
ori fixed spatial coordinate system. In the present case, we
decided to set the x and y axes orthogonally in reference to
the paper sheet (i.e., the tablet), but the model could work
with any other spatial reference. This property can be used
for practical purposes: When there are long straight segments
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Fig. 8 Comparison between the actual (black) and reconstructed by
POMH (gray) traces for the ‘b’ letter, and the associated correlation
indexes (see text for details)

along an axis, which entails a bad detection of zero crossings,
POMH turns out to work better with a rotated and/or non-
orthogonal coordinate system.

On the whole, the POMH model emphasizes a well-known
lesson in dynamical systems: Complex behavior, here hand-
written traces, can be generated using an astonishingly sim-
ple algorithm; sophisticated outputs do not require heavy
and arcane computations. Here, feature properties of motor
behavior, such as smoothness of trajectory or independence
from a coordinate system, can arise ‘for free’ from the inter-
action of simple, generative operations, without being specif-
ically and intentionally specified and implemented.

4.2 Trace topology and movement dynamics

In order to evaluate the performance of POMH, we com-
pared it to a well established, yet very different handwriting
model by Edelman and Flash (1987). Using the handwriting
prototypes proposed by these authors, our statistical results
suggest that POMH matched the traces produced by humans
equally well as Edelman and Flash’s method, which involves
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Fig. 9 Comparison between the actual (black) and reconstructed by
POMH (gray) traces for the ‘h’ letter, and the associated correlation
indexes (see text for details)

a much more complex optimization algorithm. Our results
were drawn from the raw acquisition data, in particular with-
out smoothing, contrary to Edelman and Flash. POMH is able
to deal with all the diversity of cursive handwriting topology
(loops, reversal points, crossings, inclusions) which can be
fully but simply and directly described by inversions of rel-
ative phase and changes in amplitude. Moreover, the POMH
model presents the additional feature of exactly reproducing
the kinematics of the movement: The superposition of the
trajectory is not only spatial, but spatiotemporal, so that the
actual and reconstructed traces unfold similarly in ‘real time.’
This suggests that the dynamical features of human motion,
in the instance of handwriting here, are properly reproduced
by the model and may stem from the very combination of the
oscillatory motion in the two spatial dimensions (Lacquaniti
et al. 1983).

POMH presents an acceptable balance between the accu-
racy of the matching and the number of parameters used to
obtain the result. Theoretically and pragmatically, it does not
always make good sense to distort the reconstructed trace in
order to fit all the variations in the trace actually produced
(Burnham and Anderson 2002). Some of the variations rep-
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Fig. 10 Comparison between the actual (black) and reconstructed by
POMH (gray) traces for the ‘lune’ word, and the associated correlation
indexes (see text for details)

resent only noise, without any informative value on the data
structure (Pitt and Myung 2002). Besides the above problem
of overfitting, it must be kept in mind that human (motor)
behavior is flawed with an irreducible variability: A trajec-
tory is never reproduced in an identical manner. It can then
be argued that the accuracy in reconstructing a trajectory by
a mathematical model does not have to exceed the possibility
of an accurate production of the trajectory by a human. Our
results appear to be quite within the variability expected from
a human writer.

4.3 Biological plausibility

Besides its compactness, parsimony and efficiency, a fourth
feature of POMH is its biological plausibility. The assump-
tion of the basically oscillatory motion adopted here is
in agreement with the frequency spectrum of the pen-tip
movements observed in the Cartesian space (Dooijes 1983;
Kunesch et al. 1989). Moreover, despite its specificities,
handwriting obeys the same generic laws as other non-
discrete, cyclic movements, whose dynamics are success-
fully captured by oscillatory models (Athenes et al. 2004).
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In addition, POMH exhibits two other realistic properties
of human handwriting. First, by extracting parameters inde-
pendently on the x and y dimensions, so that all parameters
are never renewed at the same time, the model evacuates one
of most documented problematic issue in biological move-
ment generation: coarticulation. This notion reflects the fact
that the kinematics of an ongoing stroke is influenced by
that of the previously traced one (Thomassen and Schomaker
1986). Second, POMH being free of a specific spatial coor-
dinate system entails another prominent property of human
movement: motor equivalence (Lashley 1942; Teulings 1996;
Wing 2000). Motor equivalence is the faculty to achieve the
same output through any combination of motor configura-
tions. The redundancy of the motor system that permits motor
equivalence forbids a strict mapping between the mobilized
effector and the reference system. Thus, humans can change
the orientation of the paper sheet and vary their penhold while
writing (Sassoon 1993) or they can trace the same graphic
pattern using the shoulder, the elbow, the wrist or the fingers,
or even the foot, the neck or the teeth (Bernstein 1935).

The property of motor equivalence suggests that the
graphic motion is specified by the CNS at a more abstract
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level than the actual specifications of the motor coordinates.
With POMH, the graphic traces are reconstructed by provid-
ing particular phase, amplitude and frequency values. These
are general properties of the oscillatory motion, which do
no convey explicit information for their motor implementa-

cannot capture, by definition and in fact, motor equivalence.

The various traces that handwriting requires ask for mech-
anisms able to generate both continuous and discrete move-
ments (Guiard 1993, 1997). Accordingly, on the level of
motor outcome, trigonometric functions confer to POMH the
possibility of producing both non-harmonic traces, contain-
ing full stops or reversal points, and more harmonic squiggles
(see Fig. 3). On the level of processing, POMH instantiates
an ongoing generative mechanism, endowed with intermit-
tently updated parameters. Therefore, continuous trajecto-
ries are not envisioned here as the concatenation of discrete
movements, but as the outcome of a specific mode of move-
ment generation, an idea that is now supported by converging
empirical evidence based on kinetic, kinematic, topological
and neural features of discrete and continuous movements
(Buchanan et al. 2006; Guiard 1993; Huys et al. 2008; Jirsa
and Kelso 2005; van Mourik and Beek 2004; Perdikis et al.
2011).

If continuous movements resulted from the concatena-
tion of discrete movements (aka strokes), discrete move-
ments would involve less processing and would be more
robust to disruption than continuous movement. Yet, neu-
robiological studies contradict this contention. Using fMRI,
Schall et al. (2004) documented that in addition to primary
motor areas activated for continuous movement, discrete
movements recruit a variety of other brain regions, includ-
ing cerebellum. Moreover, Spencer et al. (2003) showed that
patients with cerebellar lesions have deficits in producing dis-
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continuous but not continuous movements. Instead of being
envisioned as basic building blocks, discrete movements can
rather be conceived of as a limit case of oscillatory motion,
that is, an aborted cyclic movement (Schoner 1990), or as
a qualitatively distinct category of motion altogether irre-
ducible to continuous motion (Jirsa and Kelso 2005).

Extracting parameters when velocity reaches a zero value
is also behaviorally pertinent. Studies on human oscillatory
motion (Beek 1989; Byblow et al. 1994) have shown that
within each movement cycle, there are two specific, so-
called anchor points, localized about movement reversals
(viz. velocity amounts to zero). At these points, a local tight-
ening of the trajectories in phase space reflects the availability
of information instrumental to organizing the whole move-
ment cycle, in particular to establish its temporal stability, as
shown in studies on bimanual coordination (Fink et al. 2000).
Kostrubiec et al. (2011) documented that bimanual patterns
that were new to an individual and at first difficult to produce
were nonetheless facilitated once the effectors were put into
the right position at these very anchoring points. These find-
ings suggest that the characteristics of the global movement
cycle are chiefly defined at the local points where velocity is
null.

4.4 Tmplications and future directions

A reason for the parsimony and efficiency of the POMH
model stems from merging the steps of parameter extraction
and movement generation into one single nonstop process.
This view is quite in line with theoretical claims, frequent in
the neurosciences and psychology, that in the human brain
too, perceptual (viz. parameter extraction) and motor (viz.
movement generation) processes are tightly related (e.g.,
Fowler and Turvey 1978; Gibson 1977; Kelso 1995). Strong
empirical evidence is accumulating, first in the field of speech
science in the fifties (e.g., Liberman and Mattingly 1985, for
a review) that perception is strongly rooted into action, a
basic tenet of so-called motor theories of perception (e.g.,
Galantucci et al. 2006, for a review). Many behavioral and,
more recently, neurobiological findings indicate that such is
the case for handwriting too, which turns out to be concurrent
with reading (e.g., Nakamura et al. 2012). In the wake of the
discovery of the ‘mirror neurons’ (Rizzolatti and Graighero
2004), studies using fMRI have shown that reading handwrit-
ten letters involved areas in the prefrontal cortex that are com-
mon with the network activated in reading the same letters,
whereas this was not the case for printed letters or scribbles
(Longcamp et al. 2003a). A finer analysis using ERP (Event-
Related Potential) demonstrated that the involvement of the
motor cortex in the discrimination of letters is fairly preco-
cious, as early as 300 ms after the stimulus (Wamain et al.
2012), this effect being specific to self-produced handwritten
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letters, as compared to letters produced by another human or
to a printed letter.

Of particular interest for the POMH model, which is,
recall, rooted on oscillation, is the specific task of discrimi-
nating between ellipses of various eccentricities, shapes that
are an outcome of the combination of two orthogonal oscil-
lators (aka Lissajou plots). A recent study using a dual-task
paradigm evidenced that a concurrent motor task (succes-
sive multi-finger tapping) interferes with visual perception
exclusively for ellipses that are actually produced in the most
stable and precise fashion (Wamain et al. 2011). Thus, the
motor areas subserving the movement of the hand are sig-
nificantly more involved in the detection and discrimination
of shapes that correspond to stable motor patterns, as com-
pared to shapes corresponding to less stable ones. And this
holds true on an individual basis: What each writer has even-
tually grown to prefer to perform as a graphic output is also
what s/he tends to discriminate best and fastest. This may
be a basic mechanism through which children learn to write
and read concomitantly (Longcamp et al. 2003b), while the
basic repertoire of coordinated oscillatory patterns of adults
(Athenes et al. 2004) is progressively acquired during child-
hood (Danna et al. 2012).

A second reason for parsimony and efficiency is that our
model intermittently updates the relevant parameters of a
continuously outputted function, so that traces of increased
complexity can be successfully reconstructed, going from
simple strokes to words, sentences and signatures.

Still, the very process of intermittent updating of an oscil-
lation raises several issues. The first issue pertains to the
assumption of a stable frequency. For instance, in their model
(see above), Singer and Tishby (1994) reset the phase to
zero every half-cycle and accounted for the variations in the
produced shape by changes in frequency. Notwithstanding,
experimental observations suggest the contrary: Frequency
tends to be stable, while phase varies. In a series of experi-
ments, Viviani and Terzuolo (1980) demonstrated that, when
drawing circles of varying size alternately, movement veloc-
ity varied proportionally to the length of the produced tra-
jectory, so that movement time was maintained fairly con-
stant. This principle of isochrony, also found in reaching and
pointing movements without time or precision constraints
(described for example by Gordon et al. 1994), presupposes
that fairly natural movements tend to maintain movement
time, hence frequency, constant. If handwriting follows the
rule of isochrony, then the POMH model is right in assuming
a stable frequency and a variable phase.

Another issue pertains to the updating process. In the
POMH model, the parameters are specified for each axis
every half-cycle alternately, leading to a mechanism running
on a quarter of a cycle basis. Obviously, daily life experience
as well as numerous experimental findings concur to indi-
cate that longer bouts of trajectory can be produced without
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update. Further work is underway to find out whether suc-
cessive quarters of a cycle can be merged into larger chunks
with similar parameters.

The take-home message of the present study is that a com-
plex motor skill, such as handwriting, can be still simulated
by a simple model, provided that the basic dynamic property
of the movement, namely, its oscillatory nature, is at the heart
of the model. As a result, our POMH model is able to capture
parameters from real handwritten traces and reconstruct them
accurately in space and time. This may be an valid instance of
a computer-biological platform (Prinz et al. 2004), where the
actual parameters and the simulated outcome are matched in
order to perform a severe and robust test of the model.
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